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ABSTRACT In recent years, machine learning algorithms have been successfully employed to leverage
the potential of identifying hidden patterns of financial market behavior and, consequently, have become
a land of opportunities for financial applications such as algorithmic trading. In this paper, we propose
a statistical arbitrage trading strategy with two key elements: an ensemble of regression algorithms for
asset return prediction, followed by a dynamic asset selection. More specifically, we construct an extremely
heterogeneous ensemble ensuringmodel diversity by using state-of-the-art machine learning algorithms, data
diversity by using a feature selection process, andmethod diversity by using individual models for each asset,
as well models that learn cross-sectional across multiple assets. Then, their predictive results are fed into a
quality assurance mechanism that prunes assets with poor forecasting performance in the previous periods.
We evaluate the approach on historical data of component stocks of the S&P500 index. By performing
an in-depth risk-return analysis, we show that this setup outperforms highly competitive trading strategies
considered as baselines. Experimentally, we show that the dynamic asset selection enhances overall trading
performance both in terms of return and risk. Moreover, the proposed approach proved to yield superior
results during both financial turmoil and massive market growth periods, and it showed to have general
application for any risk-balanced trading strategy aiming to exploit different asset classes.

INDEX TERMS Stock market forecast, statistical arbitrage, machine learning, ensemble learning.

I. INTRODUCTION
Statistical arbitrage trading, or StatArb for short, exploits
some statistical patterns in the dynamics of security prices,
thus obtaining, with a high probability, a return larger than
the risk-free return. StatArb roots back from pairs trading
strategy [2], and was first developed at Morgan Stanley by a
quantitative trading group under the lead of Nunzio Tartaglia
in themid-1980s onWall Street [3]. Pairs trading, a simplified
form of StatArb, involves forming portfolios of two related
stocks with relatively close pricing. The intuition behind pairs
trading is to exploit the spread of expected returns of financial
assets. When using such a trading strategy, investors go long
on the underpriced asset with the highest expected return and
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short the portfolio of assets with the lowest expected return.
These strategies typically tend to make a large number of
individual independent trades with a positive expected return,
thereby reducing the risk of the strategy. The arbitrage oppor-
tunities exist as a consequence of the market inefficiency
and the profits are realized by taking trading positions when
the mispricing of the assets correct themselves in the future.
Moreover, because the spread between assets’ prices is con-
sidered to be uncorrelated with market returns, pairs trading
and, by extension, StatArb, are market-neutral strategies.

On a high level, StatArb implies automatically trading a
set of assets that construct a portfolio [4] and comprises two
phases: (i) the scoring phase, where each asset is assigned
a relevance score, with high scores indicating assets that
should be held long and low scores indicating assets that are
candidates for short operations; and (ii) the risk reduction
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phase, where the assets are combined to eliminate, or at least
significantly reduce the risk factor [5], [6].

In the context of StatArb, there are two challenges when
implementing such a strategy. First, correctly identifying
pairs of assets that exhibit similar behavior and determining
the point in time when the prices start moving away from
each other and open trading positions. For this reason, over
the years, a plethora of statistical and econometric tech-
niques have been developed to analyze financial data such as
distance based [7], co-integration approach [8], and models
based on stochastic spread [9]. Second, determine the correct
moment in time when the prices converge and the equilibrium
is reached, to close the trading positions.

This insufficiency, coupled with the large number of
assets involved in trading, has led to the need of introduc-
ing a forecasting component and, consequently, the rise of
machine learning models [10]. However, when incorporating
machine learning algorithms, the famous efficient market
hypothesis (EMH) gives a pessimistic view as it implies that
the financial market is efficient [11], and, as such, tech-
nical or fundamental analysis (or any analysis) would not
yield any consistent over-average profit to investors. Fur-
thermore, since investors often exhibit irrational behavior,
the price changes differently. One possible cause for that is the
under-reaction of the investors, like anchoring. Conversely,
when the asset price reaches the underlying value of the
company, it usually continues moving in the same direction,
exceeding the real value of the asset, a phenomenon called
overreaction which can be attributed to investors’ overconfi-
dence and bias. This leads to financial data containing a large
amount of noise, jump, and movement, and as a consequence,
such time-series are highly non-stationary in time and noto-
riously unpredictable [12], thus the forecasting performances
are substandard. To mitigate the noise problem, a successful
approach has proven to be the use of ensembles. They have
demonstrated superior predictive performance compared to
individual forecasting models, hence their notable success
in different domains such as credit scoring [13], sentiment
analysis [14], power systems control [15] or natural calami-
ties forecasting [16]. In the literature, we can find several
implementations of StatArb that apply classification to con-
struct the trading portfolio [17], [18]. In this regard, our
work applies predicted return in building the portfolio by
buying long assets with the highest expected return and
short selling assets with the lowest expected return. Although
regression in the context of financial predictions poses more
challenges [19], [20], it allows for a more granular ranking,
without reference to any balance point.

Therefore, in this paper, we propose a general approach
for risk-controlled trading based on machine learning and
StatArb. The approach employs an ensemble of regressors
for which we ensure three levels of heterogeneity: (i) fore-
casting algorithms, as the approach can be implemented
with any state-of-the-art forecasting algorithms; (ii) data
level, as we train our models with information pertaining
to constituents of financial time series with a diversified

feature set, considering not only lagged daily prices return
but also a series of technical indicators; and (iii) diversi-
fied models, as we are training the models using either data
from individual assets or aggregated assets’ data pertaining
to the same industry. Finally, in our approach, after the
assets have been ranked in descending order, we propose
the use of a dynamic asset selection, which looks at the
past and influences the ranking by removing assets with
bad past behavior. Then, the strategy buys (performing long
operations) the flop k assets and sells (performing short
operations) the top k assets. Furthermore, we propose one
possible instance of our approach that has been configured for
intra-day operations and on the well-known S&P500 Index.
The regressors we have employed for such an instance are
the following state-of-the-art machine learning algorithms:
Random Forests (RF), Light Gradient Boosted trees (LGB),
Support Vector Regressors (SVR), and the widely known sta-
tistical model, Auto-Regressive Integrated Moving Average
(ARIMA). To validate the chosen configuration, we evalu-
ate the performance of our approach from both return and
risk performance perspectives. The comparisons against the
baselines clearly illustrate the superiority of the proposed
methodology in performing the forecast.

This paper extends a previous conference work [1], which
has been completely revised and rewritten, providing new
analyses and results. In summary, its contributions are the
following:

1) We propose a general approach for risk-controlled trad-
ing based onmachine learning and StatArb, by defining
the problem as a regression of price returns, and to be
easily implemented using different types of assets;

2) We propose an ensemble methodology for StatArb,
tackling the ensemble construction from three different
perspectives:
• model diversity, by using machine learning algo-
rithms and even statistical algorithms;

• data diversity, by considering lagged price returns
and technical indicators to enrich the data used by
models;

• method diversity, by simultaneously training sin-
gle models across several assets (i.e., models
per industries) and, conversely, models for each
asset;

3) We provide a possible instance of our approach for
intra-day trading with different kinds of regressors
(machine learning algorithms and statistical models)
for StatArb within the S&P500 index;

4) We develop a dynamic asset selection based onmodels’
most recent prediction performance, with brand new
experimental results aimed at finding the influence of
the lookback period on the proposed approach;

5) We performed an in-depth risk-return evaluation,
enabling a detailed overview of the proposed approach
in terms of risk exposure and control;

6) Finally, we carried out a performance evaluation of our
approach, showing that it outperforms several strong
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FIGURE 1. A road map of the forecasting methods and asset universes in StatArb trading along the years (ELMAN - ELMAN Recurrent Neural
Network, RBM - Restricted Boltzman Machines, FNN - Feedforward Network, DNN - Deep Neural Network, RF - Random Forests, GBT - Gradient
Boosting Trees, LSTM - Long Short Term Memory, DBN - Deep Belief Network).

baseline methods on the S&P500 index for intra-day
trading.

The remaining of this paper is organized as follows.
Section II briefly describes relevant related work in the lit-
erature. Section III introduces the problem we are aiming to
tackle, the general architecture of the proposed approach, and
details about the instance we have generated. We continue
by describing the features that we have used (Section IV),
details of the regressors (Section V), the proposed ensem-
bling methodology, and finally the dynamic asset selection
(Section VI). Section VII discusses the setup considered for
the trading back-test, while Section VIII presents the experi-
ments we have carried out. Section IX concludes the paper
and discusses further directions of research where we are
headed.

II. RELATED WORK
The prediction of the stock market is one of the most chal-
lenging problems in time series forecasting research and,
hence, the interest in performing efficiently such a task from
the academic finance community is growing. The literature
dealing with applications on machine learning and neural
networks in finance is presented and analyzed in several
works [10], [21]–[23]. Although there are various streams
of research and applications, this section highlights only a
limited number of articles, highly correlated to this paper and
by extension to StatArb, as it will be discussed in the next
paragraphs. Figure 1 depicts the road map for the techniques
behind StatArb algorithmic trading and corresponding input
features and the universe (set of assets) considered.

Starting chronologically, the first work that considers cou-
pling machine learning with StatArb is [24]. Here the author
proposes a StatArb system that entails three phases: fore-
casting, ranking, and trading. For the forecasting phase,

the author uses an Elman recurrent neural network to perform
weekly predictions and anticipate return spreads between
any two securities in the portfolio. Next, a multi-criteria
decision-making method is considered to outrank stocks
based on their weekly predictions. Lastly, trading signals
are generated for top k and bottom k stocks, considering a
variable k. This work is later extended in [25], where the
approach is evolved by introducing a multi-step-ahead fore-
cast. Both studies consider constituents of the S&P100 Index
on a period spanning from 1992 to 2006. Although these
approaches also consider regression, they lack scalability as
their application is limited to 100 stocks, and in the case
of broader indexes such as S&P500 or Russell 1000, would
become computationally intractable.

In [18], the authors use deep neural networks for clas-
sification and as features cumulative returns. The approach
computes the probability that one stock outperforms the
cross-sectional median return of all stocks in the holding
month. Next, all stocks are ranked according to the forecasted
probability, and then, the trading signals are constructed
based on the top decile of predictions, which are bought long,
and flop decile, which are sold short. The stock universe used
is the U.S. CRSP and the study period spans from 1965 until
2009. The works in [17], [26] adopt a similar strategy. The
former in a high-frequency setting with five-minutes binned
return data. In the latter, the authors construct similarly a
classification problem using cumulative returns as input fea-
tures and employ models like deep neural networks, random
forests, gradient boosted trees, and three of their ensembles.
They validate their study using S&P500 Index constituents
on a period ranging from 1992 to 2015, with the trading fre-
quency of one day. The ensemble proposed in this work uses
the set of input features for all themodels whereas in our work
we consider diversified features set. Later, the authors extend
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FIGURE 2. Architecture of the proposed general approach for risk controlled trading.

their work in [27] by using a Long Short-Term Memory
network for the same prediction task. This enhanced approach
outperforms memory-free classification methods.

A different approach in terms of features, in the context
of StatArb, is presented in [28]. The author uses 4 types of
one-hot encoded features on a period from January of 1993 to
June 2015, with two forecasting/holding periods (e.g. one
and five days). The used machine learning algorithms are
Random Forests, Elastic Net, and Deep belief networks in a
classification setup. The most salient finding in this work is
that increasing the number of features does not translate into
increased performance. One difference concerning this work
is that we employ an ensemble strategy to mitigate the results
of all the used models.

In [29], the authors take a different approach for predicting
returns of S&P500, where the used features are stock tweets
information. The aim is to unveil how the textual data reflect
in stocks’ future returns. For this goal, they use factoriza-
tion machines and support vector machines. The proposed
system performs prediction in a 20 minutes frequency over
a two years period: from January 2014 to December 2015.
The selection of flop and top stocks is made at the forma-
tion period based on the algorithm’s performance evaluation
(i.e. lowest root relative squared error) and trading signals are
generated based on Bollinger bands.

Thus far we can state that the actual research on machine
learning with application to StatArb has the following limi-
tations we aim to tackle in this paper: (i) ranking based on
intra-day price forecasting of single stocks; (ii) use of diver-
sified features and data, with further distribution of them to
different models of an ensemble; and (iii) definition of more
efficient ranking technique to avoid trading bad stocks.More-
over, the proposed approach can be regarded as general and
it can be instantiated with a different configuration: number
and types of regressors, transaction frequency (e.g. intra-day),
selected features (e.g. lagged returns, technical indicators),
number of assets to buy or sell (choice for k).

III. METHODOLOGY
A. PROBLEM STATEMENT
Using StatArb as a trading strategy, our general approach
aims at solving a risk-controlled trading problem. In this
regard, it leverages machine learning to identify possible
sources of profit and balance risk at the same time. At a very
high level, our approach takes various assets’ time series as
an input and outputs the subset of assets to invest in, together
with the appropriate trading signals, i.e. long or short. Our
approach follows these three steps:

i forecasting - we tackle StatArb as a regression problem,
investigating the potential of forecasting price returns
for each of the assets in a selected assets collection, on a
target trading day.

ii ranking - based on the anticipated price returns for
the assets, we rank them in descending order. Next,
we balance the risk due to inaccurate predictions by
pruning the ‘‘bad’’ assets based on their past behavior,
thus the dynamical asset selection yields a reorganized
ranking of the assets.

iii trading - in the last step we issue trading signals for the
top k and flop k assets from the ranked set of assets
obtained in the previous step.

B. OVERVIEW
In Figure 2 we present the architecture for such a
risk-controlled trading approach. Let si be an individual asset
in the asset collection S. We start by collecting historical
raw financial information for each asset si in the selected
asset collection S. To note that we are using information
available before the trading day d . Using the historical data,
we generate the diversified feature set denoted by F si

d , that is
used as input to each regressor m in our regressors poolM.
In the forecasting step, each trained model m makes its

prediction, osi,md for day d and asset si. Then, their results
are averaged by a given ensemble method, to obtain a final
prediction output denoted by osi,ENSd .
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In the ranking step, we sort assets in descending order
based on the forecast output osi,ENSd . This means that we will
find at the top assets whose prices are expected to increase,
and at the bottom assets whose prices are expected to drop.
Assets at the top and at the bottom of our sorted list represent
the most suitable candidates for trading. After the ranking
is performed, we introduce the dynamic asset selection step:
from this pool of assets, we discard those that do not satisfy a
prediction accuracy higher than a given threshold ε in a past
trading period, rearranging the ranking accordingly.

The trading step consists of selecting the top k (winners)
and flop k (losers) assets and issue the corresponding trading
signals: k long signals for the top k stocks and k short signals
for the bottom k stocks. These selections are repeated for
every day d in the trading period.
Finally, we evaluate the performance of our architecture by

using a back-testing strategy [5].
As stated throughout this paper, we tackle StatArb as a

regression problem, investigating the potential of forecasting
intra-day stock price returns. We choose such a feature as it
allows refined trading, as opposed to classification methods
used in the previously mentioned work. Moreover, by clearly
separating the forecasting phase from the ranking and trad-
ing signal generation, we aim to make the system-agnostic
of any alterations that can happen over time to the set of
stocks and, hence, tackle the survivorship1 and data snooping
biases.2 Additionally, in this study, we consider an ensemble
of forecasters with a high degree of diversity provided by the
input features and dissimilar prediction models, each of them
capturing different structures in the financial market data.
The set of features and the regressors will be described in
Section IV and Section V, respectively.

IV. FEATURE ENGINEERING
As mentioned in the introduction, we have instantiated
one example out of our general framework by using the
S&P500 index as a reference dataset. By reference to
Figure 1, only two studies [17], [27] focus on such a
large pool of companies. As stated by the authors in [17],
the S&P500 constituents represent the leading 500 com-
panies in the U.S. stock market, and at the same time,
the large-capitalization segment. These characteristics make
these companies highly attractive to investors, and as a con-
sequence, they are very challenging for any trading strategy.

For each stock, we collect daily raw financial information
such as Open Price, High Price in the day, Close Price, Low
Price in the day, and Volume of stocks traded during the
day (OHCLV variables). Based on this information, we have
created two different types of features:

Lagged intra-day price returns (LR) - for a stock si and
a trading day d , in a given time-frame 1, we compute the

1Survivorship bias refers to the tendency to exclude from performance
studies the failed companies because they no longer exist [30].

2Data snooping refers to the use of data mining to uncover misleading
relationships in data [31].

intra-day LRsid−1 expressed as:

LRsid−1 =
closePricesid−1 − openPrice

si
d−1

openPricesid−1
. (1)

We considered 1 ∈ {1, . . . , 10}, thus yielding for each
trading day d , a series of 10 historical price returns as it
follows:

LRsi
d = [LRsid−10,LR

si
d−9,LR

si
d−8,LR

si
d−7,LR

si
d−6,LR

si
d−5,

×LRsid−4,LR
si
d−3,LR

si
d−2,LR

si
d−1] (2)

By using the lagged returns in the nearest past, we input
each of the prediction models with the information about
asset behavior in the last days. Glancing at Figure 1, his-
torical price returns are the preferred choice in financial
studies. With respect to previous works, we chose to use
the intra-day price returns. This decision was motivated by
recent studies [32] where the authors decompose the returns
in overnight returns and intra-day price returns. They point
out that after-hours trading happens much more seldom than
trading while markets are open. Moreover, the pre-open auc-
tions on the U.S. stock exchanges only average one to four
percent of median daily volume, as pointed out by the same
authors. Also, trading in the first half-hour of the day (the
interval in which we measure the open price) is significantly
less than the volume one observes intra-day, particularly near
or at the close.
Technical Indicators (TI): We use a set of technical indica-

tors summarized in Table 1. For this second type of feature
we have built the following vector:

TIsid = [EMA(10),%K ,ROC,RSI ,AccDO,MACD,%R,

×Disp(5),Disp(10)] (3)

The first technical indicator,EMA(10), is a type of moving
average that places a greater weight and significance on the
most recent data samples. We use this type of indicator as
we are predicting the short-term future. %K and Williams
%R are stochastic oscillators, both being trend indicators for
any asset.When stochastic oscillators are increasing, the asset
prices are likely to go up and vice-a-versa. ROC, Disp (5),
and Disp (10) are momentum-based technical indicators.
ROC measures the percentage change in price between the
current price and the price a certain number of periods ago.
ROC is used to spot divergences, overbought and oversold
conditions. Disp (5) and Disp (10) have a similar interpre-
tation, i.e., a value greater than zero suggests that the asset
is gaining upward momentum, whereas, a negative value is
a sign that selling pressure is increasing, forcing the price
to drop. RSI, ranges between 0 and 100 and is generally
used for identifying the overbought and oversold assets. That
is, if RSI exceeds the level of 70, it is an indication that
the asset is overbought, so, the asset’s price may go down
in near future, whereas values below 30 level indicate that
the asset is oversold, so, the asset’s price may go up in near
future. AccDO provides insight into how strong a trend is by
using both price and volume information. If the price is rising
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TABLE 1. Selected technical indicators and their acronyms throughout this paper.

but the indicator is falling this indicates that accumulation
volume may not be enough to support the price rise, thus,
the price might drop in the near future. MACD follows the
trend of the asset, i.e., if its value goes up then asset price
also goes up and vice-versa.3

Technical analysis and by extension technical indicators
are valuable statistical tools through which investors exten-
sively use to make their investment decisions. This fact
partially motivated the reasoning behind our choice for
this second type of features. Moreover, we are interested in
predicting the price movement range and also its direction
and each of the technical indicators has its own inherent
opinion about the asset price movement. When we give these
data as inputs to the model, we are already inputting trend
information as perceived by each of the individual techni-
cal indicators. Several other financial studies use technical
indicators in conjunction with machine learning algorithms
to predict individual stock direction movement [33], [34] or
closing price [35].

For regressors’ training, we also generate the associated
target value (label), ysid which is the intra-day price return for
the current day.

ysid =
closePriced − openPriced

openPriced
. (4)

V. FORECASTING ALGORITHMS
In the proposed instance of our general approach, we con-
sidered the following three different state-of-the-art machine
learning models, and the widely known statistical model,
ARIMA. We based our choice to employ such models on the
following criteria:

3Information about technical indicators use and their interpretation has
been collected from https://www.investopedia.com/

1) robustness to noisy data and over-fitting;
2) diversity amongst models in the final ensemble;
3) computational efficiency;
4) adoption of such models in the scientific community

for similar tasks.

A. LIGHT GRADIENT BOOSTING
Light Gradient Boosting (LGB) first proposed by
Ke, et al. [36], is another novel gradient boosting framework,
which has been widely applied in machine learning tasks and
supports efficient parallel training. LGB applies iteratively
weak learners (decision trees) to re-weighted versions of the
training data [37]. After each boosting iteration, the results of
the prediction are evaluated according to a decision function
and data samples are re-weighted in order to focus on exam-
ples with higher loss in previous steps. The LGB algorithm
integrates two cutting-edge techniques, respectively referring
to the gradient-based one-side and the exclusive feature
bundling methods. These two techniques reduce the data
size by rows and by columns, respectively, which makes the
algorithm less computationally expensive and, at the same
time, maintains the accuracy. Comparing to the traditional
gradient boosting techniques, LGB would grow the tree ver-
tically (i.e., leaf-wise tree-growth until the maximum depth
is reached), whereas other alternative algorithms extend their
structures horizontally (i.e., level-wise tree-growth), which
makes an effective method for LGB in processing large-scale
and high-dimensional data, on the one hand, but more prone
to over-fitting, on the other hand. To control this behavior we
defined the maximum depth levels of the tree, max_depth,
to 8. We chose to vary the num_leaves parameter in the set
[70, 80, 100], achieving a balance between a conservative
model and a good generalization. The feature selection is
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restricted by a parameter colsample_by_tree set at 0.8 of
the total number of features, which can be thought of as
a regularization parameter. The work in [37] suggests a
learning rate lower than 0.1, so we set it to 0.01 to account
for a better generalization over the data set. Its adoption in the
scientific community for financial forecasting is scarce [38],
but by contrast, we can find this algorithm in the leading
positions on machine learning competitions platforms.4

B. RANDOM FORESTS
Random Forests (RF) belong to a category of ensemble learn-
ing algorithms introduced in [39]. This learning method is
the extension of traditional decision trees techniques where
random forests are composed of many deep de-correlated
decision trees. Such a de-correlation is achieved by bagging
and by random feature selection. These two techniques make
the RF algorithm robust to noise and outliers. When using RF
the larger the size of the forest (the number of trees), the better
the convergence of the generalization error. But, a higher
number of trees or a higher depth of each tree induces com-
putations costs, therefore a trade-off must be made between
the number of trees in the forest and the improvement in
learning after each tree is added to the forest. We opt to
vary the number of trees by ranging n_estimators from 50 to
500 with a 25 increment, similarly to [28]. Random feature
selection operations substantially reduce trees’ bias, thus we
set min_samples_leaf to 3 of the total number of features
in a leaf. The learning rate is set to 0.01. In the academic
literature corpus, we can find that RF has been extensively
used in financial forecasting [35] and moreover in StatArb
applications [17], [24].

C. SUPPORT VECTOR REGRESSORS
Support Vector Regressors (SVR) were proposed initially as
supervised learning model in classification, and later revised
for regression in [40]. Given a finite d-dimensional set of
training data xi ∈ Rd for i ∈ {1 . . .m} of length m, the goal
is to find a function that deviates from actual data, yi ∈
R for i ∈ {1 . . .m}, by a value no greater than ε for each
training point, and at the same time is as flat as possible.
SVR extends least-square regression by considering an ε-
insensitive loss function. Further, to avoid over-fitting of
the training data, the concept of regularization is usually
applied. SVR is trained by solving the following optimization
problem:

min
1
2
‖w‖2 +

C
m

m∑
i=1

max(0, |yi − f (xi;w)| − ε)︸ ︷︷ ︸
ε - insensitive loss function

, (5)

where C is the regularization constant. The training finds
the weights w so that the function f minimizes empirical
risk. Also, SVR can map the input vectors xi into a high
dimensional feature space using kernel functions. Further-
more, it can be applied to nonlinear regression problems by

4https://www.kaggle.com/

employing such kernel functions. In this study, we selected
the radial basis kernel function which can be formalized as
k(xi, xj) = exp(−γ ‖xi − xj‖2). Here xi and xj represent two
feature vectors of the input space and γ is a free parameter,
considered as a design parameter of SVR.

SVR, thus, solves an optimization problem that involves
two parameters: the regularization parameter,C , and the error
sensitivity parameter ε. C controls the trade-off between
model complexity and the number of non-separable samples.
A lower C will encourage a larger margin, whereas higher C
values lead to a hard margin [40]. Thus, we set our search
space in {8, 10, 12}. Parameter ε controls the width of the
ε-insensitive zone and is used to fit the training data. A too
high value leads to flat estimates, whereas a too-small value
is not appropriate for large or noisy data-sets. Therefore,
we set it to 0.1. The work in [41] suggests that the γ value of
the kernel function should vary together with C , and higher
values of C require higher values for γ too. Therefore, we set
a smaller search space in {0.01, 0.5}. Authors in [34], [35]
used successfully SVR in financial forecasting tasks.

D. AUTO-REGRESSIVE INTEGRATED MOVING AVERAGE
The Auto-Regressive Integrated Moving Average (ARIMA)
was first introduced in [42] and, since then, it has proven to be
robust and efficient for short-term prediction when employed
to model economical and financial time series [43], [44]. The
algorithm captures a suite of different time-dependent struc-
tures in time series. As its acronym indicates ARIMA(p, d, q)
comprises three parts: Auto-Regression model that uses the
dependencies between an observation and a number of lagged
observations (p); Integration differencing of observations
with a different degree, to make the time series stationary;
and Moving Average model that accounts the dependency
between observations and the residual error terms when a
moving average model is used to the lagged observations (q).
Mathematically, ARIMA can be expressed as:

(1−
p∑
i=1

φiL i)(1− L i)
d
rt = δ + (1−

q∑
i=1

θiL i)εt (6)

where φi are coefficients for the auto-regressive part of the
model, L is the lag operator, θi are coefficients of the moving
average part of the model, and εt is the error term at time t ,
and finally, δ denotes the intercept.

We chose the lag order p ∈ {1, 5}, the degree of differ-
encing d ∈ {1, 5}, the size of the moving average window
q ∈ {0, 5}.

VI. MODEL TRAINING, ENSEMBLING, AND DYNAMIC
ASSET SELECTION
A. MODEL TRAINING
In standard statistics, fitting a simple model on data can
be done without the sensitive choice of a hyper-parameter
and the model’s parameters are estimated from the data,
e.g. using the maximum-likelihood criterion. However,
in high-dimensional settings, some form of regularization is
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needed. Choosing the amount of regularization is a typical
bias-variance problem. But, in general, the best trade-off is
a data-specific choice, governed by the statistical power of
the prediction task, or differently put, it is governed by the
amount of data and the signal-to-noise ratio. In this context,
given that each of the assets exhibits different behavior in time
and incurs a different amount of noise, therefore the same set
of hyper-parameters do not apply to all the stocks. As such,
we have embedded a hyper-parameter tuning in the model
training phase.

In addition to that, for each of our machine learningmodels
we have two variants of data input:
1) Data specific to each stock si in our stocks pool S,

resulting in a model for each stock.
2) Data resulting after aggregating information from

stocks pertaining to the same industry sector as given
by the Global Industry Classification Standard (GICS),
thus resulting in a model for each industry. To be noted
that industries contain a different number of stocks, but
their content does not overlap. That is, one stock cannot
be part of multiple industries at the same time.

This last variant of the model was encouraged by previous
work [7], where some portfolios were restricted to only
include stocks from the same industry. In the spirit of the
aphorism ‘‘a rising tide lifts all boats’’, companies in the same
industry tend to have similar behavior, and the returns of
stocks tend to follow each other [5].

As such, we are faced with the problem of selecting for
each of the stocks and each type of algorithm (i.e. LGB,
RF, and SVM) the best combination of hyperparameters as
well as input data (i.e. per stock or per industry) or fea-
ture types (i.e. LR or TI) in order to obtain the model with
the best predictive power for that specific stock. Standard
machine learning practice advocates to measure predictive
power using cross-validation [37]. This means that the avail-
able data is split into a development set, used to train the
model, and a validation set, unseen by the model during
training and used to compute a prediction error. By using
such a scheme, one expects to obtain a better estimate of the
model’s out-of-sample predictive performance. To properly
account for the time dependence of observations, empirical
research based on traditional time series models typically
reverts to validation schemes that keep the temporal order of
observations between training and validation sets. However,
our goal to select the best hyperparameters and best features
in the same step is slightly different from standard practice.
As such, we modified the machine learning algorithms selec-
tion as presented in Algorithm 1.
Our algorithm receives as input: (i) the set of stocks,

SI , with their associated financial historical data, (ii) the
chosen machine learning algorithm a to be trained, (LGB,
RF, or SVM) and its corresponding set of hyperparame-
ters. The output is represented by a set of trained regres-
sors, R, each corresponding to each stock in SI . The
algorithm starts by acquiring historical raw financial data
(ohclv) for each of the stocks, for the entire training period

Algorithm 1Model Selection
Input: SI , set of stocks in industry I
Input: Dtrain, training dates (calendar days)
Input: a,Pset , set of hyperparameters for the machine learn-

ing algorithm a
Output: Pool of regressorsR = {r1 . . . r|SI |}
1: for each siinSI do
2: LRsi ← computeLR(ohclv) using ohclv ∈ Dtrain

3: TIsi ← computeTI(ohclv) using ohclv ∈ Dtrain

4: LRI
← append(LRsi )

5: TII ← append(TIsi )
6: Split Dtrain into Ddev,Dval

7: for each siinSI do
8: for each f in{LRsi ,TIsi} do using data in Ddev

9: Select optimal hyperparameter set p∗ from Pset
using inner cross-validation

10: msif ← a.train(p∗, f )
11: Save mI ,f
12: for each f in{LRI ,TII } do using data in Ddev

13: Select optimal hyperparameter set p∗ fromPset using
inner cross-validation

14: mIf ← a.train(p∗, f )
15: Save mIf
16: R← [ ]
17: for each siinSI do
18: for each m ∈ {msiLR,m

si
TI ,m

I
LR,m

I
TI } do

19: Compute error Lvalsi,m for model m using Dval

20: R← R ∪ {model with lowest Lvalsi,m}

21: returnR

(lines 1-5). Financial informationwill be timestamped andwe
keep the temporal order of observations and any operation on
data is performed using the timestamps.We split the historical
dataset into two portions: development and validation sets
(line 6), where the former is used for model training and the
latter for model selection. Then, it proceeds with the stock
level model training line 7. For each type of feature, we select
the optimal hyperparameter constellation by employing an
inner-cross-validation. The same process is applied at the
industry level (line 12). Therefore, to forecast the return of
each stock, we created 4 models: 2 models (per asset) using
TI and LR, that use data of a single stock; and 2 models
(per industry) using TI or LR as features, that use data of all
assets associated to that industry, and, in turn, forecast one
asset at a time. The second phase consists of choosing among
the 4 models trained in the previous step, i.e. the one with
the highest predictive power. Hence, using the validation set,
we compute for each stock and each model the loss Lvalsi,m,
which, in our case, is the mean squared error (MSE) between
the forecast and the ground truth. Then, we choose the best
model out of the four according to the lowest MSE.

ARIMA is a class of statistical models that captures
temporal structures in time series data. Its methodology of
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training differs from machine learning algorithms in the
sense that ARIMA is not designed for multivariate input and
as a consequence for ARIMA we use the series of lagged
returns. Furthermore, ARIMA is designed for forecasting
one-step out-of-sample forecast. Hence the methodology that
we developed performs a one-step out-of-sample forecast
with re-estimation, i.e., each time the model is re-fitted to
build the best estimation model.

In conclusion, for each stock, we train 3 types of machine
learning algorithms (LGB, RF, and SVM) each of them for
2 levels of data (stock level and industry level), and 2 types of
features (i.e. LR and TI). This yields: 3 types of algorithms×
2 data level× 2 types of features= 12 models for each stock.
Algorithm 1 selects the best model permachine learning algo-
rithm type, resulting in 3 models. To this pool of regressors,
for each stock, we add the ARIMA model, which is most
suitably used with univariate time series (equivalent to stock
level and lagged returns features).

B. ENSEMBLING
The final ensemble entails for each stock si three machine
learning models (i.e. LGB, RF, SVR as given by our model
selection/cross-validation phase) and a statistical model
ARIMA. Their forecasted output is averaged. The benefit of
this approach is that if the errors of eachmodel are sufficiently
independent, they average out: the average model performs
better and displays much less variance [37], [45]. Several
works in literature validated the power of averaging deci-
sions. In [46], [47] it is revealed, by empirical evaluation, that
averaging ensembles performs well in practice, especially
when compared to ensembles that use more complex weight-
ing strategies. Moreover, according to [48], simple ensem-
bles of forecasters such as averaging decisions outperform
sophisticated combination methods in empirical applications.
Finally, in [17], the authors show that, for the same purpose,
a simple weighted ensemble performs better when compared
to performance-based or rank-based ensembles. The previous
works justify our choice of model output averaging. As such,
the outputs of each of the selected models, i.e., LGB, RF,
SVR, and ARIMA are averaged to the final output, osi,ENSd .

C. RANKING AND DYNAMIC ASSET SELECTION
The final step in our trading framework comprises ranking
the assets by their predicted return to be able to issue the
appropriate trading signals. Additionally, to mitigate the risk
of bad forecasting performance, we propose a stock pruning
mechanism by performing a dynamic asset selection strategy.
For a stock si ∈ S, given its past forecastings o

si,ENS
t , and also

its past real values ysid in a predefined look-back period T ,
we compute a modified version of the mean directional accu-
racy [49], [50] as follows:

MDAsi,T ,d =
1
T

d−T−1∑
t=d−1

1
sgn(o

si,ENS
t )==sgn(y

si
t )
, (7)

where d is the current trading day, T is the look-back length,
and 1P is the indicator function that converts any logical
proposition P into a number that is 1 if the proposition is
satisfied, and 0 otherwise, sgn(·) is the sign function. In other
words,MDAsi,T ,d compares the forecasted direction (upward
or downward) with the realized direction of the return and
yields the probability that the forecasting model can detect
the correct direction of returns for a stock si on a given
timespan T prior to the day d . We use such a component
on a limited look-back period as a consequence of proven
studies [51] that stocks exhibit behavior with short periods
of significant returns predictability (‘pockets’). These periods
are interspersed with long periods with little or no evidence
of return predictability.

Such a component introduces a new step in the StatArb
pipeline: after performing the forecast, we rank the compa-
nies by their forecasted daily price returns. From this pool
of stocks, we discard those that do not satisfy a prediction
accuracy higher than a given threshold ε in a past trading
period, rearranging the ranking accordingly.

VII. EXPERIMENTAL SETUP
In this section, we highlight the parameters of the proposed
approach for reproducibility purposes. We follow along the
main steps of our trading framework and present the backtest-
ing methodology, model training and forecasting technical
aspects, ranking and dynamic asset selection, trading execu-
tion, and finally we discuss the used baselines.

A. BACKTESTING
As mentioned in the introduction we have instantiated one
example out of our general approach by using as pool
of assets the stocks within the S&P500 Index [17], [27].
We back-tested the framework by choosing as study period
a timeline starting from March 2003 to January 2016.
The back-testing experiments consist in running the signals
through historical data together with the estimation of fore-
casting hyper-parameters, signal evaluations and portfolio re-
balancing [5]. We use a common approach for validating
time-series data in finance, namely the walk-forward valida-
tion, which consists of splitting the study period into over-
lapping training periods and non-overlapping test (trading)
periods, as shown in Figure 3. The example depicts values for
the closing price of SPY (asset) over the whole study period.
In this example we considered four years of training and a
year of test. The period of training is further split into three
years of development for individual regressors training and
one year of validation for model selection, as presented in
Section VI. Running the experiments under the same setup
yields 9 walks.

B. MODEL TRAINING
For model training and parameter tuning, we used a
10-fold TimeSeriesSplit combined with a GridSearch, both
using scikit-learn implementations [52]. In this experimental
scenario, the temporal linking between the observation at day
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FIGURE 3. Illustration of walk-forward procedure, considering a study period starting from January 2003 to January 2016. On the
y-axis it is presented the development of the closing price for SPY (asset) across time and how this overlaps, in time, to each walk
and each development,validation and test period, respectively.

d − 1 and d is taken into account to compose the same bunch
of training and validation sets. This is different with respect to
common machine-learning cross-validation approaches like
the Leave-One-Out cross validation or the k-fold cross val-
idation, where data are randomly sampled in different folds,
no matter when they were acquired. Such an approach is quite
biased when applied to time series forecasting, as features
from late past and early future are mixed in the same fold
of data.

C. RANKING AND DYNAMIC ASSET SELECTION
As pointed out in Section VI-C, the dynamic asset selection
requires a series of parameters: the accuracy threshold ε, and
rolling window length, T . The threshold value is set to ε =
0.5 and we considered different lengths of the rolling window
T = {30, 40, 60}. We made these choices based on findings
in [53] where the authors noticed that MDA can efficiently
capture the inter-dependence between asset returns and their
volatility (hence forecast-ability) when using intermediate
return horizons, e.g. two months. The threshold value has
been set to ε = 0.5 as advised in [24] for a similar scenario.

D. TRADING EXECUTION AND PORTFOLIO
CONSTRUCTION
As stated throughout the paper each day we perform 2 ×
k operations, k long and k short operations. We fixed the
number of pairs to be traded to k = 5, based on the findings
in similar works [17], [27] where higher k values lead to a
decrease in portfolio performance both in terms of returns
and risks. The trading session is set as intra-day, meaning that

we are opening the positions at the beginning of the training
day and close them at the end of the day. In other words,
we are rebalancing our portfolio daily. As the authors in [29],
we assume transaction costs of 0.4% daily.

E. BASELINES
To assess the value added by both our model selection strat-
egy (ENS) and dynamic asset selection strategy (ENS-DS),
they are benchmarked against two statistical arbitrage trading
baselines: one based on cumulative five day return (5-DAY),
and S&P500 buy-and-hold strategy (Buy-and-hold). These
last two methods are well-established quantitative strategies,
and largely used as baselines to evaluate the profitability
of other investment approaches. They are described in the
following:

1) 5-DAY - Daily, we sort the set of stocks according to
the 5-day cumulative return prior to the trading day,
in ascending order. At the top we would find the stocks
with the most negative cumulative returns and at the
bottom stocks with the most positive 5-day cumulative
return. We go long for top k and short for flop k stocks
in the sorted list, building an equal weight portfolio.
This approach has been considered in prior works such
as [27]. Data, trading execution, and portfolio construc-
tion are the same as the other strategies (i.e.we open the
trading position for k = 5 at the beginning of the day
and close them at the end of the day and the portfolio
is rebalanced daily).

2) Buy&Hold This strategy buys in 2007 and holds the
S&P500 exchange-traded fund (SPY security) during
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the whole backtesting period, i.e. until January 2016.
This passive strategy runs without any trading signals.
Such a baseline is widely recognized in literature as a
valuable benchmark (e.g. [29], [54]).

F. IMPLEMENTATION DETAILS
The approach proposed in this paper has been developed in
Python, by using the scikit-learn library [52] and the
LightGBM python API [55]. The experiments have been exe-
cuted on a desktop system with the following specifications:
an Intel(R) Xeon(R) Gold 6136 CPU@ 3.00GHz, 32 GBytes
of RAM, and 64-bit Operating System (Linux Ubuntu). The
full code of the solution, for reproducibility purposes, has
been made publicly available at https://github.com/Artificial-
Intelligence-Big-Data-Lab/stat-arb.

VIII. RESULTS
The results are presented from three perspectives which
include: (i) predictive results of the individual regressors
and their resulting ensemble under different training setups;
(ii) return evaluation before and after transaction costs,
(iii) exposure to common risk factors by analyzing risk met-
rics, and (iv) comparisons against state-of-the-art trading
strategies.

A. MODEL SELECTION PERFORMANCE
First we compare the performances obtained by the models
when using different walk-forward setups (for reference, see
Figure 3). Specifically, we fixed the development period to
3 years and chose two different lengths (in days) for val-
idation and test. For the first setup, we chose a period of
study from January 2003 to January 2016, with 3 years of
training, 1 year (252 days) of validation, and 1 year of test,
which amounts to 9 walks. For the second setup, we chose a
study period from July 2003 to January 2016, with 3 years
of training and we reduce the validation and test periods
to 6 months (126 days), thus resulting in 18 walks. The
models corresponding to the two setups will be assessed in
an overlapping trading/test period, i.e. March 2007 to Jan-
uary 2016. We report the models performances in terms of
root mean square error (RMSE) between the realized return
and forecasted return as average across companies and each
walk. Also, we present, for each of the models, the portfolio
performance in terms of annual returns (Return p.a.) and risk
metrics (MaxDD), when using a strategy that trades k = 5
pair. The maximum drawdown (MaxDD) quantifies the max-
imum amount of wealth reduction that a cumulative return has
produced from its maximum value over time. Figure 4 depicts
the obtained results and Table 2 summarizes the performances
of the models resulting after the model selection phase (for
each stock) and their corresponding ensemble.

In terms of RMSE, Figure 4a shows a consistent decrease
when the length of validation and test decreases. This can
be attributed to the decreasing number of samples. Model
SVR with data at industry level data and TI as features
exhibits the worst performance in both setups. At the opposite

FIGURE 4. Model performances in terms of RMSE, return p.a., and
MaxDD, developed from 2007 to 2016 when varying the validation and
test period lengths.

pole we find ARIMA with the lowest RMSE. In terms of
returns (Figure 4b) the best performing model is the LGB
with data at industry level and TI as features in a year of
validation and another year of test setup. The second best
performing is ARIMA with annual returns close to 1.5%.
The riskiest strategy (Figure 4c) is the SVR with data at
industry level data and TI as features. Table 2 reveals for
each forecasting algorithm the predictive performances and
risk-return characteristics, respectively. With the reduction
of validation length a deterioration in performance can be
observed here as well, both in terms of return and MaxDD.
The most surprising result it is represented by the small
returns (0.0877) of the ensemble obtained by averaging mod-
els with a 6 month validation period. The ensemble is out-
performed by most of the models. As a concluding remark,
according to Table 2, we can state that the ENS with 1 year
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TABLE 2. Models performances resulting after model selection phase and their corresponding ensemble (ENS). Each model is a combination of type of
features and data level for each stock. The trading period is March 2007 and January 2016.

TABLE 3. Return characteristics of StatArb strategies compared to the baselines (5-DAY and Buy&Hold) before transaction costs over a period between
March 2007 to January 2016. Portfolio was constructed using k = 5 pairs. The best return performances are highlighted in bold.

of validation and 1 year of test setup is the best performing
model.

B. RETURN CHARACTERISTICS ASSESSMENT
As presented in Section VIII-A the best model performance
is achieved when using the following setup: 3 years of devel-
opment, 1 year for validation, period that serves the purpose
for model selection and 1 year of test where we record the
result and asses the proposed approach performance. Given
these considerations we are focusing subsequent analyses on
this setup.

Tables 3 and 4 report daily return characteristics from
March 2007 to January 2016, before and after the trans-
action costs, respectively. As expected, the equal weighted

ensemble, ENS, and the dynamic asset selection, ENS-DS,
outperform both baselines and the underlying individual
regressors. The annual returns are almost four times the
level of the Buy&Hold and roughly two times the return
of individual regressors, (e.g., LGB). The same ratios are
maintained even after the transactions costs. Furthermore,
we observe a mean daily return of 0.11% for the ENS and
0.12% for ENS-DS (T = 30,T = 40) before the trans-
action costs, that is trice the market. After the transaction
costs are applied, the returns deteriorate but are still con-
siderably higher than the baselines. Analyzing the statistical
moments, we observe that apart from SVR all the strategies
expose a positive skewness, which indicates a longer tail for
gains.
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TABLE 4. Return characteristics of the StatArb strategies compared to the baselines (5-DAY and Buy&Hold) after transaction costs over a period between
March 2007 to January 2016. Portfolio was constructed using k = 5 pairs. The best return performances are highlighted in bold.

Last but not least, we assessed the statistical significance of
returns by performing a Newey-West t-statistics with the null
hypothesis that the mean return is equal to zero (the critical
value at 5% significance level is 1.9600). The test resulted
in the returns being statistically significant before and after
transaction costs.

C. RISK EXPOSURE ASSESSMENT
Tables 5 and 6 offer an in depth analysis of risk incurred
by the trading strategies, before and after transaction costs,
respectively. We start by analyzing the tail risk. According
to Value at Risk (Var 1%) before transaction costs (Table 5),
ARIMA is the riskiest strategy of all, with −4.1% exceeding
both baselines. At the opposite pole we find the ensemble
strategies, with −2.6% for ENS, and approximately −2.3%
for ENS-DS. After the transaction costs (Var 1%, Table 6)
the same picture is maintained, but now, ARIMA (−3.80%)
is almost on par with 5-DAY baseline (−3.78%). Compared
to [17], that reports values between −5.9 and −6.9 per-
cent after transaction costs, our strategies have significantly
lower values. Under the conditional value at risk (CVar 1%,
Table 5), positions have slightly changed, in the sense that
ARIMA (−5.7%) incurs the highest risk out of regression
models, but lower than 5-DAY strategy (−6.2%).

Sharpe ratio is a riskmetric, defined as the excess return per
unit of risk measured in standard deviations [56]. A Sharpe
ratio greater than one usually signifies a portfolio of superior
performance as opposed to a portfolio with a Sharpe ratio less
than one. In general, a portfolio with a larger Sharpe ratio
will outperform one with a smaller ratio. In Table 5, it can

be noticed that Sharpe ratio started from 1.72 for the simple
ensemble and turned into 1.85 for the proposed ENS-DS
(T = 40), before transaction costs.

By the same token, another metric that measures the
reward-to-risk ratio is Sortino Ratio which considers the
risk expressed as downside deviations. By checking results
in Tables 5 and 6, we can realize that downside deviations
are less expressed for the proposed strategies. This naturally
leads to a more favorable Sortino ratio: for ENS 2.89 before
transaction costs and 2.11 after transaction costs, and for for
ENS-DS strategies approximately 3 before transaction costs
and approximately 2.2 after transaction costs. This amounts
to twice the values for 5-DAY baseline (1.49 before transac-
tion costs and 1.16 after transaction costs). MaxDD offers an
outlook on how sustainable an investment loss can be, where
lower is better. Also for this metric we notice the better perfor-
mance of ENS-DS strategies compared to the Buy&Hold and
5-DAY baselines. ENS produces 13.76% value decreasing to
11.46% for ENS-DS, T = 40 (Table 5), that is less than one
fourth of the Buy-and-Hold (55%) and one third compared
to the 5-DAY. After transaction costs (Table 6), as expected,
the values of MaxDD have increased for both ENS (28.42%)
and ENS-DS, T = 40 (26.06%), nevertheless lower than the
baselines. With respect to Calmar Ratio, before applying the
transaction costs (Table 5), we find that its value has increased
from 2.27 for ENS to 2.90 for ENS-DS, T= 40. After transac-
tion costs (Table 6), the ENS strategy registers a value of 0.77,
whereas for the ENS-DS, T = 40, the value is 0.87, compared
to 0.16 of the Buy & Hold strategy. Calmar Ratio scales
annualized returns by the value of MaxDD and determines
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TABLE 5. Risk assessment of the trading strategies before transaction costs compared to the baselines (5-DAY and Buy&Hold) over a period between
March 2007 and January 2016. Portfolio was constructed using k = 5 pairs. The best performances are highlighted in bold.

TABLE 6. Risk assessment of the trading strategies after transaction costs compared to the baselines (5-DAY and Buy&Hold) over a period between
March 2007 and January 2016. Portfolio was constructed using k = 5 pairs. The best performances are highlighted in bold.

how many average annual returns are needed to recover from
a maximum drawdown. Thus, the ENS-DS strategy needs
1.15 years to recover from the maximum drawdown, whereas
the Buy & Hold would need approximately 6 years. The
Omega metric, introduced by [57], divides expected returns
into two parts: gains and losses or returns above the expected
rate (upside) and those below it (downside). In simple terms,
Omega can be considered as the ratio of upside (good)
returns relative to downside (bad) returns. Before trans-
action costs (Table 5), this ratio has increased also from
1.42 (ENS) to 1.46 in our proposed approach (ENS-DS,
T = 40). After transaction costs (Table 6), results show the
same positive trend, i.e., from 1.3003 for simple ensemble,

ENS, to 1.3106 for ENS-DS, T = 40. This translates into
higher chances of achieving daily positive returns.

We can conclude that, in terms of risk, the dynami-
cal asset selection strategy, ENS-DS, improves the results
of simple ensemble, ENS, irrespective of the look-back
period, T . In particular, when fixing T = 40 we see the best
improvement.

D. COMPARISON WITH STATE OF THE ART TRADING
STRATEGIES
To finally assess the performances of our proposed
StatArb approach in a real-world trading scenario, we
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FIGURE 5. Equity curves for the proposed strategies compared to BHP, CRP, EG, UP, and MKT within a period from January 2009 to November 2015,
before transaction costs.

TABLE 7. Risk assessment of the trading strategies before transaction costs compared to the BHP, CRP, EG, UP, and MKT from a period from
January 2009 to November 2015. Best values are highlighted in bold.

compared it with a set of state-of-the-art portfolio strategies,
well-established in the literature [58], by following the same
validation process as in [29]. Specifically, we considered the
competitors listed below (for more in-depth details on these
algorithms the reader is referred to [58]):

BHP - Buy&Hold-based Portfolio, i.e. a portfolio
implementation of the standard Buy&Hold strat-
egy described in Section VII-E, where rather than
buying a single asset (e.g., an ETF or a stock),
the investor buys shares of all the index companies
proportionally to their prices;
CRP - Constant Rebalanced Portfolio, i.e. a vari-
ation of the BHP strategy, where the portfolio
weights are periodically rebalanced, according to
the price changes of the underlying assets;
UP - Universal Portfolio, which is a parameterized
CRP strategy over the whole simplex domain. The
algorithm learns adaptively from historical data and
maximizes the log-optimal growth rate in the long
run;
EG - Exponential Gradient, i.e. a momentum
strategy that focuses on the best performing asset
of the index, in the last time period.

For this analysis, we have taken into account a long
period spanning between 2009 and 2015. The period encom-
passes both bull and bear markets regimes, i.e. the market

recovery post-global financial crisis (2009-2013), as well as
low volatility periods (2013-2015), where statistical arbitrage
strategies do not fare particularly well, as noticed by several
works in the literature [59]. Figure 5 presents the cumu-
lative returns (or equity curves) of the proposed methods
(ENS and ENS-DS), against the aforementioned competitors
and the behaviour of the general market (MKT). Moreover,
in Table 7, we present risk characteristics (in terms of Max-
imum Drawdown, Sharpe Ratio, and Sortino Ratio) for all
these strategies. By analyzing Figure 5, we notice that the
proposed methods clearly outperform the baselines and the
market, with our ENS-DS (T = 40) providing the best overall
performance. Such a perception is then confirmed by looking
at the results in Table 7, where the proposed approaches show
significantly lower values of risk exposure (with a MaxDD
ranging between 11.43% to 13.69%, against the 22.41%
of the best alternative), and better return-over-risk metrics
(e.g., by reaching a considerable Sharpe Ratio of 2.00).

Overall, our results also compare favorably to other statis-
tical arbitrage strategies, such as classical pairs trading results
in [7], where Sharpe ratio has a value of 0.59 for the top
20-pairs from 1962 to 2002. In [5], for a generalized pairs
trading, the authors report a Sharpe ratio of 1.44 from 1997 to
2007. In [24], the author proposes a method that uses Elman
neural networks and ELECTRE III with a Sharpe ratio of
approximately 1.5 within a time-span from 1992 to 2006.
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Similarly, researchers from the Union Bank of Switzerland
(UBS), in their work [60], leverage on RF models to form
monthly portfolios. The trading signals are constructed based
on the top quantile of the forecasted monthly returns, for
which stocks are bought long, and the flop quantile for
which the corresponding stocks are sold short. The authors
test the methodology on constituents of Asia and Pacific
indexes (including the Australia SP300 index), on a period
from 1997 to 2015. Comparing the cumulative return in time
(ours - ENS-DS, T = 40 versus theirs - MSCI AC Asia
Pacific ex-Japan), we can observe a similar behavior during
the financial crisis of 2007-2009, where both approaches
recorded their best performance. Afterward, they report a
declining performance that reaches a plateau in 2011-2015.
As per Figure 5, our proposed method developed its high-
est earnings in early 2009, a period of high turmoil. After
that period, though the method registers moderate returns,
it exhibits an increasing trend. Finally, in terms of risk,
they report a MaxDD slightly lower (approximately 10%
compared to our MaxDD values of 11% before transaction
costs and 26% after transaction costs) and quite surprisingly
registered after the global financial crisis, in 2012.

IX. CONCLUSION AND FUTURE WORK
This study aims to extend the existing literature on algo-
rithmic trading based on machine learning and statistical
arbitrage by proposing a general approach for risk-controlled
trading. We are following the well-established steps of a
statistical arbitrage trading system, that is forecasting the
price returns, then ranking followed by trading of a number
of pairs. The forecasting is performed by a heterogeneous
ensemble and, subsequently, we mitigate the risk by employ-
ing a dynamic asset selection strategy that prunes assets if
they had a decreasing performance in the past period. The
proposed approach can be regarded as general and applicable
to a wide variety of assets, as well as all of its underlying
components.

To test our hypothesis, we created an instance out of it,
where we focused our studies on the S&P500 Index, using
its constituents as tradeable assets and statistical arbitrage
as a trading strategy. For forecasting, we have used three
machine learning algorithms, that is Light Gradient Boosting,
Random Forests, and Support Vector Machines to which we
appended a statistical tool, Auto-regressive moving average,
widely used for time-series forecasting. Subsequently, their
output is ensembled. To create a heterogeneous ensemble we
also proposed to use a set of heterogeneous features that can
be used to train the models. By performing a walk-forward
procedure, for each stock andwalk, we tested all the combina-
tions of features and internal parameters of each regressor to
select the best model for each of them. Based on this diverse
pool of forecasting methods, our experiments show that the
ensemble strategy reaches significant returns of 0.113% per
day or 31% per year. When enhancing the trading process
with the dynamical asset selection strategy, we managed
to successfully increase returns from 31% of the common

ensemble to 33%. As many strategies can provide very high
returns, they often are also very volatile. The relation of profit
and the amount of risk to achieve this result have to be in a
reasonable proportion, thus we investigate our strategies con-
sidering various riskmetrics. To this end, themost remarkable
result is that the risk hedged to 14% maximum draw-down
for the ensemble to 11% for our proposed dynamic asset
selection method, compared to 55% of the market.

With respect to the computational cost of our approach,
we may notice that the most intensive step is represented by
the training stage. Indeed, in terms of Big O notation, this step
entails anO(s×h) cost for each sequential model considered,
thus proportional to the number of stocks s and model hyper-
parameters h. Vice versa, the most computationally expensive
process of the testing stage involves the calculation of the
rolling mean directional accuracy only, which can be con-
sidered negligible in the general mechanics of the proposed
method. Hence, although we retain that the integration of
such an architecture in a production environment is feasible,
to reduce the computational burden, more elaborate training
implementations, such as model parallelism, must be taken
into account.

Overall, we believe that such promising results open up
several important research directions. In this regard, our
future work first aims at enriching the current approach with
new types of assets like bonds or futures (ETFs). In the second
stage, we will consider different strategies for asset grouping
and build group models. Finally, a further challenge will
involve the employment of neural networks designed for time
series forecasting.

NOMENCLATURE
5-DAY Statistical arbitrage strategy based on five-day

cumulative return of each asset
ARIMA Auto-Regressive Integrated Moving Average
B&H Buy-and-hold trading strategy based on

long-term investment on a single asset
ENS The proposed ensemble of models
ENS-DS The proposed ensemble of models, enhanced

by the dynamic asset selection strategy
LGB Light Gradient Boosting
LR Lagged intra-day price returns
MDA Mean Directional Accuracy
RF Random Forests
SVR Support Vector Regression
TI Technical Indicators
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