
Received January 22, 2021, accepted February 7, 2021, date of publication February 11, 2021, date of current version February 24, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3058738

Powers of Large Matrices on GPU Platforms to
Compute the Roman Domination Number of
Cylindrical Graphs
J. A. MARTÍNEZ 1,3, E. M. GARZÓN1,3, AND M. L. PUERTAS 2,3
1Department of Computer Science, Universidad de Almería, 04120 Almería, Spain
2Department of Mathematics, Universidad de Almería, 04120 Almería, Spain
3Agrifood Campus of International Excellence (ceiA3), Universidad de Almería, 04120 Almería, Spain

Corresponding author: J. A. Martínez (jmartine@ual.es)

This work was supported in part by the Spanish Ministry of Science and Innovation under Grant RTI2018-095993-B-I00 and
Grant PID2019-104129GB-I00/AEI/10.13039/501100011033.

ABSTRACT The Roman domination in a graph G is a variant of the classical domination, defined by means
of a so-called Roman domination function f : V (G) → {0, 1, 2} such that if f (v) = 0 then, the vertex v is
adjacent to at least one vertex wwith f (w) = 2. The weight f (G) of a Roman dominating function ofG is the
sum of the weights of all vertices of G, that is, f (G) =

∑
u∈V (G) f (u). The Roman domination number γR(G)

is theminimumweight of a Roman dominating function ofG. In this paper we propose algorithms to compute
this parameter involving the (min,+) powers of large matrices with high computational requirements
and the GPU (Graphics Processing Unit) allows us to accelerate such operations. Specific routines have
been developed to efficiently compute the (min,+) product on GPU architecture, taking advantage of its
computational power. These algorithms allow us to compute the Roman domination number of cylindrical
graphs Pm� Cn i.e., the Cartesian product of a path and a cycle, in casesm = 7, 8,9 n ≥ 3 andm ≥10, n ≡ 0
(mod 5). Moreover, we provide a lower bound for the remaining cases m ≥10, n 6≡ 0 (mod 5).

INDEX TERMS Cylindrical graphs, GPU platforms, (min,+) matrix multiplication, Roman domination.

I. INTRODUCTION
The efficient location of resources in a network is a
well-known optimization problem that is usually approached
by using graphs. The domination parameters in graphs play a
central role in such problems since they can represent a wide
variety of additional properties required in the distribution of
resources. A dominating set in a graph G is a vertex subset S
such that every vertex not in S has at least one neighbor in it.
The domination number of G is the cardinal of a minimum
dominating set. Applications of this parameter and some of
its variations to the optimal location of radio stations or land
surveying sensors can be found in [15]. Moreover, linear
algorithms using domination parameters for the resource allo-
cation in trees are studied in [16].

In this paper we focus on the Roman domination that
models a classical optimization problem (see [39]). The
Roman Emperor Constantine the Great, in the 4th century
AD, ordered that no legion be sent out of its usual place if

The associate editor coordinating the review of this manuscript and

approving it for publication was Thomas Canhao Xu .

such place was left unprotected. Therefore, a pair of legions
must be placed in some locations so that one of them could
be sent to an adjacent one. Meanwhile, locations with just
one legion just protect themselves. The goal is selecting the
appropriate locations to place either one or two legions in
order to minimize the needed forces.

Following this approach, the Roman domination in graphs
was introduced in [4]. A Roman dominating function in a
graph G is a function f : V (G) → {0, 1, 2} such that every
vertex v with f (v) = 0 is adjacent to at least a vertex w
satisfying f (w) = 2. The weight of a Roman dominating
function is f (G) =

∑
u∈V (G) f (u). The minimum weight of a

Roman dominating function of G is the Roman domination
number γR(G). We denote S fi = {v ∈ V (G) : f (v) = i}
(and we will omit f if there is no confusion). Therefore,
f (G) = |S f1 | + 2|S f2 |. We say that vertices in S1 just dominate
themselves while every vertex w ∈ S2 dominates itself and its
neighborhood N (w).
The Cartesian product of two graphs G� H is the

graph with vertex set V (G) × V (H) such that two vertices
(g1, h1), (g2, h2) are adjacent in G� H if either g1 = g2

29346 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-7827-1818
https://orcid.org/0000-0002-9093-5461
https://orcid.org/0000-0003-1072-0792

J. A. Martínez et al.: Powers of Large Matrices on GPU Platforms to Compute the Roman Domination Number of Cylindrical Graphs

and h1, h2 are adjacent in H , or g1, g2 are adjacent in G and
h1 = h2 (see [18]). The Roman domination number remains
unknown for general Cartesian product graphs while the
Roman domination number of particular cases of Cartesian
product of paths and cycles have been computed. The Roman
domination number of the Cartesian product of two paths has
been recently obtained in [36] meanwhile the problem is still
open for the Cartesian product of a path and a cycle and the
Cartesian product of two cycles. In both of them, solutions
for small cases have been provided by using an algorithmic
approach (see [33]).

Regarding the computational complexity of these prob-
lems, the computation of the domination number is
NP-complete in general graphs (see [10]). Moreover,
it remains NP-complete when restricted to bipartite or chordal
graphs and it is polynomial in a few graphs classes such as
trees or interval graphs (see [15]).

In a similar way, the computation of the Roman domination
number is also an NP-complete problem, even in bipartite,
planar or chordal graphs and it can be computed in linear time
in trees (see [4]). In the same paper, the authors also stated
that there is a 2 log n approximation algorithm for the Roman
domination number. More recently, a 2(1 + log(1 + 1))-
approximation algorithm, with1 the maximum degree of the
graph, has been presented in [32] to find a Roman domination
function with minimum weight.

The great interest to express graph algorithms in terms
of tropical algebra operations is well known [22]. From a
computational point of view, this approach involves several
challenges due to the high dimension of the matrices that take
part in such algorithms. This way, many works have focused
on taking advantage of the sparsity of the matrices and the
regularity of specific graphs to reduce the complexity of the
corresponding matrix computations [5], [6], [8]; the goals of
other works are the optimal computational implementations
of the primitive matrix operations related to this field to
exploit modern multicore and GPU platforms [17], [23], [41].

In this work, the study of the Roman domination in
graphs relies on the computation of matrix powers. It is
expressed as a (min,+) product sequence which starts
with sparse matrices which are filled as new products
are computed. Therefore, the best option is to compute
the matrix power with dense data structures. However,
it implies a very high computational complexity in terms of
run-time and memory requirements since the size of matrices
strongly increases with the dimensions of the cylindrical
graphs.

The cylinder Pm� Cn is the Cartesian product of the path
with m vertices Pm and the cycle with n vertices Cn, that is,
the graphwith vertex setV (Pm)×V (Cn) such that two vertices
(u1, v1), (u2, v2) are adjacent in Pm� Cn if u1 = u2 and v1, v2
are adjacent in Cn or u1, u2 are adjacent in Pm and v1 = v2.
As we have said, there is no general formula for the Roman
domination number in this graph family and just exact values
of γR(Pm� Cn) with 2 ≤ m ≤ 6 or 2 ≤ n ≤ 8 are known
(see [33]).

In this paper we provide an algorithm involving powers of
large matrices, that allows us to compute the exact values of
γR(P7� Cn) and γR(P8� Cn). To this end, we have developed
a GPU version of (min,+) powers of dense matrices relying
on the routineMatrixMult of [30].Moreover, graphs of higher
dimensions could be studied on GPUs with larger memory
capacity than used in the experimental study. Finally, we will
use a modification of the algorithm to obtain a lower bound
of γR(Pm� Cn), for m ≥ 9, that gives the exact value of this
parameter if n ≡ 0 (mod 5).

II. RELATED WORK
The Roman domination in graphs has been widely studied
since it was formally defined in 2004 (see [4]) and sev-
eral hundreds of papers about it can be found in literature.
We quote some references as an example: for instance, gen-
eral upper bounds of the Roman domination number in terms
of the number of vertices of the graphs were first obtained
in [2] and this problem has also been studied in [20], [27].

A different point of view is the study of the relationship
between the Roman domination number and other domina-
tion parameters, for instance with the domination number
in [7] or with variations of the Roman domination itself, such
as the Roman-{2}-domination in [28]. Moreover, the Roman
domination number can be defined in directed graphs and
in [14] the relationship between the domination number and
the Roman domination number in such graphs is considered.
The algorithmic point of view has also been studied, as an
example in [26] authors showed that the Roman domination
number of cographs and interval graphs can be computed in
linear time.

Furthermore, a number of variations of the original defini-
tion have recently been analyzed. As an example, the Italian
domination number is computed in some Cartesian prod-
uct graphs with algorithmic procedures in [9]; the sum and
the product of the double Roman domination numbers of
a graph and its complement are considered in [21]; the
Roman-{2}-bondage number is computed in [29] for some
graph families such as paths, cycles, complete bipartite
graphs, trees, unicyclic graphs and planar graphs; the total
double Roman domination number is studied in [37], where
some general upper bounds in terms of the number of vertices
and the maximum degree are obtained.

It is well-known that the domination properties are difficult
to handle in the Cartesian product graphs and computing such
parameters in them has attracted attention since the Vizing
Conjecture, which remains open, was formulated in 1968
(see [40]). As an example, the problem of computing the
domination number of the Cartesian product of two paths
was open for almost thirty years and it was finally solved
in [11], where authors provide the value of this parameter in
terms of the number of vertices of both paths. In previous
works, upper and lower bounds can be found, as in [3],
[12], [19]. Moreover, in [19], [38] the exact values of some
small cases were computed. This problem is still open in
other Cartesian products of two graphs involving paths,

VOLUME 9, 2021 29347

J. A. Martínez et al.: Powers of Large Matrices on GPU Platforms to Compute the Roman Domination Number of Cylindrical Graphs

cycles or more general graphs. Also, some partial results
about the domination number of the Cartesian product of
k paths can be found in [12] and for the case of k cycles
in [24].

Among the techniques used to compute domination param-
eters in Cartesian product graphs, an algorithmic approach
using matrix powers has provided significant results in cases
involving paths and cycles. The final paper for the domi-
nation number of the Cartesian product of two paths [11]
uses this technique, which was presented in [25] for fascia-
graphs and rotagraphs, of which Cartesian products of paths
and cycles are particular cases. Later, in [34] the authors
followed these ideas to compute the domination number
of the Cartesian product of two cycles and the Cartesian
product of a path and cycle, but just in some small cases.
The same authors have adapted the technique to obtain the
Roman domination number of some Cartesian product graphs
involving small paths and/or cycles in [33]. Recently, in [36]
the Roman domination number of the Cartesian product of
two paths has been completely computed following the same
ideas.

III. PRELIMINARY RESULTS
In this section we present the needed tools to provide the algo-
rithms that we will use to compute the Roman domination
number in selected cylinders.

The first tool is the (min,+) matrix algebra over the
semi-ring P = (R∪ {∞},min,+,∞, 0) of tropical numbers
in the minimum convention (see [35]). The (min,+) matrix
multiplication

⊗
is defined by C = A

⊗
B, being the matrix

where for all i, j, ci,j = min
k
(ai,k + bk,j).

Moreover, the (min,+) product of a matrix A and α ∈
R ∪ {∞} is defined by (α

⊗
A)i,j = α + ai,j. Therefore,

(A
⊗

(α
⊗

B))i,j = min
k
(ai,k+(α

⊗
B)k,j) = min

k
(ai,k+(α+

bk,j)) = min
k
(α + (ai,k + bk,j)) = α + min

k
(ai,k + bk,j) =

α + (A
⊗

B)i,j. Hence A
⊗

(α
⊗

B) = α
⊗

(A
⊗

B).
The second ingredient that we need is the following result

(see [1]) that we quote from [25]. We just need the particular
case related to the tropical semi-ring.

Let G be a digraph with V (G) = {v1, v2, . . . , vs} together
with a labeling function ` which assigns an element of P to
every arc of G. A path of length k in G is a sequence of k
consecutive arcs Q = (vi0vi1)(vi1vi2) . . . (vik−1vik) and Q is a
closed path if vi0 = vik . The labeling ` can be easily extended
to paths

`(Q) = `(vi0vi1)+ `(vi1vi2)+ · · · + `(vik−1vik).

Theorem 1: Let Skij be the set of all paths of length k from
vi to vj in G and let A(G) be the matrix defined by

A(G)ij =

{
`(vi, vj) if (vi, vj) is an arc of G,
∞ otherwise.

If A(G)k is the k-th (min,+) power of A(G), then

(A(G)k)ij = min{`(Q) : Q ∈ Skij}.

Finally, we will also use the following lemma about the
(min,+) matrix multiplication. It is a standard argument and
we include its proof here for the sake of completeness.
Lemma 2: Let A be a square matrix and suppose that there

exist natural numbers n0, a, b such that An0+a = b
⊗

An0
then, An+a = b

⊗
An, for every n ≥ n0.

Proof: We proceed by induction. By hypothesis,
An0+a = b

⊗
An0 . Let n ≥ n0 be such that An+a =

b
⊗

An then, A(n+1)+a = A
⊗

An+a = A
⊗

(b
⊗

An) =
b
⊗

(A
⊗

An) = b
⊗

An+1, as desired. �

IV. COMPUTATION OF γR (P7� Cn) AND γR (P8� Cn)
In this section we provide an algorithm to compute the exact
values of γR(Pm� Cn), for m = 7, 8, by using Theorem 1.
Our approach follows the ideas in [33], [36]. In the first paper,
authors compute the Roman domination number of Pm� Cn,
with m ≤ 6, and we use a modification of their algorithm,
following the techniques shown in the second reference to
compute the following two cases.
Our algorithm constructs a matrix for each value of m

and computes some (min,+) powers of it. The sizes of such
matrices grow exponentially withm and it is not expected that
it could compute cases much larger thanm = 8, even by using
additional computing resources. However, these small cases
play an important role in formulating a conjecture about the
behavior of the general case. Although it does not happen for
very small m, a regular behavior could appear as in the case
of the Cartesian product of two paths. This is the reason for
our interest to compute as many small cases as possible.

A. THEORETICAL RESULTS
First of all, we encode the vertex set of Pm� Cn. We say that
it has m rows and n columns, each row being a cycle with n
vertices and each column being a path with m vertices (see
Figure 1). The m rows are numerated from top to bottom and
the n columns from left to right. We will consider that the last
column is the previous column of the first one (and the first
column follows the last one).

FIGURE 1. The cylinder Pm� Cn.

Let f be a Roman dominating function of Pm� Cn, with
associated vertex partition Si={v∈V (Pm� Cn): f (v)= i}, for
i = 0, 1, 2. We assign a label to each vertex in the following
way.
• v = a if v ∈ S2,
• v = b if v ∈ S1,

29348 VOLUME 9, 2021

J. A. Martínez et al.: Powers of Large Matrices on GPU Platforms to Compute the Roman Domination Number of Cylindrical Graphs

• v = c if v ∈ S0 and it has at least one neighbor in S2 in
its column or in the previous one,

• v = d if v ∈ S0 and it has no neighbor in S2 in its column
nor in the previous one.

Now each column is a word of length m in the alphabet
{a, b, c, d} and the function f can be uniquely identified with
a sequence of n consecutive words. Note that not any word
can appear associated to such functions because the definition
of the labeling implies that letter sequences ad, da are not
possible.
Remark 3: If a word associated to a Roman dominating

function contains any of the sequences ab, ba, bb, we can
replace them with ac, ca, ac respectively to obtain another
Roman dominating function with, at most, the same weight.

Bearing in mind these considerations, we pose the follow-
ing definition.
Definition 4: A correct word of length m in the alpha-

bet {a, b, c, d} is a sequence of m letters not containing
ad, da, ab, ba, bb.
Note that some correct words cannot appear together asso-

ciated to a Roman dominating function, again because of the
definition of the labeling. We now list the needed conditions
for a pair of correct words p = (p1, . . . pm) and q =
(q1, . . . qm) (we will denote words in bold font and their letter
in italic font), in order to make it possible that p can follow q.
Note that we also avoid combinations ab, ba, bb in the same
row (see Remark 3), in order to reduce the number of suitable
sequences of words.

1) conditions for the first row
• if q1 = a, then p1 = a or p1 = c
• if q1 = b, then

(
p1 = c and p2 = a

)
or p1 = d

• if q1 = c, then p1 = a or p1 = b or
(
p1 =

c and p2 = a
)
or p1 = d

• if q1 = d , then p1 = a
2) conditions for the intermediate rows 2 ≤ i ≤ m− 1

• if qi = a, then pi= a or pi= c
• if qi = b, then

(
pi = c and pi−1 = a

)
or
(
pi =

c and pi+1 = a
)
or p1 = d

• if qi = c, then pi = a or pi = b or
(
pi =

c and pi−1 = a
)
or
(
pi = c and pi+1 = a

)
or

p1 = d
• if qi = d , then pi = a

3) conditions for the last row
• if qm = a, then pm = a or pm = c
• if qm = b, then

(
pm = c and pm−1 = a

)
or pm = d

• if qm = c, then pm = a or pm = b or
(
pm =

c and pm−1 = a
)
or pm = d

• if qm = d , then pm = a
Remark 5: Denote by S the set of all the sequences

p1,p2 . . . pn of n correct words of length m such that p1
can follow pn and pi+1 can follow pi, for 1 ≤ i ≤ n − 1.
From Remark 3, the set RS of Roman dominating functions
associated to the sequences in S contains at least one function
with minimum weight.

In order to apply Theorem 1, we consider the digraph
G whose vertex set is V (G) = {correct words of length m
in the alphabet {a, b, c, d}}, and such that there is an arc from
the word q to the word p if p can follow q. Moreover,
we define the following labeling function ` which assigns
to every arc of G an element of the semi-ring of tropical
numbers P: `(q,p) = 2p(a) + p(b), where p(a) =number
of a′s in the word p and p(b) =number of b′s in the
word p.
Proposition 6: Let f ∈ RS be a Roman dominat-

ing function of Pm� Cn and let p1p2 . . . pn be the
sequence of correct words associated to f . Then, Q =

(p1p2)(p2p3) . . . (pn−1pn)(pnp1) is a closed path in the
digraph G such that `(Q) = f (Pm� Cn), the weight of f .

Proof: Clearly Q is a closed path in the digraph G,
because there is an arc from pi to pi+1 (for 1 ≤ i ≤ n−1) and
from pn to p1. Moreover, `(Q) = `(p1p2)+ `(p2p3)+ · · · +
`(pn−1pn)+`(pnp1) = (2p2(a)+p2(b))+(2p3(a)+p3(b))+
· · ·+(2pn(a)+pn(b))+(2p1(a)+p1(b)) = 2(p1(a)+p2(a)+
. . . pn(a)) + (p1(b) + p2(b) + . . . pn(b)) = 2|S f2 | + |S

f
1 | =

f (Pm� Cn). �
Corollary 7: Let A(G) be the matrix defined by

A(G)qp =

{
`(q,p) if (qp) is an arc of G,
∞ otherwise.

Then minp(A(G)n)pp = γR(Pm� Cn).
Proof: From Theorem 1 we know that (A(G)n)pp =

min{`(Q) : Q ∈ Snpp}, where Snpp is the set of all closed
paths of length n from p to p in G. Clearly, the closed path
Q = (pp2) . . . (pn−1pn)(pnp) belongs to Snpp if and only if the
sequence of words p,p2, . . .pn belong to the set S. There-
fore, from Remark 5 and Proposition 6, minp(A(G)n)pp =
minp(min{`(Q) : Q ∈ Snpp}) = minp(min{f (Pm� Cn) : f ∈
RS ,p is the first column}) = γR(Pm� Cn). �
The Corollary above allows us to compute the Roman

domination number of a cylinder Pm� Cn, where both m
and n are fixed. The recurrence argument for (min,+) matrix
powers shown in Lemma 2 gives the opportunity to compute
the Roman domination number of Pm� Cn, just fixing one of
the sizes but not both of them, as we show in the following
result.
Proposition 8: Let m be a natural number and consider

the digraph G and the matrix A(G) constructed above.
IfA(G)n0+α = β

⊗
A(G)n0 for natural numbers n0, α, β, then

γR(Pm� Cn+α)− γR(Pm� Cn) = β, for n ≥ n0.
Proof: If A(G)n0+α = β

⊗
A(G)n0 then, by using

Lemma 2 we obtain that A(G)n+α = β
⊗

A(G)n, for
n ≥ n0. Moreover, Corollary 7 gives γR(Pm� Cn+α) =
minp(A(G)n+α)pp = minp(β

⊗
A(G)n)pp = β +

minp(A(G)n)pp = β + γR(Pm� Cn). �
The unique solution of the finite difference equation

γR(Pm� Cn+α) − γR(Pm� Cn) = β, n ≥ n0, with the
boundary values γR(Pm� Ck), n0 ≤ k ≤ n0 + (α − 1),
provides γR(Pm� Cn), for m fixed and n ≥ n0.

VOLUME 9, 2021 29349

J. A. Martínez et al.: Powers of Large Matrices on GPU Platforms to Compute the Roman Domination Number of Cylindrical Graphs

B. THE ALGORITHMS
We can now describe the basic algorithm to compute the
Roman domination number of the cylinder Pm� Cn, with m
and n fixed, by using Corollary 7.

Algorithm 1 Computation of γR(Pm� Cn), for m, n Fixed
Require: m, n natural numbers
Ensure: γR(Pm� Cn)
1: compute all correct words of length m
2: compute matrix A(G)
3: compute the (min,+) matrix power A(G)n

4: return minp(A(G)n)pp

This algorithm allows us to compute the Roman domi-
nation number for cylinders Pm� Cn where m, n are small.
On the one hand, the size of matrix A(G) is the number
of correct words, which is in the order of 4m. This size
grows exponentially thus, the algorithm is useful only if m
is small enough. On the other hand, it is needed to compute
the n − th power of the matrix A(G) and, in spite of being
a sparse matrix, it becomes dense after a small number of
multiplications. This gives that parameter n can not be large
so then it is possible to run the algorithm in a short time.

We now present the algorithm to compute the Roman
domination number of Pm� Cn, where justm is fixed. We use
Proposition 8, so the algorithm compute the integers n0, α, β
that we need to solve the finite difference equation that gives
the formula for γR(Pm� Cn).

Algorithm 2 Computation of γR(Pm� Cn), for m Fixed
Require: m a natural number
Ensure: the finite difference equation

γR(Pm� Cn+α)− γR(Pm� Cn) = β, for n ≥ n0,
or finite difference equation not found

1: compute all correct words of length m
2: compute matrix A(G)
3: compute every (min,+) power A(G)k , for k ≤ K big

enough
4: if An0+α = β

⊗
An0 for n0, α, β natural numbers then

5: return n0, α, β
6: else
7: return recurrence not found
8: end if

There are some sufficient conditions to ensure that Step 4
in Algorithm 2 is true (see [38]). However, these theoretical
results provide a huge value for n0, in the order of the square
of the matrix size, and it is not practical. We have looked
for the desired relationship just by checking the powers com-
puted in Step 3, with K = 50.

C. COMPUTATIONAL RESULTS
In this subsection we present the details of the implementa-
tion in C programming language of the algorithms and the
results we have obtained. As we said before, for each m the

number Cm of correct words is of the order of 4m, which is
the number of all words of length m that can be done with 4
letters. The first step in both algorithms is the computation of
correct words, having a computational complexity of O(4m).
Due to the small values of m considered, this computing
time is not relevant. The second step is the computation of
the matrix A(G), whose size Cm grows exponentially with
m so, this step is O((Cm)2). Moreover, this computation has
plenty of control flow instructions therefore, it can take better
advantage of CPU architecture than GPU architecture.

In Table 1 we quote the matrix sizes for 2 ≤ m ≤ 11,
the memory requirements and the computing time of such
matrices ifm ≤ 9. In casesm = 10 and 11, we have estimated
the memory requirements to store each matrix bearing in
mind the matrix sizes and that each entry is an int data
(4 bytes). An Intel(R) Xeon(R) CPU E5-2650 0 @ 2.00GHz
with 8 cores (16 threads) and 64 GB of RAM has been used
to compute the matrices in both algorithms.

TABLE 1. Matrix sizes, memory requirements and GPU running time of
matrix computation line 2 in Algorithm 1 and Algorithm 2.

Regarding the third step in both algorithms, the complexity
of the matrix multiplication operation is O((Cm)3) so, it con-
sumes most of the running time of both algorithms and it is
computedK times to get A(G)K . The (min,+) matrix product
consists of a modification of the usual product that keeps the
complexity.

To explore the computational requirements of these oper-
ations, we have carried out some examples of matrix mul-
tiplication by computing one product with an OpenMP CPU
implementation (same CPU as before) by using 16 number of
threads. In the largest case m = 9, the matrix A(G) has a size
of 21909 and the computation of just one (min,+) product
takes 7 hours and 30 minutes.

Due to the long running time, we have used a GPU to accel-
erate the matrix powers computation in both algorithms. Such
powers have been carried out by a modification of the rou-
tine MatrixMul, available in the NVIDIA CUDA TOOLKIT
11 [30] and described in the CUDA C Programming Guide
(see [31], Chapter 3), to adapt it to the (min,+) multipli-
cation. We call this new routine CuMatrixTrop. Such code
takes advantage of shared memory to optimize the memory
access. We have adapted the kernel code by changing the

29350 VOLUME 9, 2021

J. A. Martínez et al.: Powers of Large Matrices on GPU Platforms to Compute the Roman Domination Number of Cylindrical Graphs

usual operations in the matrix multiplication: the mapping
operation, which is the multiplication, is replaced by the
addition and the reduction operation, which is the addition,
is replaced by the minimum.

We have used a CUDA block size 32 × 32 and a padding
matrix approach to optimize the performance of CuMatrix-
Trop. The padding consists of filling the matrix with addi-
tional rows and columns of the neutral element, i.e. infinite,
until the matrix size is a multiple of 32. These strategies
give an efficient exploitation of the GPU, which we have
analyzed with the NVIDIA profiling tool nvprof. In all cases,
the achieved occupancy, the global memory load/store effi-
ciency and the warp execution efficiency are near to 100%.
The shared memory efficiency is 66% due to the lower paral-
lelism of the reduction operation.

As we said before, we have run Algorithm 2 with K = 50
and this is enough in cases 2 ≤ m ≤ 9, for which the
algorithm returns the integers n0, α and β. We have used an
NVIDIA Tesla K80 GPU, with 12GB of memory, 13 multi-
processors with 192 cores in each multiprocessor (2496 cores
CUDA) and shared memory of 49152 bytes, to compute
A(G)k with k ≤ 50. In Table 2 we show the results for
2 ≤ m ≤ 9.

TABLE 2. Running times on K80 GPU to compute the matrix powers in
Algorithm 2.

Note that it is necessary to save every matrix A(G)k with
2 ≤ k ≤ 50, in order to complete steps 4 to 8 in Algorithm 2.
We have evaluated the profiling of the A(G)50 computation
based on CuMatrixTrop in terms of GPU running time, disk
storage time and CPU-GPU communications. The results are
shown in Table 3.

TABLE 3. Profiling results of computing A(G)50 in Algorithm 2.

The disk storage needed in the algorithm consumes a rele-
vant amount of resources. The disk storage is carried out on a
Network File System (NFS) that slows down with the heavy

network traffic due to the communication of large matrices.
So, this is a bottleneck in our experimental environment.
However, the penalties due to the CPU-GPU communications
are not significant so, the overload due to GPU exploitation
has a negligible impact on performance.

Finally, we have solved the finite difference equations
provided by Proposition 8, for 2 ≤ m ≤9, with the parameters
shown in Table 2 and boundary values (that is, the cases
n0 ≤ n ≤ n0 + (α − 1)) computed with Algorithm 1.
The remaining values (cases 3 ≤ n < n0), have also been

computed with Algorithm 1. We just show the final formula
for m = 7, 8,9 which are the new cases, for m ≤ 6 we have
obtained the same results as [33].

γR(P7� Cn) =

⌈16n

5

⌉
if n ≡ 0 (mod 5)⌈16n

5

⌉
+ 1 otherwise

γR(P8� Cn) =

⌈18n
5

⌉
if n ≡ 0 (mod 5)⌈18n

5

⌉
+ 1 if n ≡ 2, 3, 4 (mod 5),

or n = 6⌈18n
5

⌉
+ 2 otherwise

γR(P9� Cn) =

{
4n if n ≡ 0 (mod 5)
4n+ 2 otherwise

V. A LOWER BOUND OF γR (Pm� Cn) AND THE
COMPUTATION OF γR (Pm� C5k)
As we have said before, the size of the matrix is a decisive
factor when running Algorithm 1 and Algorithm 2, andmatri-
ces for values m ≥ 10 are too big to allocate two of them in
the GPU memory, to perform the matrix product operation.
So we have developed a different approach that we show in
this section. We have adapted both algorithms to compute
the loss of a Roman dominating function in a cylinder. The
loss, originally called wasted domination in [13], has been
used to study several domination parameters in the Cartesian
product of two paths (see [11], [36]). We follow these ideas to
compute a lower bound of the Roman domination number for
cylinders of large size and with a small computational cost.
Although this bound is not tight in general, it provides the
exact value when n ≡ 0 (mod 5).
We would also like to point out that both versions of the

algorithms are complementary. The computation of small
cases is needed to conjecture the lower bound, that will later
be confirmed by the modified algorithm. Moreover, this sec-
ond version covers, at least with a lower bound, those cases
that are not within the scope of the original algorithm.

Our conjecture for the lower bound of the Roman domi-
nation number in cylinder Pm� Cn comes from the regular
pattern followed by values of α, β in Table 2 for 4 ≤ m ≤ 9,
that is α = 5 and β = 2(m+ 1). Assuming that such pattern
remains the same for larger values of m, we conjecture that⌈ 2(m+1)n

5

⌉
≤ γR(Pm� Cn).

VOLUME 9, 2021 29351

J. A. Martínez et al.: Powers of Large Matrices on GPU Platforms to Compute the Roman Domination Number of Cylindrical Graphs

Definition 9: Let f be a Roman dominating function of
Pm� Cn,m ≥ 10, with weight f (Pm� Cn). We define the
loss of f as L(f) = 5

2 (f (Pm� Cn)) − mn and we denote the
minimum loss of a Roman dominating function in Pm� Cn
by L(m, n).

The following lemma is the key result to obtain our
lower bound and its proof follows the techniques shown in
Section IV, with the needed modifications. This proof is quite
long and we present it in Appendix, in order to make this
section easier to follow.
Lemma 10: L(m, n) ≥ n, for m, n ≥ 10.
We can now present the announced result with a general

lower bound of the Roman domination number in cylinders.
Theorem 11:

⌈ 2(m+1)n
5

⌉
≤ γR(Pm� Cn), for m, n ≥ 10.

Proof: L(m, n) = minf L(f) = minf (52 (f (Pm� Cn)) −
mn) = 5

2γR(Pm� Cn) − mn. This gives that γR(Pm� Cn) =
2
5 (mn + L(m, n)). Finally, from Lemma 10, γR(Pm� Cn) =
2
5 (mn + L(m, n)) ≥ 2

5 (mn + n) = 2(m+1)n
5 . Therefore⌈ 2(m+1)n

5

⌉
≤ γR(Pm� Cn), as desired. �

This bound provides the exact value if n ≡ 0 (mod 5).
Corollary 12: If m, n ≥10 and n ≡ 0 (mod 5), then

γR(Pm� Cn) =
2(m+1)n

5 ·

Proof: In Figure 2 we show a Roman dominating func-
tion f in P10� C10: black vertices have image 2, grey ones
have image 1 and white ones have image 0. This regular
construction can be repeated in any cylinder with m, n ≥10
and n ≡ 0 (mod 5) and it has n

5 black vertices in each row
and n

5 grey vertices in the first and the last rows. Therefore,
its weight is f (Pm� Cn) = 2m n

5 +2 n5 =
2(m+1)n

5 . This means
that γR(Pm�Cn) ≤

2(m+1)n
5 and Theorem 11 gives the desired

equality. �

FIGURE 2. Roman domination in P10� C10.

Remark 13: The corollary above and the cases computed
in Section IV and in [34] give that γR(Pm� Cn) =

2(m+1)n
5

if m, n ≥ 4 and n ≡ 0 (mod 5). Meanwhile, the Roman
domination number is smaller if m = 2, 3.

VI. CONCLUSION
Algorithms 1 and 2 provide the exact value of γR(Pm� Cn)
where m is fixed and their high computational requirements

restrict the maximum value of m for which the algorithms
are useful. In this work we have computed γR(Pm� Cn) for
m = 7, 8, 9 according to the available platforms and these
results could be extended by using more powerful platforms.
Additionally, we have computed the Roman domination num-
ber of cylinders Pm� Cn in cases m ≥ 10, n ≡ 0 (mod 5),
expanding the family of such graphs whose Roman domina-
tion number is known. We have also provided a lower bound
of this parameter if m ≥ 10 and n 6≡ 0 (mod 5). We have
implemented algorithms that allow to compute the exact val-
ues for selected cases and the general lower bound, by using
the (min,+) powers of large matrices in GPU platforms.

Our technique involves the computation of the loss of
Roman dominating sets. Computing the loss has provided
the exact values of several domination parameters in the
Cartesian product of two paths (see [11], [36]). We have
applied similar techniques to the Roman domination number
in cylinders and we have obtained the exact values only in
some cases, but a lower bound in other ones. This different
behaviour is due to several reasons. On the one hand, this
technique computes the loss located at the border of the
graph. Therefore, in the cylinderPm�Cn just upper and lower
borders play a role, showing information about the loss that
depends on the parameter n but avoiding what depends on m.
However, in Pm� Pn the loss depending on both m and n can
be computed by using the four borders.

On the other hand, we think that the formula for the general
case will depend on the parity of n (mod 5). Meanwhile,
the Cartesian product of two paths presents a unique formula
for big enoughm and n. It is likely that a technique other than
the computation of the loss will be necessary to completely
solve this problem.

Moreover, it would be interesting to compute the exact val-
ues in additional small cases, in order to conjecture formulas
for any value of both m and n.

APPENDIX
PROOF OF LEMMA 10
Our strategy to prove this lemma is similar to [13], so we are
going to compute the loss just in both borders of the cylinder.

Denote V (Pm) = {u1, u2, . . . um}, V (Cn) = {v1, v2, . . . vm}
and consider the following partition of V (Pm� Cn): V1 =
{(ui, vj) : 1 ≤ i ≤ 4 and 1 ≤ j ≤ n}, V2 = {(ui, vj) : 5 ≤
i ≤ m − 4 and 1 ≤ j ≤ n} and V3 = {(ui, vj) : m − 3 ≤
i ≤ m and 1 ≤ j ≤ n} (see Figure 3). We call Gi the
subgraph of Pm� Cn induced by the vertex set Vi, so G1 and
G3 are both isomorphic to the cylinder P4� Cn. Meanwhile,
G2 is isomorphic to Pm−8� Cn. If f is a Roman dominating
function, we denote by fi = f |Vi , the restriction of f to the
set Vi. Note that f (Pm� Cn) = f1(G1)+ f2(G2)+ f3(G3) (the
functions fi are not necessarily Roman dominating functions,
but the concept of weight can obviously be extended to
them).

For i = 1, 2, 3 we denote Di = (S1 ∩ Vi) ∪ N [(S2 ∩ Vi)],
which is the set of vertices dominated by (S1 ∪ S2)∩Vi. Note
that the closed neighborhood is N [(S2 ∩Vi)] computed in the

29352 VOLUME 9, 2021

J. A. Martínez et al.: Powers of Large Matrices on GPU Platforms to Compute the Roman Domination Number of Cylindrical Graphs

FIGURE 3. Partition of V (Pm� Cn), m, n ≥10.

cylinder Pm� Cn, so it is not necessarily contained in Vi, and

|Di| ≤ |(S1 ∩ Vi)| + 5|(S2 ∩ Vi)| (1)

Moreover, it is clear that D1 ∪D2 ∪D3 = V (Pm� Cn) and
D1,D2,D3 are not necessarily disjoint.

Using this notation, we can rewrite the loss of a Roman
dominating function as follows:
L(f) = 5

2 f (Pm� Cn)−mn = 5
2 (f1(G1)+ f2(G2)+ f3(G3))−

|D1 ∪ D2 ∪ D3| ≥ (52 f1(G1) − |D1|) + (52 f2(G2) − |D2|) +
(52 f3(G3)− |D3|) ≥ (52 f1(G1)− |D1|)+ (52 f3(G3)− |D3|).
The first inequality comes from the sets Di not being

necessarily disjoint and the second one comes from the fact
that each term of the sum is positive or zero, by using the
inequality shown in Equation 1:

5
2
fi(Gi)− |Di|

=
5
2
(|S1 ∩ Vi| + 2|S2 ∩ Vi|)− |Di|

≥
5
2
(|S1 ∩ Vi| + 2|S2 ∩ Vi|)− (|S1 ∩ Vi| + 5|S2 ∩ Vi|)

=
3
2
|S1 ∩ Vi|.

In fact, we expect |S1 ∩ V2| to be zero or close to zero in
optimal cases, and this is why we discard the second term of
the sum.

Vertex sets V1 and V3 play a similar role, so we will focus
onV1. The function f1 satisfies that every vertex v ∈ V1, not in
row number four, with f1(v) = 0 is adjacent to at least a vertex
w satisfying f1(w) = 2. Meanwhile, vertices in the fourth row
do not need to be dominated by vertices in V1. This leads us
to the following definition:
Definition 14: Consider P4� Cn as the subgraph consist-

ing of the fourth top (or bottom) rows of Pm� Cn,m ≥
10. An almost Roman dominating function on P4� Cn is
g : V (P4� Cn) → {0, 1, 2} such that every vertex v, not
in the fourth row, with f (v) = 0 is adjacent to at least a
vertex w satisfying f (w) = 2. We denote by Rgi = {v ∈
V (P4� Cn) : g(v) = i} (we will omit g if no confusion is
possible).

The set of dominated vertices of an almost Roman dom-
inating function is D(g) = R1 ∪ N [R2], where the closed

neighborhood is computed in Pm� Cn. The loss of an almost
dominating function is La(g) = 5

2g(P4� Cn) − |D(g)| and
the minimum loss of an almost Roman dominating function
is La(n) = ming La(g) = ming(52g(P4� Cn)− |D(g)|).

With this notation, the relationship between the loss of a
Roman dominating function of Pm� Cn and the loss in the
borders of the cylinder is as follows:
L(f) ≥ (52 f1(G1) − |D1|) + (52 f3(G3) − |D3|) ≥

2La(n), therefore the minimum loss satisfies L(m, n) ≥
2La(n) = ming(5g(P4� Cn) − 2|D(g)|). We now modify
Algorithm 1 and Algorithm 2, in order to compute the value
of ming(5g(P4� Cn)− 2|D(g)|).
We keep the definition of correct words, words of length 4

in the alphabet {a, b, c, d} not containing ac, ca, ab, ba, bb
and we need to modify the conditions for a word p =
(p1, p2, p3, p4) to follow another word q = (q1, q2, q3, q4).
First and intermediate row conditions are the same, but the
fourth row, which is the last one in this case, behaves in a
different way:

1) conditions for the first row: the same as before
2) conditions for the intermediate rows 2 ≤ i ≤ 3: the

same as before
3) conditions for the last row (fourth row):

• if q4 = a, then p4 = a or p4 = c
• if q4 = b, then

(
p4 = c and p3 = a

)
or p3 = d

• if q4 = c, then p4 = a or p4 = b or
(
p4 =

c and p3 = a
)
or p4 = d

• if q4 = d , then p4 = a or p4 = b or
(
p4 =

c and p3 = a
)
or p4 = d

Just conditions in case q4 = d are new, because vertices in
the fourth row do not need to be dominated. Therefore, in this
case p4 = a is possible but not compulsory and other labels
for p4 are suitable.
Every almost Roman dominating function is uniquely iden-

tifiedwith an ordered list of correct words such that eachword
can follow the previous one and the first word can follow the
last one.

The directed graph G is defined as before: vertices
are the correct words and there is an arc from q to p
if p can follow q. We need an appropriate labeling `

of the arcs such that, `(Q) = 5g(P4� Cn) − 2|D(g)|,
for Q = (p1 p2) . . . (pn−1pn)(pnp1) a closed path in G
and g the almost Roman dominating function represented
by Q.
For an arc (qp), we define `(q,p) = 10p(a) + 5p(b) −

2nd(q,p), where p(a) is the number of a′s of p, p(b) is the
number of b′s of p and nd(q,p) is the number of newly
dominated vertices (see [13]). That is, the number of vertices
dominated by p which are not dominated by q, when q,p
are consecutive columns of an almost Roman dominating
function. We compute such number with Algorithm 3.

Note that the computational complexity of Algorithm 3 is
of the order of the square of the number of correct words,
so it does not increase the complexity of the computation of
the matrix A(G).

VOLUME 9, 2021 29353

J. A. Martínez et al.: Powers of Large Matrices on GPU Platforms to Compute the Roman Domination Number of Cylindrical Graphs

Algorithm 3 Computation of nd(q,p)
Require: q,p correct words such that p can follow q
Ensure: nd(q,p)
1: nd(q,p) = 0
2: for i = 1 to 4 do
3: switch (qi, pi)
4: case qi = a and pi = a :
5: nd(q,p) = nd(q,p)+ 1
6: case qi = b and pi = c :
7: nd(q,p) = nd(q,p)+ 1
8: case qi = c and pi = a :
9: nd(q,p) = nd(q,p)+ 2
10: case qi = c, d and pi = b, c :
11: nd(q,p) = nd(q,p)+ 1
12: case qi = d and pi = a :
13: nd(q,p) = nd(q,p)+ 3
14: end switch
15: end for
16: if p4 = a then
17: nd(q,p) = nd(q,p)+ 1
18: end if
19: return nd(q,p)

If g is the almost dominating function represented by
the closed path Q = (p1 p2)(p2 p3) . . . (pn−1pn)(pnp1)
then

(∑n−1
i=1 nd(pi,pi+1)

)
+ nd(pnp1) = |D(g)|, the num-

ber of vertices dominated by g. Therefore, we obtain that
`(Q) =

(∑n−1
i=1 `(pipi+1)

)
+`(pnp1) =

(∑n−1
i=1 10pi+1(a)+

5pi+1(b)−2nd(pi,pi+1)
)
+10p1(a)+5p1(b)−2nd(pn,p1) =

10
∑n

i=1 pi(a) + 5
∑n

i=1 pi(b) − 2
((∑n−1

i=1 nd(pi,pi+1)
)
+

nd(pnp1)
)
= 5g(P4� Cn)− 2|D(g)|,

The construction of matrix A(G) is as follows:

A(G)qp =

{
`(q,p) if (qp) is an arc of G,
∞ otherwise.

Algorithm 2 for m = 4, using the new rules for construc-
tion of the matrix A(G), gives n0 = 30, a = 1, b = 1.
This means 2La(n) = ming(5g(P4� Cn)− 2|D(g)|) satisfies
the finite difference equation 2La(n + 1) − 2La(n) = 1,
for n ≥ 30. Moreover, by using Algorithm 1 (again with
the new matrix A(G)), we have obtained 2La(n) = n, for
10≤ n ≤ 30. This gives 2La(n) = n, for n ≥10, and finally,
L(m, n) ≥ 2La(n) = n, for m, n ≥10, as desired.

REFERENCES
[1] B. Carré. Graphs and Networks. Oxford, U.K.: Clarendon Press, 1979.
[2] E. W. Chambers, B. Kinnersley, N. Prince, and D. B. West, ‘‘Extremal

problems for roman domination,’’ SIAM J. Discrete Math., vol. 23, no. 3,
pp. 1575–1586, Jan. 2009.

[3] E. J. Cockayne, E. O. Hare, S. T. Hedetniemi, and T. V. Wimer, ‘‘Bounds
for the domination number of grid graphs,’’ Congr. Numer., vol. 47,
pp. 217–228, 1985.

[4] E. J. Cockayne, P. A. Dreyer, S. M. Hedetniemi, and S. T. Hedetniemi,
‘‘Roman domination in graphs,’’ Discrete Math., vol. 278, nos. 1–3,
pp. 11–22, Mar. 2004.

[5] W. Dobosiewicz, ‘‘A more efficient algorithm for the min-plus multiplica-
tion,’’ Int. J. Comput. Math., vol. 32, nos. 1–2, pp. 49–60, Jan. 1990.

[6] R. Duan and S. Pettie, ‘‘Fast algorithms for (max, min)-matrix multiplica-
tion and bottleneck shortest paths,’’ in Proc. 20th Annu. ACM-SIAM Symp.
Discrete Algorithms, Jan. 2009, pp. 384–391.

[7] O. Favaron, H. Karami, R. Khoeilar, and S. M. Sheikholeslami, ‘‘On the
roman domination number of a graph,’’ Discrete Math., vol. 309, no. 10,
pp. 3447–3451, May 2009.

[8] P. F. Felzenszwalb and J. J. McAuley, ‘‘Fast inference with min-sum
matrix product,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 12,
pp. 2549–2554, Dec. 2011.

[9] H. Gao, T. Xu, and Y. Yang, ‘‘Bagging approach for Italian domination in
Cn�Pm,’’ IEEE Access, vol. 7, pp. 105224–105234, Aug. 2019.

[10] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Com.Pleteness. New York, NY, USA: Freeman, 1979.

[11] D. Gonçalves, A. Pinlou, M. Rao, and S. Thomassé, ‘‘The domination
number of grids,’’ SIAM J. Discrete Math., vol. 25, no. 3, pp. 1443–1453,
Jan. 2011.

[12] S. Gravier and M. Mollard, ‘‘On domination numbers of Cartesian product
of paths,’’Discrete Appl. Math., vol. 80, nos. 2–3, pp. 247–250, Dec. 1997.

[13] D. R. Guichard, ‘‘A lower bound for the domination number of complete
grid graphs,’’ J. Combin. Math. Combin. Comput., vol. 49, pp. 215–220,
Jan. 2004.

[14] G. Hao, Z. Xie, and X. Chen, ‘‘A note on Roman domination of digraphs,’’
Discuss. Math. Graph Theory, vol. 39, no. 1, pp. 13–21, 2019.

[15] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domi-
nation in Graphs. New York, NY, USA: Marcel Dekker, 1998.

[16] S. M. Hedetniemi, S. T. Hedetniemi, and T. Wimer, ‘‘Linear time resource
allocation algorithms for trees,’’ Dept. Math. Sci., Clemson Univ., Clem-
son, SC, USA, Tech. Rep. URI-014, 1986.

[17] A.Humayun,M.Asif, andM.K.Hanif, ‘‘BTAS:A library for tropical alge-
bra,’’ Int. J. Comput. Sci. Inf. Secur. (IJCSIS), vol. 14, no. 12, pp. 220–225,
2016.

[18] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition.
New York, NY, USA: Wiley, 2000.

[19] M. S. Jacobson and L. F. Kinch, ‘‘On the domination number of products
of graphs: I,’’ Ars Combin., vol. 18, pp. 33–44, Dec. 1983.

[20] N. J. Rad and H. Rahbani, ‘‘A Nordhaus–Gaddum bound for roman
domination,’’ Discrete Math., Algorithms Appl., vol. 11, no. 5, Oct. 2019,
Art. no. 1950055.

[21] N. Jafari Rad and H. Rahbani, ‘‘Some progress on the double Roman
domination in graphs,’’ Discuss. Math. Graph Theory, vol. 39, no. 1,
pp. 41–53, 2019.

[22] J. Kepner and J. Gilbert, Eds.,Graph Algorithms in the Language of Linear
Algebra. Philadelphia, PA USA: SIAM, 2011.

[23] J. Kepner, D. Bader, A. Buluç, J. Gilbert, T. Mattson, and H. Meyerhenke,
‘‘Graphs, matrices, and the GraphBLAS: Seven good reasons,’’ Procedia
Comput. Sci., vol. 51, pp. 2453–2462, Jan. 2015.

[24] S. Klavžar and N. Seifter, ‘‘Dominating Cartesian products of cycles,’’
Discrete Appl. Math., vol. 59, no. 2, pp. 129–136, May 1995.

[25] S. Klavžar and J. Žerovnik, ‘‘Algebraic approach to fasciagraphs and rota-
graphs,’’ Discrete Appl. Math., vol. 68, nos. 1–2, pp. 93–100, Jun. 1996.

[26] M. Liedloff, T. Kloks, J. Liu, and S.-L. Peng, ‘‘Roman domination
over some graph classes,’’ in Graph-theoretic concepts in Computer Sci-
ence (Lecture Notes in Computer Science), vol. 3787, Berlin, Germany:
Springer, 2005, pp. 103–114.

[27] C.-H. Liu and G. J. Chang, ‘‘Upper bounds on roman domination numbers
of graphs,’’ Discrete Math., vol. 312, no. 7, pp. 1386–1391, Apr. 2012.

[28] A. C. Martínez and I. G. Yero, ‘‘A characterization of trees with equal
Roman 2-domination and Roman domination numbers,’’ Commun. Comb.
Optim., vol. 4, no. 2, pp. 95–107, Mar. 2019.

[29] A. Moradi, D. A. Mojdeh, and O. Sharifi, ‘‘Roman 2-bondage number of a
graph,’’ Discuss. Math. Graph Theory, vol. 40, no. 1, pp. 255–268, 2020.

[30] NVIDIA CUDA Toolkit. Accessed: May 1, 2020. [Online]. Available
https://developer.nvidia.com/cuda-math-library

[31] NVIDIA CUDA Documentation. Accessed: May 1, 2020. [Online].
Available: https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_
Guide.pdf

[32] C. Padamutham and V. S. R. Palagiri, ‘‘Algorithmic aspects of roman dom-
ination in graphs,’’ J. Appl. Math. Comput., vol. 64, nos. 1–2, pp. 89–102,
Oct. 2020.

[33] P. Pavličm and J. Žerovnik, ‘‘Roman domination number of the Cartesian
products of paths and cycles,’’ Electron. J. Combinatorics, vol. 19, no. 3,
pp. 19–37, Aug. 2012.

29354 VOLUME 9, 2021

J. A. Martínez et al.: Powers of Large Matrices on GPU Platforms to Compute the Roman Domination Number of Cylindrical Graphs

[34] P. Pavlič and J. Žerovnik, ‘‘A note on the domination number of the
Cartesian products of paths and cycles,’’Kragujevac J. Math, vol. 37, no. 2,
pp. 275–285, 2013.

[35] J.-E. Pin, ‘‘Tropical semirings’’ in Publications of the Newton Institute,
vol. 11, G. Jeremy, Ed. Cambridge, U.K.: Cambridge Univ. Press, 1998,
pp. 50–69.

[36] M. Rao and A. Talon, ‘‘The 2-domination and Roman domination num-
bers of grid graphs,’’ Discrete Math. Theor. Comput. Sci., vol. 21, no. 1,
pp. 9–14, May 2019.

[37] Z. Shao, J. Amjadi, S. M. Sheikholeslami, and M. Valinavaz, ‘‘On the
total double roman domination,’’ IEEE Access, vol. 7, pp. 52035–52041,
Apr. 2019.

[38] A. Spalding, ‘‘Min-plus algebra and graph domination,’’ Ph.D. disserta-
tion, Dept. Appl. Math., Univ Colorado, Denver, CO, USA, 1998.

[39] I. Stewart, ‘‘Defend the roman empire!,’’ Scientific Amer., vol. 281, no. 6,
pp. 136–138, Dec. 1999.

[40] V. G. Vizing, ‘‘Some unsolved problems in graph theory,’’ (in Russian),
Uspekhi Mat. Nauk, vol. 23, no. 6, pp. 117–134, 1968.

[41] C. Yang, A. Buluc, and J. D. Owens, ‘‘GraphBLAST: A high-
performance linear algebra-based graph framework on the GPU,’’ 2019,
arXiv:1908.01407. [Online]. Available: http://arxiv.org/abs/1908.01407

J. A. MARTÍNEZ was born in Almería, Spain,
in 1969. He received the B.Sc. degree in computer
sciences from the University of Granada, Spain,
in 1992, and the Ph.D. degree in computer engi-
neering from the University of Almería, Spain,
in 2007.

He has been an Associate Professor with the
Department of Computer Sciences, University of
Almería, since 2008. His research interests include
high performance computing, GPU computing,
and cloud computing.

E. M. GARZÓN was born in Granada, Spain,
in 1962. She received the B.Sc. degree in physics
from the University of Granada, Spain, in 1985,
and the Ph.D. degree in computer engineering
from the University of Almería, Spain, in 2000.

She is currently a Full Professor with the
Department of Computer Sciences and the
Head of the Supercomputing-Algorithms research
group, University of Almería. Her research inter-
ests include high-performance computing, GPU
computing, and scientific computation.

M. L. PUERTAS was born in Almería, Spain,
in 1971. She received the B.Sc. degree in math-
ematics from the Universidad de Granada, Spain,
in 1994, and the Ph.D. degree in mathematics from
the University of Almería, Spain, in 1997.

She has been an Associate Professor with
the Department of Mathematics, University of
Almería, since 2003. Her research interests include
the domination properties and the distance related
parameters in graph theory.

VOLUME 9, 2021 29355

