
SPECIAL SECTION ON INTELLIGENT BIG DATA ANALYTICS FOR
INTERNET OF THINGS, SERVICES AND PEOPLE

Received January 22, 2021, accepted February 6, 2021, date of publication February 12, 2021, date of current version March 23, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3059052

Automatic Recognition of Traffic Signs
Based on Visual Inspection
SHOUHUI HE 1, LEI CHEN 1, SHAOYUN ZHANG 1, ZHUANGXIAN GUO 1,
PENGJIE SUN 1, HONG LIU 1, AND HONGDA LIU 2
1Linyi University, Linyi 276000, China
2Linyi Audit Bureau, Linyi 276000, China

Corresponding author: Lei Chen (chenleiwl@lyu.edu.cn)

This work was supported in part by the Humanity and Social Science Research Foundation of Ministry of Education in China under
Grant 20YJAZH131.

ABSTRACT The automatic recognition of traffic signs is essential to autonomous driving, assisted
driving, and driving safety. Currently, convolutional neural network (CNN) is the most popular deep
learning algorithm in traffic sign recognition. However, the CNN cannot capture the poses, perspectives,
and directions of the image, nor accurately recognize traffic signs from different perspectives. To solve
the problem, the authors presented an automatic recognition algorithm for traffic signs based on visual
inspection. For the accuracy of visual inspection, a region of interest (ROI) extraction method was
designed through content analysis and key information recognition. Besides, a Histogram of Oriented
Gradients (HOG) method was developed for image detection to prevent projection distortion. Furthermore,
a traffic sign recognition learning architecture was created based on CapsNet, which relies on neurons to
represent target parameters like dynamic routing, path pose and direction, and effectively capture the traffic
sign information from different angles or directions. Finally, our model was compared with several baseline
methods through experiments on LISA (Laboratory for Intelligent and Safe Automobiles) traffic sign dataset.
The model performance was measured by mean average precision (MAP), time, memory, floating point
operations per second (FLOPS), and parameter number. The results show that our model consumed shorter
time yet better recognition performance than baseline methods, including CNN, support vector machine
(SVM), and region-based fully convolutional network (R-FCN) ResNet 101.

INDEX TERMS Traffic signs, automatic recognition system, CapsNet, traffic safety.

I. INTRODUCTION
Traffic sign recognition is a research hotspot in the applica-
tion of visual navigation and computer vision in intelligent
driving [1], [2]. Under multiple constraints, the recognition
of traffic signs needs to realize various goals with a high
accuracy through complex implementationmethods. Aminor
classification error of traffic signs will bring disastrous
consequences.

In automatic driving, most targets, including traffic lights,
routes, special vehicles, and the gestures of traffic police,
are recognized by cameras or vehicle-to-everything (V2X)
communication. Meanwhile, radar is intrinsically unable to
identify signals like speed limit and stop sign. Cameras are
installed on the dashboard of many autonomous vehicles and
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driver assistance systems, and used to capture the real-time
images or videos embedded in the machine learning model
of the car system. The deep learning algorithm of the model
must be robust and reliable, so that the model could capture
the traffic signs in different directions and poses. After all,
the speed and geographic location change continuously as the
vehicle drives through different environments and lights.

However, traditional traffic sign recognition algorithms
are basically driven by tasks, namely, color detection,
shape recognition, and machine learning. Most of them are
only applied in fully or semi-enclosed environments like
expressways. Even the most popular traffic sign recognition
algorithm, convolutional neural network (CNN), cannot
effectively capture traffic sign features like pose, angle,
and direction, due to the defect in max-pooling layer [3].
For software reasons, the image quality will be reduced if
the images are collected or transmitted on the computer.
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In addition, the quality of the images collected by the imaging
sensor varies greatly. For example, the image quality is
generally undesirable on rainy or foggy days, in dark nights,
and under very dark light.

The CNN-based machine learning models are unable to
cope with the above challenges [4]. Therefore, it is urgent to
cover traffic signs in the hierarchical contours of computer
vision, and improve the accuracy and stability of traffic
sign recognition. During the observation of scene images,
the attention should be focused on the targets or regions of
interest (ROIs). These targets or regions must carry striking
visual features, such as edge contour, detailed texture, color
gradient direction, color intensity, and spatial location.

On this basis, this paper designs a method to extract
candidate regions from traffic sign images through content
analysis and key information acquisition. In complex scenes,
our method could extract salient foreground targets with
universal significance from the input image, and realize
the recognition of multiple traffic sign images. However,
the input imagesmust meet two requirements: (1) Each image
needs to suit the perception mechanism of human eyes, that
is, the visual target area must be clearly different from the
background; (2) The collaborative visual targets in multiple
images must have obvious similarities.

Angle is a thorny issue in image recognition, if there
are illumination changes, and occlusions. In this case, it is
difficult to obtain useful features through classification.
Suppose our goal is to design a detector for the buttons on
shirts or jackets, which are usually round (or oval in images)
with several holes. Through edge detection, it is easy to
judge whether a target in the image is a button based on the
edges. In this example, edge information is useful, while color
information is not. Besides, the useful features should also be
discriminable. For instance, the good features extracted from
an image should be able to differentiate buttons from other
round objects (e.g., coins and wheels). Thus, the Histogram
of Oriented Gradients (HOG) was designed for the target
image, and the distribution of gradient directions was treated
as a feature, in order to solve the projection distortion in
image recognition. The gradient of the image (derivatives
in the x and y directions) [5] is very useful, because the
edges and corners of the image (regions where the intensity
changes sharply) have a large amplitude. Compared with
other areas on the same plane, edges and corners containmore
information about the shape of the object.

To sum up, the traditional CNN cannot effectively recog-
nize traffic signs in images taken in different environments,
illuminations, speeds, positions, poses, angles, or directions.
This paper puts forward a CapsNet-based traffic sign learning
system [6]–[8]. The neuronal system can dynamically capture
the poses and directions of vehicles on road, effectively
identify the traffic signs in different angles and directions, and
give case descriptions of traffic signs.

The main contributions of this paper are as follows:
1. To improve visual inspection effect, the authors

designed a method to extract candidate regions from the

input image through content analysis and key information
recognition [9].

2. To prevent projection distortion, the authors developed
an HOG method for actual images.

3. A CapsNet-based traffic sign learning system was
created to effectively capture the poses and directions of
traffic signs.

4. Through repeated experiments, our method was proved
better than traditional CNN [10], [11], support vector
machine (SVM) [12], [13], and region-based fully con-
volutional network (R-FCN) ResNet 101 in traffic sign
recognition [14].

The rest of this paper is organized as follows:
Section 2 reviews the related work of traffic sign recognition;
Section 3 explains our approach; Section 4 analyzes,
compares, and discusses the results of traffic sign recognition;
Section 5 sums up the findings and provides suggestions on
future research.

II. LITERATURE REVIEW
The recent traffic sign recognition methods are mainly based
on shape or deep learning.

A. SHAPE-BASED TRAFFIC SIGN RECOGNITION
To detect triangular and rectangular symbols, Anandhalli
and Baligar [15] applied the Harris corner detector to the
ROIs, searched for corners in the predefined control area.
Li [16] relied on edge information to recognize traffic
signs that are difficult to detect in the driving environment:
Based on the shape features of scale-invariant edge turning
angles, the nonparametric shape detector was used to detect
circles, triangles, and rectangles in the image; more than
95% of all traffic signs were covered by this detector.
Jin et al. [17] derived a two-module detector from the
multi-feature fusion traffic sign recognition method: the
first module extracts the ROIs, using the commonality of
symbol boundaries; the latter verifies the effectiveness of
the extracted ROIs, and combines HOG and SVM to detect
traffic signs. Zheng et al. [18] presented a sliding window
detectionmethod, which searches for traffic signs on different
scales with the integrated channel feature classifier. Targeting
the prohibition and mandatory signs in German Traffic Sign
Benchmarks (GTSDB), Gim et al. [19] developed a system
containing two coarse filter modules: the first module is based
on HOG and linear discrete analysis (LDA); the second is
based on a small sliding window; both modules involve a
large window and an SVM classifier. While these efforts
are effective in recognizing traffic signs based on graphical
methods, these solutions do not work well in complex
scenarios (e.g., low light, signs partially obscured, etc.), and
are particularly ineffective in recognizing signs with different
orientations or viewpoints.

B. DEEP LEARNING-BASED TRAFFIC SIGN RECOGNITION
Jumani et al. [20] integrated the local binary pattern (LBP)
feature detector with the AdaBoost classifier [21] to roughly
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FIGURE 1. Different types of traffic signs.

select the ROIs, and reduced the negative ROIs in traffic sign
recognition by cascading the CNNs. Shao et al. [22] came up
with a traffic sign recognitionmethod for complete traffic net-
work: the region-based CNN (R-CNN) was extended by the
object proposal method of EdgeBox [23], and achieved the
optimal results on Swedish traffic-sign dataset (STSD) [24].
Through convolution extension, Li et al. [25] created a CNN
with multi-scale sliding window; the extended (or atrophic)
convolution, which supports the exponential expansion of the
receptive field, without scarifying the resolution or coverage,
was adopted to expand a convolution filter; this filter was
used to piece up a large background through fast computation
with a few parameters. In addition, several loss functions have
been proposed for bounding box regression: intersection over
union network (IoU-Net) [26], Precise Rol Pooling (PrRol-
Pooling) [27], and generalized IoU (GIoU) [28]. These
functions open a new way to recognize traffic signs with
multi-scale CNN. In general, deep learning-based traffic sign
recognition learns features through big data training. The
relevant methods are good at feature expression, and immune
to external factors like illumination changes and occlusions.
Compared with conventional methods, deep learning-based
traffic sign recognition is highly accurate and strong in
generalization.

III. REGION EXTRACTION OUR METHOD
A. REGION EXTRACTION
There is a high resemblance between the public datasets
on traffic signs, because most places around the world use
similar traffic signs. To recognize traffic signs based on deep
learning, it is necessary to focus on the structural information
of traffic signs in visual recognition, and extract every pixel
from the traffic sign image. Hence, the authors designed
an extraction method for ROIs that could identify the key
information in traffic sign images (Figure 1). The designed
ROI extraction method works in the following steps:

Step 1. The contour lines and blocks are recognized in the
traffic sign image, and the distance between them is set to a
fixed value.

Step 2. The traffic sign image is divided into small blocks to
reduce repeated reading of the same information and prevent
block loss.

Step 3. Each image block is recorded, and marked with
the details on the high-frequency regions (e.g., traffic sign)
extracted by a simple multilayer perceptron (MLP).

During image recognition, thick edges and end points
are common in edge feature extraction and block divi-
sion. These disturbances might affect the accuracy of the
contour image, and cause information loss. To suppress
these disturbances, the contour image was recognized
layer by layer with a 4-level recognition and matching
method.

From the angle of smoothness, most contour curvatures,
except for a few easily identifiable geometric features, are
difficult to recognize during contour matching. In real-world
applications, most contours in digital images are expressed by
pixels. To a certain extent, the smoothness of these contours
is hard to express, making it difficult to calculate curvature.
Thus, this paper develops an HOG method to facilitate the
curvature calculation.

To recognize traffic signs, the contours were identified
layer by layer to ensure the recognition accuracy. First,
the binary image was tested to acquire the contour pixels
of the contour image. After that, the contour features were
realized on OpenCV.

Traffic sign images are relatively clear. Many of them have
a high frequency. After low-pass filtering, the high-frequency
information will be removed. The filtered image will differ
sharply from the original image. Based on the error in
structural similarity, the recognizable features could be
extracted effectively. Besides, the variation in the measured
contour shape of the traffic sign could be treated as a feature,
making it easy to distinguish between traffic signs in different
shapes. That is, common traffic sign images can be expressed
as circles or squares.

When the length of the contour line is the same,
the standard deviation of the pointing distance amounts to
0.00, 0.34, 1.00. The counter line must be unified in different
types of traffic signs, whether they are for prohibition,
warning, or instruction. For example, a prohibition traffic sign
should be a black triangle with a graduated color background,
a warning sign should have a yellow background, and
an instruction sign should be a white circle with a blue
background. The proposed ROI extraction method was tested
on actual traffic sign images. The results show that this

VOLUME 9, 2021 43255



S. He et al.: Automatic Recognition of Traffic Signs Based on Visual Inspection

proposed visual inspection method has good stability and
fault-tolerance.

B. HOG FEATURE
The gradient of the image, i.e., the differentials in the x and
y directions, is very useful. The edges and corners have very
large gradients. Comparedwith other areas on the plane, these
areas with sharp intensity changes contain rich information
on object shape. Thus, this paper designs and describes an
HOG algorithm. For clarity, the steps of the algorithm were
explained with an ordinary image with movement trends.

Step 1. Preprocessing
The aspect ratio must be fixed before analyzing the

multi-scale image blocks. Here, the aspect ratio of image
blocks is maintained at 1:2. An original image of 720× 475
resolution (Figure 2) was selected as an example to illustrate
HOG calculation. The small blocks cropped from the image
were of the size 64× 128.

FIGURE 2. An example image.

Step 2. HOG calculation
The first step of HOG calculation is to compute the

horizontal and vertical gradients of the image. Taking the
kernel size of 1, the Sobel operator of OpenCV was chosen
to derive the magnitude and direction of the gradient:

g =
√
g2x + g2y

θ = arctan
gy
gx

(1)

The gradient magnitude and direction can also be cal-
culated by CartToPolar function. The calculated gradient
magnitude is shown in Figure 3 [29].

As shown in Figure 3, straight lines and horizontal
lines were highlighted in the x- and y-direction gradients,
respectively. The gradient amplitude changed, where the
intensity changed drastically. Virtually no gradient was
distributed on flat areas. The gradient image contains no
contour information, except for many unnecessary informa-
tion (e.g., constant background). The amplitude and direction
of gradient varied from pixel to pixel. For a color image,
gradients of the 3 channels need to be calculated separately.
The maximum amplitude among the 3 channels should be
taken as the gradient amplitude; the corresponding angle
should be treated as the gradient direction.

FIGURE 3. Gradient magnitude map (left: x direction; middle: y direction;
right: gradient magnitude).

Step 3. Cell division
As shown in Figure 4, the image was further decomposed

into 8 × 8 cells, and the HOG of each cell was calculated.
The HOG feature was chosen to describe a small area of the
image, thanks to its ability to describe the original image in a
concise manner.

FIGURE 4. Each RGB cell and its gradient (left) [30]; gradient magnitude
and direction (right).

In each image block, the gradient at a pixel contains two
values: the gradient magnitude and direction. In total, there
are 8×8×2 = 128 values, which could be described by a 9-
bin HOG. In this way, the original image was expressed more
compactly, and the HOG of each block was robust against
noises.

Although the gradient information of a single pixel might
contain noises, the HOG of 8 × 8 image blocks are very
insensitive to noise. The 8× 8 cells of each 64× 128 image
block can capture very interesting features, namely, face and
top of head.

In the right subgraph of Figure 4, there were slight
differences in the numbers representing the gradient in the 8×
8 cell: the angle fell between 0◦ and 180◦, rather than between
0◦ and 360◦. This is called unsigned gradient, for the positive
and negative gradient directions were represented by the
same number. That is, a gradient arrow and its corresponding
value (the value corresponding to the direction plus 180◦) are
regarded as the same gradient. Empirical evidence shows that
unsigned gradients are better than signed gradients.

Step 4. Normalization of 16× 16 blocks
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Then, the HOG was plotted based on the gradient
calculated through the above step. The image gradient is
highly sensitive to the overall illumination. If the pixel
values of the image are all divided by two, the entire
image will become darker, and the gradient magnitude will
be halved. Then, the HOG will be half the original size.
In theory, the descriptor is expected to stay invariant against
illumination changes, that is, the HOG should be normalized
to exclude illumination interference.

The HOG feature of gradient direction was normalized
by 16 × 16 blocks, each of which contain 4 HOGs. These
HOGs could be connected to a 36 × 1 vector, which can be
normalized to the size of 3 × 1. After each normalization,
the whole window was moved by 8 pixels, and used to obtain
another 36× 1 normalized vector. This process was repeated
continuously.

Step 4. Calculation of HOG feature of gradient direction
To calculate the final eigenvector of the entire block, all

36 × 1 vectors were connected into a large vector, and the
HOG feature of gradient direction was calculated as follows:

The total number of 16 × 16 blocks at different positions
was obtained as 7 × 15 = 105, where 7=(64-8)/8 is the
number of blocks at horizontal positions, and 15=(128-8)/8 is
the number of blocks at vertical positions. Since each 16×16
block was represented as a 36 × 1 vector, the large vector
connected from them has a dimension of 3,780 = 36× 105.

FIGURE 5. The visualized HOG feature.

Then, the HOG feature was visualized as shown in Fig-
ure 5. By drawing the 9× 1 normalized vectors (histograms)
in all 8×8 cells, it is clear that the histogram mainly captures
the body shape, especially near the torso and legs.

C. STACKED CAPSNET
As shown in Figure 6, our model is a stacked model, in which
the basic components are arranged in the shape of a fork.
The leftmost component is a convolutional CapsNet. Similar
to a filter, each capsule scans the input image, and outputs
a part of that image. Suppose the task is to recognize
handwritten numbers. The ordinary neural networks will
output ten neurons, each of which corresponds to a possible

number. Meanwhile, the CapsNet will output ten vectorized
capsules, each of which corresponds to a possible number.
The degree of normalization of the vectorized output reflects
the confidence of the output. For example, the capsule
corresponding to number 1 is outputted in the form of the
vector corresponding to 1, and the degree of normalization of
the capsule is the confidence of 1. The rest can be deduced
by analogy. During the training, the goal is to maximize the
confidence of output numbers; if numbers are imported to the
CapsNet, the training goal will be maximizing the degree of
normalization. Mathematically, CapsNet can be described as:

µ1
= W1x1, µ2

=W2x2

S = c1µ1
+ c2µ2 (2)

In short, the input scalar x was multiplied by the weight
w, and converted into vector u; Next, the input vector u
was multiplied by the weight c, and then summed up into
vector S; After that, vector S was converted into vector v
using the nonlinear function, i.e., the novel activation function
Squashing. Hence, the output v can be calculated by:

v =
‖S‖2

1+ ‖S‖2
S
‖S‖

(3)

The first part of the activation function is the zoom scale
of the input vector S, and the latter part is the unit vector of S.
This activation function not only preserves the direction of
the input vector, but also compresses the modulus of the
input vector to [0, 1]. In other words, the vector modulus is
positively correlated with the probability of appearance for
an entity [5], [6].

The intermediate structure in Figure 6 is the double
stacking of residuals. In the classic ResNet, the input of
the current stack is added to the output before the result is
transferred to the next stack. This practice effectively prevents
overfitting, and ensures the mining of image features, making
the deep structure more trainable. In our network, two
multi-level residual brancheswere designed (middle and right
in Figure 6). One of them implements reverse detection on
each layer, and the other operates on the detection branch of
each layer. The operation can be described by:

xl = xl−1 − x̂l−1, ŷ =
∑
l

ŷl (4)

The first block receives model-level input x, x1 ≡ x,
and provides an output v1 that propagates to the next block.
The output v1 is stacked with v2 of the next block. In this
way, the outputs can be summated layer by layer, making
the deep network interpretable. This stacking strategy has
several advantages: the actual features are approximated,
the detection in downstream blocks is simplified, and the
backpropagation of gradients is facilitated.

The rightmost structure in Figure 6 contains two stacks:
trend and branch. The trend takes the output of each stack
as the input of the next stack; the branch superimposes the
outputs of all stacks, and imports them to the subsequent
fully-connected layer. The trend stack consists of multiple
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FIGURE 6. The stacked model we have been designed.

blocks connected by the residual connections (Figure 6). Each
block has a unique CapsNet, which cannot be learned by
others. The branch blocks can share weights to improve the
verification performance. The operation of the l-th stack can
be described by:

hl,1 = FCl,1 (xl) ,

hl,2 = FCl,2
(
hl,1

)
,

hl,3 = FCl,3
(
hl,2

)
,

hl,4 = FCl,4
(
hl,3

)
vbl = LINEARbl

(
hl,4

)
,

vfl = LINEARfl
(
hl,4

)
(5)

where, LINEAR is the linear projection layer, that is, a θ fl =
W f
l hl,4 type network layer. This layer is a fully-connected

layer with the nonlinear features of rectified linear unit
(ReLU). Thus, the sub-network FCl,1 can be obtained,
e.g., hl,1 = RELU

(
Wl,1xl + bl,1

)
. For this sub-network,

the specific task is to detect the forward expansion coefficient
vfl , and the ultimate goal is to optimize part of the recognition
accuracy of ŷl by properly mixing the basis vectors provided
by vfl . In addition, the detection expansion coefficient vbl of
this sub-network stems from the estimated value of xl , with
the goal of removing unhelpful inputs to help downstream
blocks.

The last module in Figure 6 is a three-layer fully connected
layer. The number of neurons in each layer is an empirical
value that varies with datasets. This layer involves techniques
like DropOut and L2 regularization. The last layer was
activated by softmax function. Thus, the objective function
of our model can be defined as:

L = −[y log ŷ+ (1− y) log(1− ŷ)] (6)

where, y and y are actual and recognized labels, respectively.

IV. EXPERIMENTS
A. DATASET
LISA (Laboratory for Intelligent and Safe Automobiles)
traffic sign dataset, an open-source dataset, was selected for
our experiments. There are 47 types of traffic signs in this
dataset. Only one subset of LISA was used, for our method
focuses on a specific type of traffic signs. The selected
subset contains 654,285 images. The dataset size was further
reduced by removing all the training samples without default
matching boxes.

B. EXPERIMENTAL SETTINGS
Our model and baseline methods were programmed on
Keras, under the TensorFlow framework. The stacked
CapsNet model was realized, using CUDA Toolkit, and
the GPU (graphics processing unit)-accelerated library of
primitives called NVIDIA CUDA R© Deep Neural Network
library (cuDNN). The model training was conducted on
an Intel Core i710500U 2.7GHz CPU (central processing
unit) (memory: 8GB; RAM: 1TB) and an NVGT 940MX2
GDDR3 NvidiaGeForce GPU.

To reduce the dataset size, the original data were divided
into a training set and a test set by 9:1. Eachmodel was trained
by theAdaDelta optimizer. The default hyperparameters were
provided by TensorFlow. The training lasted 200 epochs, with
the batch size of 128k. The baseline models include CNN,
SVM, and R-FCN ResNet 101 [31].

The performance of each model was evaluated by mean
average precision (mAP). First, the interpolation average
accuracy (AP) of the tracking accuracy/recall curve was
calculated by setting the recall r to the maximum accuracy ob
of any recalls r ≥ r’ (formula (7)), with p(r) being the recall
r of measured value. The AP value is equivalent to the area
under the curve of numerical integration, which is the product
between the sum of precision variation and the recall variation
r(k) at k points (formula (8)), with N being the total number

43258 VOLUME 9, 2021



S. He et al.: Automatic Recognition of Traffic Signs Based on Visual Inspection

of points with recall variation. Finally, the average of all APs
was taken as the mAP value.

p(r) = maxr ′y′≥r p
(
r ′
)

(7)

AP =
N∑
k=1

p(k)1r(k) (8)

C. RESULTS
Traffic signs have great differences in illumination and
contrast. Thus, the original images were enhanced and
normalized by our method and several MATLAB functions.
The original images are displayed in the top row of
Figure 7(a), and the images preprocessed by imadjust, histeq,
adapthisteq, and our method are shown in the second to last
rows of Figure 7(a) in turn. After training, our model had an
error rate of 0.54% on the test set.

FIGURE 7. (a) Original and preprocessed images; (b) 68 errors of our
model.

Figure 7(b) records all the errors of the two stacks tested
on the first and second blocks. Under each subgraph, several
notations were provided: correct labeling (left), and optimal
recognition rates of first and second blocks (right). It can be
seen that over 80% of correct recognitions are attributable
to the training on the second block, and the probability of

incorrect recognition was generally low. Overall, our method
achieved a close-to-1 probability of traffic sign recognition.
Only 1% of images (confidence < 0.51) were recognized
at an error rate smaller than 0.24%. To further lower the
error rate to 0.01% (by adjusting the number of blocks),
it was learned from the experimental results that our method
achieved the best performance at 4 blocks (the last row
in Figure 7 (b)) [32], [33].

Table 1 reports the MAP, memory (MB), floating point
operations per second (FLOPS), and millions of bits of each
model.

TABLE 1. The performance of each model.

As shown in Table 1, our model realized the best mAP,
which is 5% higher than that of the most advanced baseline
R-FCN ResNet101 and 14% higher than that of the classic
SVM. The hard-earned advantages attribute to the extraction
of ROIs, which enables our model to precisely locate the
targets.

FIGURE 8. The radar chart of five performance indices.

The fivemetrics, namely, mAP, time, FLOPS,memory, and
parameter, of all methods are plotted as Figure 8. Note that
all values were converted into [0, 10], and only the maximum
values of eachmetric were presented in the figure. Among the
fivemetrics, mAP, time, andmemory aremore important than
the other two metrics. It can be seen that our model consumed
the shortest runtime among the five methods, thanks to
the proposed preprocessing method. Therefore, the overall
optimal model is our model [34], [35].

Table 2 further compares the recognition accuracy of each
technique in our model. Clearly, every adaptational technique
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TABLE 2. The recognition accuracy of each technique in our model.

improved the recognition accuracy. This fully demonstrates
the practicality of our model.

V. CONCLUSION
This study presents an automatic road sign recognition
algorithm based on visual detection. The proposed algorithm
includes ROI extraction, HOG feature design, and stacked
CapsNet. The authors detailed the component of HOG
feature, which could effectively obtain the pixel-level features
of the image from any angle, and speed up the learning of
the model. Experimental results on a real-world traffic sign
dataset show that our model ran faster, occupied less memory,
and required fewer parameters than baseline methods. The
superiority over the classic CNN comes from the CapsNet,
which fully utilizes images of different angles and directions
with the aid of vectors.
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