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ABSTRACT In most of the existing work for activity recognition, 3D ConvNets show promising perfor-
mance for learning spatiotemporal features of videos. However, most methods sample fixed-length frames
from the original video, which are cropped to a fixed size and fed into the model for training. In this manner,
two problems limit the model performance for recognition. First, the cropped video clips are incomplete or
even distorted in appearance, resulting in a large gap between the feature representation and semantics of
human activity. Second, the useful features of longer video frame sequences are weakened by the repeated
stacking of 3D convolution over deep networks due to the limitations of GPU memory and computing ability.
This article proposes a method based on a 3D backbone network for multi scale spatial feature representation,
which uses a pyramid pooling layer to allow the input of video frames at different scales, and then aggregates
short-term spatial-temporal features into a long-term video-level representation. Objection detection is used
as a component of model testing to explore the improvement of activity recognition considering the large
amount of space-time redundancy in real life videos. An experiment is performed on the principal video

dataset, UCF101, and the proposed method presents a competitive performance.

INDEX TERMS 3D ConvNets, activity recognition, video-level feature representation.

I. INTRODUCTION

Analyzing and understanding human activity in videos can
be widely used in real-life scenarios such as intelligent
video surveillance, nursing home care, and smart retail, and
self-driving and human—computer interaction can benefit
from the task of activity recognition in videos. In recent
years, deep neural networks for image tasks exhibit a superior
performance, followed by great progress in the study of video
behavior recognition. For 3D video data with spatial and tem-
poral components, the performance of the model for activity
recognition depends heavily on the ability to learn robust
spatial-temporal features from the video and obtain spatial
and temporal dependencies [1]. Existing large-scale video
datasets are collected from real, unconstrained environments,
where the spatially complex video content and temporally
varying activity durations make activity recognition in videos
challenging.
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In terms of spatial complexity, real-world videos have
many activity-independent factors, including complex back-
grounds, perspective changes, lighting changes, human-scale
changes, and movement speed. In terms of temporal duration,
humans perform actions ranging from 1 second to more
than 10 seconds. Complex actions last longer and consist of
simple actions, and discrimination based on short-range tem-
poral information is likely to lead to false activity predictions,
as shown in the top of Fig. 1.

To overcome the above obstacles, most research work
on activity recognition relies on deep convolutional neural
networks (CNNs) with the powerful ability to extract appear-
ance features to obtain spatial information about activity in
video frames, and temporally focus on capturing video-level
representations over a long-term range. A typical two-stream
architecture, TSN [2], uses sparse sampling to obtain seg-
ments from long video sequences and aggregates video-level
expressions based on the consensus of all segments, where
the optical flow that is computationally expensive represents
interframe dynamic changes.
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FIGURE 1. Short-term feature extraction and incomplete cropping leading
to action misclassification.

3D convolutional networks (3D ConvNets) [3], [4]
represent spatial-temporal features of video well, but their
performance mostly rely on dense temporal sampling with
predetermined sampling intervals and may incur excessive
computational costs if used to process long videos. The dura-
tion of the videos fed into the model is limited by the available
memory space. Long Short-Term Memory (LSTM) [5] per-
forms sequence modeling well, but it has several shortcom-
ings in expressing and aggregating spatial characteristics.

For deep learning methods, data substantially affect
the performance of the model. Preprocessing before the
model loads the videos can suppress unexpected noise in
frames and highlight useful task-related information. In the
above-mentioned research on activity recognition, generally,
original videos are first converted into a fixed size, and video
frames are sampled at a fixed interval to form fixed-length
clips, which are randomly resized and cropped into a fixed
size and then fed into the network. This processing can be
regarded as data enhancement to prevent overfitting in model
training, and the fixed crop size allows the output features
of CNN to be flattened into a fixed dimension and then fed
into fully connected layers. However, the incomplete context
in cropped or distorted video clips also leads to incomplete
or even distorted human activities recognition. The bottom
of Fig. 1 shows that incomplete action feature extraction and
cropped or distorted video context result in incorrect action
classification.

In this article, spatial and temporal dimensions are consid-
ered and represent human activities to avoid omitting impor-
tant information related to activities in the video. Spatially,
to avoid the problem of incomplete action details caused
by frame cropping, a pyramidal pooling layer is used to
allow CNN to accept frames of varying sizes. Temporally,
short-term spatial-temporal features are learned through 3D
convolution, then the long-term temporal representation is
constructed by aggregating multiple clip-level features at the
end, similar to TSN. In this manner, our approach temporally
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models the long-term dynamics of the video and spatially
obtains complete contextual information about the video.

Real-world videos contain too much spatial-temporal
redundant information, which makes the model predict activ-
ity correctly difficult. Handling long, untrimmed videos for
activity recognition models is challenging when models are
deployed in real-world scenarios. Training a model from
scratch for activity detection to locate action boundaries
in long videos takes a large amount of time and effort,
and demands laboriously labeling videos. Integrating domain
knowledge to simplify the optimization of deep models is
a common strategy in deep learning. In this article, object
detection is utilized to focus on the human action area in
the frame and concatenate them into an action block that
is fed into the model for action prediction, which greatly
improves efficiency without loss of accuracy during model
testing.

In summary, the main contributions in this article are as
follows:

o A pyramid pooling layer captures fixed-size features
from multiscale feature inputs, thus avoiding the absence
of critical context due to frame cropping and resizing.
Without too much extra computing overhead, more com-
plete action details can be retained.

« In the test phase, a lightweight object detection frame-
work is utilized to extract the human action block from
the original video, which further spatially and tempo-
rally removes redundant information in the video that
is not related to the activity, improving the prediction
efficiency and accuracy of the model for activity recog-
nition. An experiment is performed on a large-scale
video dataset, UCF101, and an advanced accuracy is
achieved.

o The proposed method uses 3D convolution and
later fusion, which simultaneously models short-term
spatial-temporal features and long-term temporal action
features in videos, and finally extracts video-level fea-
ture representations.

Il. RELATED WORK

SPATIOTEMPORAL FEATURE REPRESENTATION

CNNs have a powerful ability to learn the appearance of
im ages. Benefiting from the great progress in CNNs for
image tasks [6]—[9], Simonyan and Zisserman [6] and Feicht-
enhofer et al. [10] utilized a pretrained 2D CNN model
on the large-scale image dataset ImageNet [11] to form a
two-stream framework with spatial and temporal branches,
which extract the appearance features and interframe dynam-
ics. However, such models focus more on appearance and
process up to ten video frames at a time. Moreover, the
temporal motion information between frames is captured by
a dense optical flow with a large computational overhead
that limits the scalability of the deep model on large video
datasets. Yue-Hei Ng et al. [12] proposed using LSTM [13] to
aggregate frame-level features from the CNN output to model
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3D Backbone

FIGURE 2. Our proposed 3D network architecture.
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longer frame sequences, but it does not work well for videos
due to the differences between video frames and speech and
text.

Recently, more research work [3], [4], [14]-[16] focused
on using 3D ConvNets for activity recognition in videos.
Using 3D convolution to process 3D data like videos, which
can simultaneously learn the spatial and temporal features of
frame sequence, is intuitive. I3D [4] and P3D [14] benefit-
ted from loading the pretraining parameters on ImageNet,
and Tran er al. [15] demonstrated the advantages of deep
3D ConvNets for learning video representations. Based on
the research work P3D, R(2+1)D [17] adopted the (2+1)D
decomposition spatiotemporal convolution on the ResNet3D
backbone network. In this article, a deep 3D ConvNet is used
to extract clip-level features in short frame sequences, and
a later fusion strategy is finally adopted to aggregate short
video clips into long-term and video-level representations.

MULTISCALE PYRAMID POOLING

The idea of pyramids is commonly used to solve multi-
scale problems of detecting objects in images. For this prob-
lem, the construction of image pyramids [18] and feature
pyramids [19] are traditional ways. The image pyramid struc-
ture [18] yields a series of image sequences of varying resolu-
tions by resizing the original image with given scale factors.
However, using CNN to extract features separately for each
layer of image pyramids takes up a large amount of memory.
Proper scales must be selected to generate image pyramids
for different practical scenarios. Alternatively, feature pyra-
mids [19] are constructed with features from different CNN
layers, using a single-scale image as input, where top—down
lateral connections between low-resolution high-level fea-
tures and high-resolution low-level features allow features at
all scales to represent rich semantic information.

In practice, the ability to represent features at different
scales also differs, and up sampling makes the high-level
semantics not always spread effectively. Both pyramid struc-
tures aim to obtain features at different scales in the image,
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which retain detailed features but also add additional param-
eters and computational overhead. He et al. [20] proposed
spatial pyramid pooling as a transition from the convolutional
layer to the fully connected layer, allowing the convolu-
tional network to receive different sizes of image inputs and
retaining complete spatial information. Activity recognition
in videos is more concerned with the foreground region of
actions associated with people in the frame, whereas the
position of a person in the current frame is variable, and any
cropping may result in the loss of important cues associated
with the action. Thus, preserving multiscale features is more
beneficial to our task.

OBJECT DETECTION

People and objects interacting with people should be the
focus of activity recognition. Zhang et al. [21] utilized
only feature information related to people and objects by
object detection. Similarly, Gao et al. [22] employed object
detection methods to focus on human—object interaction in
pictures. Two-stage RCNN [23], [24] and one-stage
YOLO [25]-[28] object detection algorithms in deep learning
show good performance. Overall, the two-stage object detec-
tion framework is more accurate, but the one-stage YOLO has
faster, even real-time inference speeds with guaranteed accu-
racy, making it well suited for engineering practice. The latest
YOLOVS open-source project surpasses most of the object
detectors in detection accuracy, while exceeding 300 fps
detection speed. YOLOVS is a flexible, lightweight network,
which is extremely advantageous in the rapid deployment of
the model. In this article, YOLOVS5 [28] is used to preprocess
videos during model testing. The preprocessed data are used
to explore the contribution of object detection to activity
recognition.

lll. METHOD

The overall framework of our proposed method is shown
in Fig. 2. For variable-length video input, the same sparse
sampling strategy as TSN is used, dividing the whole input
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FIGURE 3. Convolution of 3D convolutional kernels.

video into K segments, and a few frames are sampled from
K segments to extract video clips, which are fed into the
3D convolutional backbone network. A 3D pyramid pool-
ing layer is used to aggregate the convolutional features of
different spatial scales, form a unified feature map, preserve
the complete action details, and achieve the transition from
convolutional features of different sizes to the fully connected
layer. A 1 x 1 x 1 3D convolution is used to control the output
feature dimension of the 3D pyramid pooling layer and pre-
vent generating an overly high feature dimension, which leads
to a drastic increase of the full connection layer parameters.
Finally, features from short video clips are aggregated into
video-level feature representations.

3D SPATIAL-TEMPORAL MODELING

3D ConvNets provide a paradigm for efficiently learning
the spatial features in videos and simultaneously attaining
information about the temporal dynamics between frames.
Convolution operations in 3D ConvNets extend 2D plane
convolution operations over 3D space, as shown in Fig. 3. In
terms of data input, the input into a 3D convolutional layer is
a cube of multiple images along the time dimension, whereas
the input to a 2D convolutional layer is a single image. The 3D
convolutional layers are computed in the same manner as in
2D, with the cube-shaped convolutional kernels sliding over
successive multiframe images. The output is still a 3D cube
composed of multiple 2D maps. The resulting feature map not
only reflects the relationships between pixels within a single
image but also mines the correlation between contiguous
frames in the time series, preserving the temporal information
of the video.

As shown in Table 1, ResNet3D is adopted as the backbone
network to extract 3D spatial-temporal features. Pretraining
parameters loaded on ImageNet are always beneficial for 3D
networks. Therefore, our work decomposes the 3D convo-
lution into (2 4+ 1)D convolution as in 13D, which reduces
the number of parameters in the 3D convolution kernel,while
being able to load pretrained models on ImageNet.

PYRAMID POOLING LAYER
In terms of data input, the input into a 3D convolutional
layer is a cube of multiple images along the time dimension,
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FIGURE 4. 3D pyramid pooling layer.

whereas the input to a 2D convolutional layer is a single
image. The 3D convolutional layers are computed in the same
manner as in 2D, with the cube-shaped convolutional kernels
sliding over successive multiframe images. The output is still
a 3D cube composed of multiple 2D maps. The resulting
feature map not only reflects the relationships between pixels
within a single image but also mines the correlation between
contiguous frames in the time series, preserving the temporal
information of the video.

ResNet3D is adopted as the backbone network to extract
3D spatial-temporal features. Pretraining parameters loaded
on ImageNet are always beneficial for 3D networks. There-
fore, our work decomposes the 3D convolution into (2 + 1)D
convolution as in I3D, which reduces the number of param-
eters in the 3D convolution kernel, while being able to load
pretrained models on ImageNet.

Frame sequences with different crop sizes are fed into the
3D backbone, resulting in 3D feature maps with different
sizes. The fully connected layer for classification in CNNs
requires a fixed input feature size. The transition from the
convolutional output features to the fully connected layer can
be well achieved by using a pyramid pooling layer, which
transforms features of different scales into fixed-size feature
maps and extracts features at multiple levels and scales to
improve the robustness of the model. The 3D pyramid pooling
works are shown in Fig. 4.

Different scales of 3D pooling kernels are designed to
unify the spatial dimension of the 3D convolutional feature
map. For the pooling operation, the temporal dimension is
kept unchanged, and the output dimension is unified only by
changing the size of the pooling kernel in the spatial dimen-
sion. Different pooling scales are used to partition the feature
map in the spatial dimension. Each level of the pyramid
pooling layer corresponds to a pooling scale. For example,
setting up three pooling scales means three levels of pyramid
pooling layers. Fig. 4 shows three different scales (1 x 1,
2 x 2,4 x 4) are used for partitioning. The input feature
map size for the pyramid pooling layer is assumed to be
[N,C,T,H, W], where N is the batch size, C is the channels
of the feature map, H, W, T are the height, width, and depth
of the feature map respectively. K denote the number of
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TABLE 1. 3D Backbone. Folllowing [4], our 3D ResNet-50 backbone for extracting spatial-temporal features is shown. The output size and kernel size are

inT x W x H shape.

Stage Layer Output size
Raw video samples — 32 x 340 x 256
Input clips — 8 x 340 x 256
conv 1 1 X7 X 7,64, stride 1,2,2 8 x 170 x 128
pool 1 1 x 3 x 3, max, stride 1,2,2 4 x 85 x 64
[ 1x1x1,64 ]
res 2 1x3x3,64 x 3 4 x 85 x 64
| 1x1x1,256 |
[ 1x1x1,128 ]
res 3 1x3x3,128 | x4 4 x 43 x 32
| 1x1x1,512 |
[ 3x1x1,256 |
res 4 1 x 3 x 3,256 X 6 4x22x16
| 1x1x1,1024 |
[ 3x1x1,512 ]
res 5 1x3x3,512 x 3 4x11x8
[ 1x1x1,2048 |

levels of the pyramid pooling layer, and each level contains a
pooling scale n, Pooling operation concatenates the temporal
feature map per layer by channel, and channel size at each
level expands n; x ng. After each pooling, the depth of the
feature map temporally remains unchanged, which retains
short-term temporal information. The pooling kernel in the
spatial feature is calculated as in Eq. (1). The input of feature
maps with multiscale sizes is unified into a fixed-size output
by setting levels of pyramid pooling and the pooling scale at
each level.

S hw
kernel (ky, k,,) = ceil (—, —>

ng Ng
. h w
stride (sp, $y) = floor <—, —)
ne Nk
. kpxng—h+1
padding (pn, pw) = floor <f

ky xng —w—+1
k—) n

2

Pooling changes the size of the input feature map, not
the dimensions, that is, the number of feature map chan-
nels. Directly feeding the output feature map of a deep 3D
ConvNets into the pyramid pooling will result in a dramatic
increase in the dimensionality of the output feature map,
as well as excessive parameters in the fully connected layer.
In this article, 3D convolution with a kernel size of 1 x 1 x 1
is used to reduce the feature dimension.

VIDEO-LEVEL FEATURE REPRESENTATION

Repeated and stacked 3D convolution makes the useful
features of longer-range frames weakened and difficult
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to capture. Therefore, the clip-level features must be aggre-
gated into long-term video-level representations. Assuming
that the whole video is divided into K segments, average
pooling is used to aggregate the short-term features of K
segments. In this article, the whole video is divided into
four segments with fixed sampling intervals of two and eight
frames for each segment, considering the memory and com-
putation capacity of the GPU. The intuition behind average
pooling is to utilize the average activation of all clips for
activity recognition.

REMOVE SPATIAL-TEMPORAL REDUNDANCY

For noisy videos with complex backgrounds, several redun-
dancies are observed in the single-frame images spatially and
frame sequences temporally, which are not related to human
actions but affect the final recognition performance. In this
article, YOLOVS is employed to preprocess videos during
model testing. Fig. 5 shows that the human detection box is
expanded by two times to form a human action area, which
does not exceed the image boundary. The human action area
on consecutive frames constitutes the action block fed into
the model. Adopting such a strategy can further improve the
accuracy and efficiency of activity recognition.

IV. EXPERIMENTS

In the section, the evaluation dataset and implementation
details of the proposed method are first introduced. Then,
good practices for 3D pyramid networks and long-term mod-
eling are explored and compared with advanced methods.
Finally, the application of the lightweight object detection
framework YOLOVS to optimize model performance for
activity recognition is discussed.
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FIGURE 5. Yolo remove spatial-temporal redundancy.

DATASET

The UCF101 [29] dataset contains 5 major categories of
everyday human activities: single-actor, instrument playing,
character interaction, human interaction, and sports. The
dataset is a collection of 13320 real-world videos from
YouTube, with a total of 101 activity classes, each with 25 dif-
ferent actors, mostly adults. The duration of the videos vary
depending on the complexity of the different actions. Most of
the videos are recorded and uploaded by the users themselves,
from unconstrained real-world environments, with large vari-
ations in cluttered backgrounds and resolution inconsisten-
cies. Thus, the UCF101 dataset is very challenging and is a
classic benchmark dataset for evaluating models for activity
recognition. The UCF101 dataset contains three training/test
splits, and the videos for training and testing in each subset
are trimmed from different long videos. Over 3 split sets are
evaluated.

IMPLEMENTATION DETAILS

ResNet 3D ConvNet is used as the backbone network. Except
for the last fully connected layer for classification, each
convolutional layer is followed by a batch normalization
layer and a ReLU activation function. The parameters pre-
trained on ImageNet are loaded during training. The Sports-
IM dataset [30] is used for pretraining the 3D pyramidal
pooling network and then trained on the UCF101 dataset
using 6 NVIDIA Titan RTX GPUs. Batch size is 32, and
initial learning rate is 1e-4, which could be adjusted automat-
ically. The stochastic gradient descent algorithm optimizer
is used, where momentum is set to 0.9. Before training, the
video is cut into video frames at the frame rate of the original
video. During training, considering the influence of GPU
memory and computation, all video frames of a single video
are divided into segments, and for each segment, the start
is the earliest possible starting frame, and eight consecutive
frames are selected to form each clip at a frame interval of
2. The spatial size of the shorter side of the video frame is
adjusted to 256 pixels, and the resolution is kept the same.

ABLATION STUDY

A. 3D PYRAMID POOLING LAYER SETTINGS

In our 3D pyramid network, the levels of the pyramid pool-
ing layer affect the model performance and the number
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FIGURE 7. The effects of a different number of segments on
computational overhead and model performance.

of parameters. Setting more levels of kernel scale leads to
increasing channels of features, which are input into the fully
connected layer. Accuracy is reported by averaging over all
three splits. For example, if four pooling kernel scales are
set up, the number of channels of the concatenated feature
map is more than twice that of three scales. Fewer pyramid
levels are selected while ensuring high accuracy to achieve
a tradeoff between number of model parameters and perfor-
mance. Fig. 6 shows the effect of various levels of the pyra-
mid pooling layer on the number of parameters in the fully
connected layer and the performance of the corresponding
model on UCF-101. The three-level pyramid pooling layer
is the optimal choice.

B. CONSIDER LONG-TERM INFORMATION

Tran et al. [15] found that clip-level test accuracy peaks
when input reaches 32 frames. This finding implied that 3D
ConvNets in practice obtain only a limited length of tem-
poral information at a time. Thus, we argue that combining
short-term temporal information from different parts of a long
video is preferable to represent temporally complete activity
information. An experiment is conducted on the UCF101
splitl test set with a different number of video segments
and different lengths of a clip. The length of each clip is
fixed to eight frames, and the effects of a different number of
segments on computational overhead and model performance
are compared, as shown in Fig. 7. If more frames are fed to
the 3D network at once, the computational load on the GPU
becomes difficult. When the number of segments is five, the
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FIGURE 8. Useful data pre-processed with yolov5 compared to previous data.

TABLE 2. Accuracy improvements from long-term modeling.

Frames per clip/segments GFLOPS Accuracy
8/4 54.82 95.1%
16/2 54.82 94.3%
32/1 54.82 93.5%

performance of the model decreases instead probably because
of too much spacetime redundancy information.

Table 2 presents the test results after training on UCF101
splitl using clips consisting of different numbers of frames,
and the computational overhead of the model is held constant.
We can infer that considering the complete video temporal
information is advantageous for recognizing activity without
increasing the model computation.

C. COMPLEMENTARY TESTING FOR YOLOV5

YOLOVS is used to preprocess videos in the UCF101
datasets. Fig. 8 compares the number of frames for each
action-related category after preprocessing with the total
number of frames in the original video. The preprocessed
data eliminate numerous irrelevant spatial-temporal redun-
dant information in each category, making the data well
distributed. Our model is tested again on the preprocessed
UCF101 data. The average test results of the three split sets
are shown in Table 3. Object detection deployed in activity
recognition provides performance improvements and can be
used as a strategy to industrial applications. The results on
the splitl test set of the preprocessed UCF101 dataset are
visualized. Fig. 9 shows the confusion matrix. The data on the
diagonal of the confusion matrix indicate that the prediction
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TABLE 3. Test results on pre-processed UCF101.
Methods Accuracy
Ours model 95.5%
YOLOVS5+ Our model 96.1%

labels of the actions are the same as the true labels. Statisti-
cally, 41 of the 101 action categories are predicted with 100%
accuracy.

COMPARISON WITH STATE-OF-THE-ART METHODS

Table 4 compares our method with state-of-the-art methods
on the UCF101 dataset, using the average accuracy over
three splits. Our method performs well when the model is
trained on RGB data only, which is substantially better than
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TABLE 4. Comparison with state of the art methods.

Method Pretraining dataset Accuracy (%)
Two-stream ImageNet 88
TSN-RGB ImageNet 86.5
TSN-RGB+Flow(3seg) ImageNet 94.6
TSN-RGB+Flow(7seg) ImageNet 94.9
C3D SportsIM 85.2
P3D ImageNet+Sports M 88.6
I3D-RGB+Flow ImageNet 93.4
R(2+1)D-RGB Sports1M 93.6
Ours ImageNet+SportsIM 95.5

classical two-stream and 3D ConvNets C3D. In the case of
using the same pretraining datasets, our method achieves a
higher accuracy by using a much smaller model than the
199-layer depth model P3D. Our method also outperforms
R(241)D by 1.9%, which also demonstrates the advantage of
loading the pretraining parameters of ImageNet. Compared
with the two-stream model trained with optical flow, our
method pretrained on Sports1M outperforms TSN 0.6% and
13D by 2.1%, which is pretrained on ImageNet. Our model
shows a competitive performance.

V. CONCLUSION

Previous methods cropped and distorted raw video data such
that the network could only see incomplete action details at
once. A 3D pyramid pooling network is proposed to extract
complete video-level features. The proposed method uses a
pyramid pooling layer to uniform feature maps of different
scales as fixed sizes and finally aggregates clip-level fea-
tures into video-level features to obtain more complete action
features. The level setup of the pyramid pooling layer and
the details of video-level feature aggregation are experimen-
tally explored, demonstrating the robustness of multiscale
spatial feature expression and the benefits of representing
complete video-level action features. Our approach is com-
petitive with advanced methods. The promising performance
on the UCF101 dataset demonstrates the effectiveness of our
method. In addition, the auxiliary role of the object detection
framework for the activity recognition task is explored. How-
ever, we need to explore how to implement a more lightweight
network for quickly identifying activities in a video in the
future. We will also focus further on the detailed study of
activity recognition models for industrial applications.
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