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ABSTRACT One of the major shortcomings of existing image dehazing algorithms is in estimating scene
transmittance, which has assumed many items in the existing algorithms. One key assumption has been pixel
uniformity and smoothness. In this paper, we propose to solve the dehazing problem using a combination of
single-pass CNN with graph cut algorithms. It considers the transmittance based on differential pixel-based
variance, local and global patches and energy functions to improve the transmission map. The proposed
algorithm was tested on different images and evaluated based on various evaluation metrics. Our results
show more details when compared to four existing benchmark enhancement methods. The proposed method
has one major drawback: the over-bright areas tend to lose some features in the final image.

INDEX TERMS Image enhancement, human visual perception, single pass-convolution neural network,
graph cut.

I. INTRODUCTION
Accurate acquisition of natural images is important when
visually inspecting the natural environment for proper use [1].
However, during severe weather conditions, atmospheric phe-
nomena like haze or fog often scatter light and degrade the
visual quality of natural images [2]. Haze or fog in nat-
ural images attenuates reflected light from the scene and
creates a mixture of light and particles. This causes the
image captured by the camera as hazy. Hazy images suffer
from poor information quality, fainted surfaces, and color
shift [3]. This hazy image is not suitable for various appli-
cations. Haze removal or defogging defined as a technique
to reduce or remove interference due to haze. Defogging
increases image information and is highly desired in com-
puter vision and imaging applications [4].

Existing haze removal strategies are based on image
enhancement, and image restoration [4]. Image enhancement
methods focus on improving the image quality without con-
sidering the physical model of the imaging principle [5].
Such methods include histogram equalization [6], retinex
theory [7], and saliency extraction [8]. These methods fail to
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recognize the reason and process of dehazing and, as such,
lead to a more degraded image. The further degradation
of the hazy image by image enhancement methods result
from incomplete recovery effects or color distortion [1].
Image restoration methods focus on image recovery based
on a physical model comprising atmospheric scattering [5],
[9], [10]. These image recovery methods rely on auxil-
iary or prior information about the image [5]. The com-
plexity of image recovery based on prior information makes
this method not preferable by many researchers [5]. Haze
removal methods (called supplementary) that combine tradi-
tional techniques with other image enhancement levels, such
as histogram homogenization and wavelet analysis, have also
been reported [4].

The existing and supplementary haze removal methods
have shortcomings that have prompted further development
of other techniques. For instance, Tan’s [10] proposed haze
removal techniques that yield final images with exaggerated
contrast. Fattal’s [11] proposed technique assumes no sta-
tistical relationship between the surface model and trans-
mission and yields a resultant image with poor information,
which results from poor color and brightness enhancement.
Vazquez-Corral et al. proposed a method for color dehaz-
ing based on visual perception [2]. The visual inspection
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of the results shows a washout effect on darker regions
because the method failed to consider the images’ atmo-
spheric light. Dai et al. developed techniques to distinguish
between the sky and non-sky regions in a hazy image and
then used improved restoration models based on dark chan-
nel prior to dehaze the images [4]. Dai et al.’s improved
models were based on a physical model of sky scattering,
poor adaptability of images with sky regions, and reduce
the dark regions of the haze-free images [4]. Although
Dai et al. generated haze-free images with better edges
and good robustness to bright sky regions, the sky region
results still produced darker and hazed background results
just like those from Vazquez-Corral et al.’s method [2], [4].
He et al.’s contribution in dark channel prior reduction is
widely used by many authors [12]–[15]. However, the soft
matting employed in He et al.’s proposed algorithm make it
computationally long [13]. He et al. made further improve-
ments to their first technique by using a guided filter in
place of soft matting to reduce computation and implemen-
tation costs [13]. He et al.’s technique was computationally
complex and yielded results with poor edges and selective
dehazing; that is, the technique only functioned well in non-
sky area images [12]. Yang et al. introduced wavelet trans-
forms in their proposed technique since haze only affects
the low-frequency component of the image [16]. The pro-
posed results from Yang et al. were darker since the method
failed to notice the differential light from the scene and
atmospheric light [16]. A combination of Artificial Neural
Networks (ANN) and traditional dehazing methods exist and
have shown promising results. The multilayer perceptron
(MLP) has gained usage in many areas in image processing
applications, such as in denoising and skin divisions [17].
Obulesu et al. proposed a technique that has exploited the
MLP to yield the transmission map of the hazy image directly
from the dark channel to help stretch contrast and amplify the
dynamic range of the restored image [17]. Visual inspection
of Obulesu et al.’s proposed results shows the restored image
retains haze in some parts of the image, especially towards the
horizon, resulting in poor edges [17].

The existing single image dehazing techniques are based
on many assumptions, which lead to inaccuracies in the final
image. Promising state-of-the-art methods such as that of [18]
are based on a geometric boundary constraint, but they still
rely on some assumptions, leading to inaccuracies in the
results. The proposed paper explores using the geometric-
variance pixel-based guided local and global relationships
to estimate the transmittance medium to extract a haze-free
image accurately. This is achieved via estimation of transmit-
tance medium through local and global pixel variance within
image neighborhood. The proposed extensions of high-low
pixel gradient variance-based boundary in the global and
local Markov fields in the energy function smoothen and
constraint the connection between local and global pixel
neighborhoods. These two critical geometric-based proposal
helps improve dehazed image features. The rest of the paper
covers background information followed by a description

FIGURE 1. A visual representation of formation of scattering effect.

of the proposed method and, finally, an illustration of the
proposed method’s performance.

II. CONTRIBUTION
The paper has three significant contributions: a novel com-
bination of single-pass CNN with graph cut algorithms to
yield novel dehazed image; transmittance medium based on
a variance of pixels based on the local and global based
neighborhood (serves to enhance local and global image
features); local and global pixel-based energy function based
on pixel variance constraints of respective neighborhoods to
improve transmission map (serves to increase finer details of
the dehazed image).

III. MATERIALS AND METHODS
A. MATERIALS
1) ATMOSPHERIC SCATTERING MODEL
The hazy conditions, formulated in Fig. 1, occur when there
are many particles suspended in the environment, causing
a scattering effect on the light [1], [4]. Scattered particles
during hazy weather conditions enable the attenuation of
reflected light on the surfaces of objects. The attenuated light
weakens the brightness of the image and reduces the image’s
resolution as the forward scattering effect infinitely continues
between the surfaces and particles [1]. The backscattering of
atmospheric particles on natural light leads to image contrast
reduction, hue deviation, and image saturation [19]. These
back and forward scattering effects on sensor light and natural
light in hazy images are widely modeled through a dark
channel prior model as follows [1], [3]–[5]:

0(δ) = 3(δ)τ (δ)+8(1− τ (δ)) . (1)

In (1), 0(δ) is the observed image or brightness of the
haze image as received by the observer at pixel δ,3(δ) is the
scene or environment radiance of the haze-free image; 8 is
the atmospheric light, and τ (δ) is the attenuation or transmit-
tance medium, which ranges between 0 and 1, and thus can
be redefined as,(

τ (δ) = e−ηξ (δ)|τ (δ)∈[0,1]
)
, (2)

where η is the scattering coefficient of the atmosphere, and
ξ (δ) is the depth of the scene. Equation (2) is applicable when
the atmosphere is homogeneous, otherwise, τ (δ) is given
by (3).
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FIGURE 2. A visual representation of neighborhood pixel correlation
within a region for first image example.

Fig. 2 shows the essence of haze removal from an
image restoration perspective. This means that from the
observed image brightness, 0(δ), we remove atmospheric
light,8, while compensating for attenuation of the light, τ (δ),
to restore clear scenes, 3(δ). The Fig. 2 suggests RGB color
space vectors 3(δ),8 and 0(δ) in (2) are coplanar from a
geometric point of view. Fig. 2 also shows that the end points
of vectors 3(δ),8 and 0(δ) are collinear and transmission,
τ (δ), is the ratio of the length of the two lines, as defined
in (3).

τ (δ) =

∥∥∥∥8− 0(δ)8−3(δ)

∥∥∥∥ (3)

Equation (2) is transformed to (4) to show that haze
removal depends on an accurate retrieval of 3(δ), 8, and
τ (δ) from 0(δ). 3(δ)τ (δ) represents direct attenuation and
shows emissivity decay the of natural environment in the
medium.8(1−τ (δ)) is air-light based on previously scattered
light, which leads to a shift in natural environment color.
Therefore, the longer the distance between the sensor and the
object, the greater the attenuation (3(δ)τ (δ)) and scattering
effect (8(1 − τ (δ))), which suggests that transmission is
exponential, as shown in (2).

3(δ) =
0(δ)−8
τ (δ)

+8. (4)

2) CONVOLUTION NEURAL NETWORK
The literature on the structure and architecture of Convolu-
tion Neural Network (CNNs/ConvNets) are presented in the
following existing papers [20]–[27].

B. GEOMETRIC-PIXEL GUIDED SINGLE-PASS
CONVOLUTION NEURAL NETWORK WITH GRAPH CUT
FOR IMAGE DEHAZING
1) TRANSMISSION MAP
We first define the pixel value changes along the smallest
regions of the hazed image (see Fig. 3) as 1p. The pixel

FIGURE 3. Smallest region of the dehazed image.

changes also reflect changes in image features. If we denote
the variance of these changes as ζ = (1p)2, when ζ → 0,
the change is invisible. Since pixel values are between 0
and 1, then variance in the neighboring pixels, q is given
by ‖1p − 1q‖2, ‖.‖ is the magnitude of the pixels. We can
therefore denote threshold process in input image Id as

Ithreshold =
‖1p−1q‖2

p− q
. (5)

Equation (5) is analogous to (3), that is,

Ithreshold =
‖1p−1q‖2

p− q
'

∥∥∥∥8− 0(δ)8−3(δ)

∥∥∥∥ = τ (δ) (6)

Thus, the transmittance medium defined by (2) becomes

‖1p−1q‖2

p− q
'

(
τ (δ) = e−ηξ (δ)|τ (δ)∈[0,1]

)
. (7)

We replace the results from (7) into (1) to obtain

0(δ)=3(δ)
(
‖1p−1q‖2

p− q

)
+8

(
1−

(
‖1p−1q‖2

p− q

))
.

(8)

Equation (8) indicates that one of the main problems of
image dehazing is solved since, unlike in the beginning, when
three unknowns were present, only two unknowns are left,
that is, 8 and 0(δ). However, 8 can be estimated based on
Retinex theory [7] atmospheric light brightest pixel from8 =
[max(R),max(G),max(B)]t , where R,G,B are the three color
channels in the image and t determines the weights of the
colors.

2) GLOBAL AND LOCAL MARKOV RANDOM FIELDS
The general energy functions of Markov random field (MRF)
models for many existing states of the art dehazing models
is [28]–[30], [30], [31]

E(x) =
∑
m∈v

φm(χm)+
∑

(m,n∈ε)

ψm,n(χm, χn) (9)
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χm is the configuration of pixel m in the image, φm is unary
potential and is the cost of the label assigned to pixel m.
φm is computed using color, texture, location, and shape of
the image. ψm,n is pairwise terms, and is considered smooth
terms and defined by edge features based on the difference
between neighboring pixels. ψm,n enables a smoothing of
object boundaries in the haze-free image. Equation (9) allows
the extraction of details from the haze-free image. However,
the use of the energy function described by (9) is not common
in image processing due to complications associated with
algorithms for optimizing the cost functions. Although (9) is
not common in image processing, its modification has found
immense use.

Scene depth changes are usually gradual and vary from
local to global neighborhood. Therefore, accurate estimation
of depth variation would be on both the local and global
image features. The existing state of the art dehazing models
such as [28] designed local consistent MRF model extracting
local pixel blocks. The haze-free images by [28] present
color oversaturation in some regions. This was due to the
consideration of only local pixels in the design of MRF.
Qu et al. [28] proposed a higher-order method in MRF to
solve the smoothing problem associated with statistics of the
entire image. The higher-order terms were extended in MRF
(9) as:

E(x) =
∑
m∈v

φm(χm)+
∑

(m,n∈ε)

ψm,n(χm, χn)+
∑
c∈S

ϕc(χc)

(10)

where E(x) is still the general term for energy functions of
Markov random field (MRF) S is a set of image regions
defined on super-pixels with higher-order pixels ϕc. Unlike
the existing image dehazing models, which focus on the rela-
tionship between neighboring pixels and super-pixels with
local image patches, we have defined the proposed method’s
global and local image blocks. In this model, the color feature
is also a representative of both global and local color moment.
This approach ensured atmospheric light used represents the
relationship between global and local pixels and super-pixels.

To model the long and short-range interactions, that is,
the global and local neighborhood pixels and super-pixels
relationships, we consider the global relationship between
neighboring local pixels as suggested by [32]. The MRF con-
structed has edge cost representing the neighboring pixel’s
consistency in overlapping regions. Suppose we denote vol-
ume of patches as m and pixel indices χ = {χi|i = 1, . . . , n}
and the number of nodes nwhile the number of labels ith node
is ki, thus the patches in the neighbourhood is denoted by mi.
Suppose the unary and pairwise potential and their ratio are
φg(χi), ψg(χi, χi′ ) and λg respectively with i′ indicating index
of neighbouring patch ofmi and g indicate global-level MRF.
Supposed it assumed that the image is likely to have a high
gradient boundary, the unary potential φg(χi) is defined as

φg(χi = j) = log
(

1

|c(Xj
i)|

∑
m∈c(Xji)

∣∣∣∣ ∂ImImax

∣∣∣∣) (11)

where ∂Im denote the magnitude of intensity gradient of pixel
m and Imax in the maximum intensity of the pixels in the
haze image; thus, a patch with higher pixel gradient variance
exhibit lower cost. The pairwise potential ψg(χi, χ ′i ) defined
by (12) is based on the assumption of the existence of smooth
connection between local and global patches [32], [33].

ψg(χi = j, χi′ = j′) = −log
( 2

∑
m∈mi∩mi′

Xj
i(m)X

j′

i′ (m)∑
m∈mi∩mi′

Xj
i(m)+ Xj′

i′ (m)

)
(12)

wheremi ∩mi′ represent overlapping pixels within local and
global patches. Suppose the pairwise potential ψg(χi, χ ′i ) =
0. Then there is no difference between the pixel in the patches.
This assumption can be misleading on weaker correlations,
thus requiring more constrained terms to enhance smooth
connection. Therefore, (11) is extended to incorporate vari-
ance high-low gradient variance boundary as

φgl(χi = j) = log
(

1

|c(Xj
i)|

∑
m∈c(Xji)

∣∣∣∣ ∂Im

(Imax − Imin)2

∣∣∣∣), (13)

and pairwise potential as

ψgl(χi = j, χi′ = j′) = −log
Mpp

Mpd
(14)

where

Mpp = 2
∑

m∈mi∩mi′

Xj
i(m)X

j′

i′ (m),

Mpd =
∑

m∈mi∩mi′

[∣∣∣∣Xj
i(m)+ Xj′

i′ (m)

∣∣∣∣2 + ∣∣∣∣Xj
i(m)− Xj′

i′ (m)

∣∣∣∣2
The energy function of the global-local consistency MRF
proposed is thus represented as

E(x)=
∑
m∈v

φm(χm)+
∑

(m,n∈ε)

ψm,n(χm, χn)

+

∑
c∈S

ϕc(χc)+
∑
i

φgl(χi)+λg
∑
i,i′
ψgl(χi, χ ′i ). (15)

The graph cut is used to optimize the (15). The graph con-
volution neural network has found tremendous application in
many image processing [34]–[43]. The extension of global
and local consistency in (15) also serves to caution the pro-
posed graph cut convolution neural network from the problem
of smoother far apart pixels. Besides, it also serves to avoid
over saturation of color and enhances sharper boundaries.

Graph cut has two main parts, data and regularization
part [44]. The data part measures the image data conformity,
such as image features. The regularization part smoothens
the boundaries of the different conformity areas. The rest
of literature and procedure for graph cut method has been
extensively discussed by [44]–[49]. The effectiveness of the
proposed method presented in a summary in Fig. 4 is pre-
sented in Fig. 9.
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FIGURE 4. Schematic view of the proposed Geometric-Pixel Guided Single-Pass Convolution Neural
Network with Graph Cut for Image Dehazing.

FIGURE 5. Example of one of the accuracy plots obtained during the training.

FIGURE 6. Example of one of the loss plots obtained during the training.

FIGURE 7. The schematic detail shows the proposed architecture with seven neurons in the second hidden
layer, eight neurons in the third hidden layer, and a single output. The series contains alternating global and
local feature extraction before full connection then graph cut to obtain the final dehazed image.

IV. EXPERIMENTS
A. DATA AND IMPLEMENTATION
The proposed method (summarized in Fig. 7 and detailed
in Fig. 8) has been applied to various images (presented
in Figs. 11-13) sourced from different database. These images
were resized to a size of (28,28) to keep computational
complexity low. The images presented in Fig 11-13 are
examples chosen from a dataset of 24 examples used dur-
ing the experiment. However, the quality metrics presented
in Table 2 are based on the results of the 24 images used

during the experiment, whose parameter values are summa-
rized in Table 1. A total of 10560 images were used to train
the network, from the 440 partitions from 24 images samples.
1320 images used for validation from the simulated clear
images for the images presented in Fig. 13. The images whose
results are presented in Figs. 11 and 12, validation images
were extracted from the regions with rich textures. Thus, for
these set of results, the quality could be compromised due
to the lack of ground truth to validate the images. The final
images output were reconstructed from 440 to yield results
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FIGURE 8. Detailed CNN for the proposed dehazing method with the encoder and decoder are similar
except for the residual phase. The residual function ensures that each hidden neuron is fully connected,
enhances the learning rate, and converges the training data set model. (b) The dense-residual phase is
composed of softmax, which feeds information to the (c) graph-cut algorithm, which conforms image
features and smoothens the boundaries of varying conformity areas.

FIGURE 9. Comparison of the effect of proposed energy function on the image features with the existing
state of the art algorithm that tries to utilize the graph cut theory by [45]. It is visible how effective the
proposed method has extracted extra features in the dehazed image compared with existing [45] results.

presented in Figs. 11-13. An example of accuracy and loss
plots obtained during the training is also presented in Fig. 5
and Fig. 6 respectively. The partition helped organize images
into patches of similar local and global neighbourhoods. The
training processed for the proposed dehazing technique was
performed on BIZON X5000 G2 with 16GB RAM.

Fig. 5 and 6 indicate accuracy and loss function across
epoch for over the number of iteration. Both figures indi-
cate a narrow gap between training and iteration, indicating

less overfitting. Therefore, the model is assumed to give the
desired results during training.

Figs. 8a consists of input, encoder and decoder. The
encoder consists of convolution neural networks which
extract global and local features from the hazy images. The
decoder function like encoder except for its residual function
which contain graph cut (see Figs. 8b - 8c). The residual
decoder function allows full connection with other neurons,
thus enhancing the learning rate and converging the training
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FIGURE 10. Comparison showing the first image dehaze-cut results and second image the proposed results.
The red and green patches shows the effectiveness of the proposed method in comparison with the existing
dehaze-cut method [45]. The red and green patches indicate the effectiveness of that the proposed results is
more blurry but on closer view has more details than the existing dehaze cut.

FIGURE 11. Summary of the test comparison showing the original image in the first column followed by the
results from [18], [52], [54] and the results from the proposed algorithm in the last column.

TABLE 1. Values obtained and used during the experiment for the
proposed dehazing algorithm.

model. Figs. 8c is build graph designed to minimize energy
problem presented in (15). The graph consists of nodes

corresponding to image pixels and pixel labels. The pixels
are weighted based on its label. The cut consists of a config-
uration of pixels at its maximum label. The cut ensures the
energy is minimal at all configurations.

B. EVALUATION METRICS
The proposed method’s performance evaluation is conducted
using five image quality criteria, including: (i). Entropy [51];
(ii). e (visible edges) [52]; (iii). r (edge preservation perfor-
mance) [52]; (iv). Contrast and (v) Homogeneity [53]. These
criteria are chosen based on the proposed method’s objec-
tive: improving information content, measuring human visual
quality and textural features, and similarities of a dehazed
image.
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TABLE 2. Comparison of mean and standard deviation of performance evaluation metrics of the proposed and existing state of the art algorithm for
example presented in Fig. 11. e and r are blind assessment indicators. e assess increased rate of visible edges while r assess edge preservation
performance. Higher values of µ indicate better method while lower values of σ show consistency of the results.

FIGURE 12. Summary of the test comparison showing the original image in the first column followed by
the results from [18], [54] and the results from the proposed algorithm in the last column.

C. RESULTS ANALYSIS AND COMPARISON
1) QUANTITATIVE COMPARISON
2) COMPARISON ANALYSIS
In all the cases, (see Table 2), the images resulting from apply-
ing the proposed algorithm have averagely higher entropy,

e, r, contrast and homogeneity, SSIM, and WPSNR. This
suggests the proposed method resulted in a dehazed image
with improved information content, visibility, and better tex-
ture than existing methods (Fig. 4, 11-15). The difference in
the textural properties of the proposed method is compared
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FIGURE 13. Summary of the test comparison showing the original image in the first column followed by the
results from [18], [54] and the results from the proposed algorithm in the last column.

FIGURE 14. Summary of the test comparison showing the extracts of fundamental differences in the results
of the proposed methods and the existing state of the art methods Meng [18], Najmul [54] and Mehmood
[52]. The extract shows the proposed method gives images with better visibility and clarity of features.

with those of the state of the art method in Fig. 14-15. The
difference in the textures Fig. 14-15 shows that amodification
of the combination of graph cut and single-pass CNN with
modified energy function and pixel-guided transmission ulti-
mately yields a better dehaze image. A further visual inspec-
tion of patched sections of the proposed results in Fig. 14

compared to the existing methods reveals its strength and
weakness.

The proposed method’s major strength lies in its ability
to extract finer details in the dehazed images (see red and
black patches in Fig. 14). The red patched areas, for instance,
in the regions marked red and black, tend to have more details
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FIGURE 15. Comparison showing the extracts of features between the clear and dehazed image for the
proposed methods and the existing state of the art methods, beginning with Meng [18], Najmul [54] and
proposed. The extract in the last row shows the proposed method gives images with more features.

than those in Mehmood [52] and Najmul [54]. The extra
information is attributed to the proposed pixel differential-
based transmittance medium, which focuses on the global
and local patches’ pixel difference. This explains the addition
of some tree leaves in the patched sections. The estimation
of transmittance medium via local and global pixels with
image neighborhood distinguishes regions, leading to more
information extraction.

The visual inspection of patched sections of the proposed
results in Fig. 14 compared to the existing methods reveals
its weakness. While the proposed method focuses on extract-
ing finer details of the dehazed images (see red and black
patches), the regions with excess light tend to lose some
information (see also Fig. 10). The red patched areas, for
instance, in the areas marked red and black, tend to lose
some information, specifically in the over bright regions
compared to those in Mehmood [52] and Najmul [54]. This
is attributed to the proposed pixel differential-based trans-
mittance medium. The pixel difference of the global and
local patches functions by treating pixels within regions with
excess light. This explains the missing of some tree leaves
in the patched sections. The estimation of transmittance
medium via local and global pixels with image neighborhood
makes some regions have similar traits. This also explains
the sky and roof color similarity in Fig. 11-15 in all the
examples.

In all the examples presented, extra features in the pro-
posed image results compared to existing results from
the proposed novel estimation of transmittance medium.
The standard deviation values in all cases, as presented
in Tables 2, show lower values than the corresponding

benchmark algorithms. Table 2 also shows that our proposed
algorithm has a lower entropy of 6.32 than Najemul’s algo-
rithm entropy of 6.25 Meng’s algorithm entropy of 6.29.
Also, our proposed algorithm has better consistency than
others. These indicate that the proposed method gives more
consistent and predictable results than existing algorithms.

V. CONCLUSION
This paper presents a novel geometric-pixel guided single-
pass Convolution Neural Network with Graph Cut for Image
Dehazing. We propose to solve the dehazing problem using a
combination of single-pass CNN with graph cut algorithms.
The method considers the transmittance based on differential
pixel-based variance, local and global patches and energy
functions to improve the transmission map. Through results
presented and demonstrated in examples, the paper demon-
strates that the proposed algorithm gives a better-dehazed
image than those of the existing state of the art methods as
shown in Fig. 10. Fig. 14 and Fig. 15, show that our proposed
method gives images with better visibility, clarity of features
and more features. In general, our results show more details
when compared to four existing benchmark enhancement
methods. The proposed method has a major weakness; that is,
the over-bright areas tend to lose some final image features.
The weakness is also its strength and arises due to the pro-
posed novel estimation of the transmittance medium. Future
research could consider a combination of our method with
other existing algorithms such as dark channel prior, since
at least one color channel of an rgb image has some pixels
of the lowest intensities. Future research could also consider
combining conditions for atmospheric homogeneity and ratio
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between the segments during estimation of transmittance
medium.
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