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ABSTRACT Text-to-image synthesis task aims at generating images consistent with input text descriptions
and is well developed by the Generative Adversarial Network (GAN). Although GAN based image
generation approaches have achieved promising results, synthesizing quality is sometimes unsatisfied due
to discursive generation of background and object. In this article, we propose a cooperative up-sampling
based Dual Generator attentional GAN (DGattGAN) to generate high-quality images from text description.
To achieve this, two generators with individual generation purpose are established to decouple object
and background generation. In particular, we introduce a cooperative up-sampling mechanism to build
cooperation between object and background generators during training. This strategy is potentially very
useful as any dual generator architecture in GAN models can benefit from this mechanism. Furthermore,
we propose an asymmetric information feeding scheme to distinguish two synthesis tasks, such that each
generator only synthesizes based on semantic information they accept. Taking advantage of effective dual
generator, the attention mechanism we incorporated on object generator could devote to fine-grained details
generation on actual targeted objects. Experiments on Caltech-UCSD Bird (CUB) and Oxford-102 datasets
suggest that generated images by the proposed model are more realistic and consistent with input text,
and DGattGAN is competent compared to state-of-the-art methods according to Inception Score (IS) and
R-precision metrics. Our codes are available at: https://github.com/ecfish/DGattGAN.

INDEX TERMS Asymmetric information feeding, cooperative up-sampling, dual generator, generative
adversarial networks, text-to-image synthesis.

NOMENCLATURE Op  Low resolution object.
s Sentence-level text feature. Mg High resolution mask.
w Word-level text feature. M;  Low resolution mask.
Gp Bagkground generator. By High resolution background.
Go  Object generator. B;  Low resolution background.

c Sampled vector from Gaussian distribution.
Semantic vector with incomplete information.
O0n  High resolution object feature.

6r  Low resolution object feature.

Bn  High resolution background feature.

Br  Low resolution background feature.

Op  High resolution object.

© Combination function.

Iz High resolution image.

I Low resolution image.

Dy High resolution discriminator.
D;  Low resolution discriminator.
Dp  Background discriminator.

ZB Actual input of Gp.

Z0 Actual input of Go.
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fc Generation constrained loss function.

A Hyper-parameter of DAMSM loss term.
y Coefficient of real/fake loss term in Lp,.
HR High resolution.

LR Low resolution.

RF Receptive field.

XL Sample from real low resolution images.
XH Sample from real high resolution images.
X0 Sample from real object patches.

XB Sample from real background patches.

Dkr. KL-divergence.

Dp s Background/object discriminant matrix.
Dp ;s Real/fake discriminant matrix.
B1, B2 Hyper-parameters in Adam optimizers.

I. INTRODUCTION

In recent years, text-to-image synthesis has drawn much
interest and rapidly expand the area of computer vision. This
natural language visualization task is also a fundamental
technique towards multiple applications such as computer
aided design, text visualization and restoring face. One of
the challenges is visual quality of generated images could
hardly suppress real images in terms of resolution, object out-
line and vivid detail. Besides, semantically consistent image
generation is of even higher difficulty compared to common
image generation. Overall diversities on synthesized results
may also be one of the difficult issues.

Aiming at generating photo-realistic images, Generative
Adversarial Network (GAN) [3] is generally regarded as
a feasible candidate. However, conventional GAN architec-
ture generating based on input noises is less contributing
to match the text information. Another image generation
model Conditional GAN (cGAN) [4] is proposed, which
almost all later text-to-image models are built based on
this condition restrained architecture [1], [2], [5]. In these
models, text descriptions are usually encoded into seman-
tic vectors and fed to both generator and discriminator
as conditions, which show impressive effect on control-
ling overall text-consisting image generation. Based on the
structure of cGAN, a multi-stage text-to-image generation
framework sketching outlines and fulfilling details by two
degrees of resolution was introduced by StackGAN [6] and
StackGAN++ [1]. However, lacking crucial fine-grained
information is discovered as main problem hindering qual-
ified image generation by StackGAN and StackGAN-+-+-.
Another text-to-image synthesis model AttnGAN [2] is pro-
posed consequently which aims at synthesizing more realis-
tic and fine-grained images based on attentional word-level
feature fusion. Although overall quality of generation is
enhanced, some targets are in ambiguous outlines unable to
differentiate from background areas as shown in Figure 1.
Based on the considerations that most text data participated
in image synthesis are object description texts, which back-
ground information is of less significant concern compared to
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This small grey green
bird has a short squat
body with a short beak
and fuzzy looking
feathers.

The bird has sharp
pointed beak with
white  throat  and
brownish white belly
and brown feet.

StackGAN++

AttnGAN Ground truth

FIGURE 1. Generated images on CUB test set by StackGAN++ [1],
AttnGAN [2], and their ground truth. A phenomenon that generated object
has abnormal outline mixing with background appears.

targeted object, another branch of studies suggests that split-
ting foreground and background into different data spaces
is helpful. InfoGAN [7] can learn disentangled representa-
tions of latent space by maximizing the mutual information
between a subset of latent variables and the observation data.
But data spaces aren’t fully decoupled, which gains some
extents of improvement by depicting object shape suggested
by LR-GAN [8]. Inspired by these models, FineGAN [9]
establishes a new unsupervised hierarchical image synthesis
method with fine-grained details emphasized. Although two
generators inserted still lead to some problems in synthe-
sizing, the overall quality of realistic and detailed object
generation had been promoted.

In this article, we propose a novel text-to-image genera-
tive framework named cooperative up-sampling based Dual
Generator attentional GAN (DGattGAN). By this framework,
original incompatible issue in data space decoupled could be
solved and advanced structures from existing text-to-image
models are emphasized at their most. Pursuing the strategy of
enhancing object generation apart from background, we set
up dual generator which object and background generation
tasks are arranged to individual generator as show in Figure 2.
To prevent unsynchronized and generator degradation issue
unsolved in existing dual generator models [8], [9], a cooper-
ative up-sampling scheme is designed to build feature inter-
flow between generators. Being the first architecture that
use dual generator GAN in text-to-image generation, two
optimization methods are raised to coordinate dual genera-
tor in integral text-to-image synthesis model. In particular,
an asymmetric information feeding scheme is raised apart
from existing study [9] that adds generation constraint over
output. By achieving separation of target and background,
the attention mechanism that we inserted on object generator
enable more contributing word-level feature fusion.

We summarize our main contributions as follows:

o Dual generator architecture is established to decouple
object and background data distributions aiming at more
realistic object generation.

o Two methodologies harmonizing synthesis behavior
accompanying with two generators are discussed.
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Word-level
text features

LR object
generator
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FIGURE 2. Text feature fusion on dual generator. LR and HR indicates low

resolution and high resolution respectively. The proposed dual generator
only delivers word-level features for object generation.

Asymmetric information feeding scheme is developed
as a new training strategy for dual generator.

« We propose a cooperative up-sampling mechanism for
feature interflow between generators, which prevents
incompatible generation and model degradation prob-
lems. This design is considered valuable for any dual
generator architecture and may trigger more proposals
on generators coordination.

« Above contributions on dual generator and the atten-
tion mechanism incorporated to object generator enable
object-wise word-level feature fusion, which contributes
to more text-consistent generation and overall improve-
ment in image quality.

The remainder of this article is organized as follows.
Related works will be briefly discussed in Section II.
In Section III, we present detail modules in building the
DGattGAN architecture as well as the optimization strate-
gies of dual generator. Experiments will be discussed in
Section IV. Finally, we will conclude this article and future
works in Section V.

Il. RELATED WORKS

In this section, researches related to this study are presented in
two subsections, dual generation architecture and GAN based
text-to-image researches.

A. DUAL GENERATION ARCHITECTURE

Dual generator architecture is currently applied to some
synthesis tasks including image captioning [10], image
generation [8], [9], video generation [11], etc. In specific,
two generators proposed by Liu er al. [10] are responsible
for caption generation and retrieval respectively in image
captioning task. Dual-generator architecture has also been
introduced into image generation by LR-GAN [8] that uses
a learnable foreground mask to distinguish foreground and
background region. Similarly, two-stream generative model
is introduced by Vondrick [11] to improve quality in video
generation. Then, FineGAN [9] has another background dis-
criminator for image generation based on LR-GAN. How-
ever, the methodology of separate generation has not been
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used in text-to-image synthesis, and degradation problem
may exist using these mask untangling methods as discussed
in Section III.C. Therefore, this study firstly adopts object
and background generators with a cooperative up-sampling
module to prevent degradation for text-to-image synthesis.

B. TEXT-TO-IMAGE SYNTHESIS METHOD

Recent studies on text-to-image synthesis tasks mainly aim at
improvement on three aspects: visual quality, text consistency
and scene synthesis. In this section, text-to-image synthesis
models are introduced by these characteristics.

1) VISUAL QUALITY

The main branch of text-to-image synthesis models is
exploited by Reed et al. [5] who first utilized GAN [3] in
text-to-image generation. In this study, GAN-INT-CLS is
proposed based on cGAN [4] to generate 64 x 64 images
conditioned by text. However, generated images have poor
resolution and the subsequently proposed StackGAN [6]
brings an improvement. StackGAN generates low resolution
64 x 64 images conditioned on input text using Stage-I GAN.
Stage-II GAN takes text and the result from Stage-I as input
to synthesize 256 x 256 images. StackGAN is not an end-
to-end model in which training and generation process of
StackGAN are divided into two stages. StackGAN++ [1]
is a follow-up work of StackGAN, which adopts a tree-like
structure to generate 64 x 64, 128 x 128 and 256 x 256
images. Compared with StackGAN, StackGAN4-+ shows
more stable training behaviour. HDGAN [12] also provides
a single-stream generator architecture with hierarchy-nested
discriminators to synthesize high resolution images. Besides,
some other studies [13], [14] also aim at improving definition
for more photo-realistic generation with superior external
modules, e.g., residual block feature pyramid attention mod-
ule [13]. Although images of high resolution could be syn-
thesized with these tree-like or hierarchy structures, objects
generated are still in poor shape. Fundamentally, attributing
learning ability of object shape in an unsupervised manner
might be the reason that hinders further improvement of these
studies. In this study, an object generator would take over the
task of synthesizing accurate object mask to stitch up object
and background.

2) TEXT CONSISTENCY

Text consistency is another key factor that draws much
attention in text-to-image synthesis. Xu et al. [2] designed
AttnGAN based on StackGAN-++-. AttnGAN encodes input
text into sentence-level feature and word-level feature with
a bidirectional Long Short-Term Memory (LSTM) model.
Before up-sampling to higher resolution images, AttnGAN
fuses image feature with word-level feature using attention
mechanism. AttnGAN uses Deep Attentional Multimodal
Similarity Model (DAMSM) model to calculate the match
score between local image feature and word-level feature.
Based on AttnGAN, Qiao et al. introduced MirrorGAN [15],
which is a global-local attentive and semantic-preserving
text-to-image-to-text framework containing three modules.
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Text Embedding Module

A small white
breasted bird
with black and
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FIGURE 3. The architecture of the proposed DGattGAN architecture. Text embedding module generates ¢ and w for generator input and
DAMSM evaluation. Gy and Gg are used to generate object and background separately. The proposed asymmetric information feeding
scheme places control over individual generator ahead of input. Features between generators are shared using the proposed cooperative
up-sampling. ¢ is utilized to synthesize final 64 x 64 and 128 x 128 image with the object, mask and background.

Recently, a Dual Attn-GAN [16] adds another visual attention
model together with the proposed mechanism by AttnGAN.
This new Visual Attention Model (VAM) enhances local
details and global structures by focusing on related features
from relevant words and different visual regions. However,
AttnGAN fuses word-level feature with the entire image,
and object area of higher necessity towards detail gener-
ation is regarded equally than other area. Therefore, the
proposed DGattGAN attributes attention mechanism pro-
posed by AttnGAN more specifically to object area by com-
pletely decoupling object. Another model generates images
by multi-pair generators and discriminators training is intro-
duced in rdAttnGAN [17]. Other studies suggest that enhanc-
ing text consistency by single text information may hardly
meet expectation, while building multiple text models might
be helpful. RiFeGAN [18] designed by Cheng er al. takes
several texts or captions as inputs and generates images based
on all descriptions. Sharma et al. [19] uses dialogue as model
input instead of text sentences. In addition, many other stud-
ies [20], [21] also achieve some extents of improvement on
generation consistency.

3) SCENE SYNTHESIS

Further studies point out that real-world images contain large
amount of information including object category, spatial con-
figurations of objects, scene context, etc. However, some
studies suggest that directly mapping from text to image is not
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suitable in complex text description. Hong et al. [22] proposes
a hierarchical approach, which constructs a semantic layout
from input text and then synthesizes final image conditioned
on generated semantic layout. Johnson ez al. [23] constructs a
semantic layout with Graph Convolutional Network (GCN).
Li et al. [24] proposes an Obj-GAN based on the research
of Hong et al. [22] which uses object-driven attentive image
generator to synthesize salient objects. In addition, a Faster
R-CNN [25] based object-wise discriminator is proposed by
Obj-GAN to determine consistency of synthesized objects
with text description and semantic layout.

lll. METHODOLOGY

A. MODEL ARCHITECTURE

In this subsection, we would introduce the overall architecture
as shown in Figure 3. This proposed framework consists of
three modules, DAMSM, text embedding module and the
proposed DGattGAN.

1) TEXT EMBEDDING MODULE

In text embedding module, we use a pretrained bi-directional
LSTM text encoder provided by AttnGAN [2] to encode
input text. The two hidden states of one word are concate-
nated and output as word-level text feature w. The last two
hidden states of bi-directional LSTM are concatenated and
output as sentence-level text feature s. As explained in Stack-
GAN [6] that the latent space for text embedding is usually
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high dimensional, such that discontinuity in latent data man-
ifold would occur under limited data encoding, which is not
desirable for training generator. Therefore, to prevent condi-
tioning manifold and overfitting, the Conditioning Augmen-
tation (CA) module proposed by StackGAN is used in our
model to produce a Gaussian distribution over the possible
values of ¢ from which the datapoint s could have been
generated. Sampled semantic vector ¢ has an interpretation
as a latent representation.

2) THE PROPOSED DGattGAN ARCHITECTURE

Next, sampled semantic vector ¢ is conveyed respectively
into dual generators that firstly adopt by this DGattGAN
in text-to-image generation. Different from existing meth-
ods [9], we propose another asymmetric information feed-
ing scheme to convey semantic information only available
for individual generation task. Latent space samples input
of object generator Gp and background generator Gp are
labeled as ¢ and ¢’ respectively in which partial dimensions
were randomly abandoned in ¢’ during training by a dropout.
To ensure generation diversity, random noises are concate-
nated with ¢ and ¢’. In this case, Gp fed with incomplete
information would only be available for target empty images
synthesis. Then, a cooperative up-sampling mechanism for
dual generator is raised by the proposed study such that
features from G and Gp could be shared and up-sampled.
Then, the 64 x 64 low resolution (LR) object feature 6r
would splits into two paths where one produces LR object
Or and mask My, and the other conveys features into an
attentional fusion module proposed by AttnGAN [2] that
combines 6; with word-level feature w. Fused 6; would
pass through two residual blocks and up-sample layer to
obtain 128 x 128 HR object feature 6y and generate high
resolution (HR) object Oy and mask Mpy. In background
generation path, HR background By is obtained by directly
up-sampling background feature §; without word-level fea-
ture fusion. Instead of using RGB layer, an average-pooling
layer is utilized to down-sample high resolution background
(Br) to 64 x 64 low resolution background (B ). The com-
bination function ¢(Gp(zp), Go(zp)) generates final image
using object, mask and background image. It is defined as:

¢(G(zp), Go(z0) =M © O+ (1 —M) O B, ey

where © denotes element-wise product. M, O and B denote
object mask, object, and background images, respectively.
Then LR image I;, and HR image Iy can be obtained using ¢:

I = ¢L(GB(zB), Go(z0))

=M, ©0L+(1—M)OBy, (@)
Iy = ¢ (Gp(z8), Go(z0))
=My OOy + (1 —My)OBy. 3)

DGattGAN uses discriminators Dy and Dy to determine
whether [;, and Iy are real images that match input text,
while discriminator Dp is utilized to discriminate if By is real
background. However, Dy, and Dy only take sentence-level
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text feature s as criterion without detailed word-level text
feature.

3) DAMSM MODULE

DAMSM module proposed by AttnGAN [2] takes word-level
semantic vectors w and global sentence vectors s encoded
by LSTM text encoder. Local and global image features of
Iy extracted by Inception v3 [26] are also fed to DAMSM.
Subsequently, image-text similarity to evaluate fine-grained
loss is obtained by calculating multi-modal similarity losses
on word-level features against local image features and
sentence-level features against global image features.

B. OPTIMIZATION OF DGattGAN’s DUAL GENERATOR
Generally, classical cGAN based text-to-image synthesis
methods optimize single generator by loss functions of the
generator and discriminator formulated as:

[-"G = _ES“’P_V,Z’VPZ [log D(G(s’ Z)v S)]a (4)
Lp = —E,~p [log D(x, 5)]
= Es~py,mp, [log(l — D(G(s, 2), )], &)

where E denotes the expectation, x is from the true image
distribution py, s is from the sentence-level semantic distri-
bution py, z is random noise. However, (4) and (5) couldn’t
tackle with situation when two generators are synthesizing
different parts of the image. Existing dual generator proposed
by FineGAN [9] controls generation by adding generation
constraint on output. We propose another asymmetric infor-
mation feeding scheme to synchronize dual generator. The
following part would introduce in detail.

1) ASYMMETRIC INFORMATION FEEDING SCHEME
The method of asymmetric information feeding is raised
mainly due to concerns over distinguishing individual gen-
eration task. For object description text-to-image task specif-
ically, only object generator is regarded as necessary towards
complete semantic information in both sentence-level and
word-level, while background generator isn’t. Implementa-
tion detail might vary based on particular synthesis tasks,
but this mechanism is considered an alternative providing for
dual generator structures aside from constraining output.
(i)Sentence-level asymmetry scheme. In object description
text-to-image task, the sentence-level semantic vector ¢ could
be regarded as samples from object’s latent space. To distin-
guish background generation path, a dropout layer is inserted
and subsequent samples from background’s latent space is
labelled as ¢’ (see Figure 3). In this way, neural units and
connections of ¢’ are randomly dropped during each training
iteration so that Gp is only available for object-free image
synthesis. To further enhance generation diversity, ¢ and ¢’ are
incorporated with noise to form actual input code zp and zp.
Additionally, two conditional discriminators D; and Dy
accept sentence-level feature s as criterion. The loss functions
of generators and discriminator can be formulated as:

L6y.6o = —Egp,[log(Dy (91 (Gp(zp), Go(z0)), $))]
— Es~p, [log(DL(¢L(GB(zB), Go(z0)), )], (6)
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Lpy = —Exy~p,, [10g Du(xH, )]
— Es~p,log(1 — Dy (pu(Gp(zB), Go(20)), )],
@)
Lp, = —Ex~p,, log Dr(xz, 5)]
— Eg~p,[log(1 — Dr(¢r(GB(z), Go(20)), $))].
(3)

Since Dy and Dy take complete s as criterion where par-
tial information of it isn’t accessed by Gp, text consistent
object shouldn’t appear in background generation. There-
fore, discriminators should see a distinction in real-fake
judgment.

(i) Word-level asymmetry scheme. In DGattGAN,
word-level features reflecting detailed object visual attributes
are only fed to Gp. An attentional fusion module to fuse
0r with w for Go is established before 6y, is up-sampling to
0n , while Gp directly up-samples 8y to Sy. Meanwhile, the
total dual generator network should minimize Lpapsys [2] as
follow:

L6,60 = —Es~p,[log(Dy (0r(Gp(z8), Go(20)), 5))]
— Eyp, [log(DL(0L(GB(zB), Go(20)), 5))]
+ ALpamsu €))

where Lpaysy referring to (14) in AtnGAN [2] calcu-
lates image-text similarity at word-level and A is a hyper-
parameter. In this case, only Go is available for detailed
word-level information synthesis and thus DGattGAN bene-
fits from word-level asymmetry in two aspects: improvement
on synthesizing text consistent images by accurately fusing
word-level feature with object feature; maintaining segrega-
tion on G from word-level feature.

Background

Background / Object
Discriminant Matrix

Fully
?‘ F without Connected
@bject Info

& Ohjcctwm 3
v

Fully
Connected

Real / Fake
Discriminant Matrix
DBJy

FIGURE 4. The architecture of DGattGAN background discriminator, black
boxes represent the receptive field (RF) and red boxes represents the
object location.
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2) GENERATION CONSTRAINED LOSS

Another generally adopted method to control each generation
task for existing dual generator GAN is adding constraint
over the loss function of generator. In DGattGAN, only
background generation is constrained due to less significant
concern on object location compared to object generation.
Constraining on individual generator would automatically
achieve overall coordination of dual generator. The loss
functions can be formulated as:

L6y,6o = —Egp,[10g(Dy (0n(Gp(zp), Go(z0)), $))]
— Egp,log(Dr (¢ (GB(zB), Go(z0)), s)] + fG,
(10)

where f; is the generation constrained loss function, the
expression of f will be presented in (12). We use a back-
ground discriminator Dp to determine whether the gener-
ated image is real background. Since there is no specific
background or object dataset for training, the discriminator
from PatchGAN [27] could well serve to distinguish object
and background in single image. Then the output of our
discriminator is no longer a scalar, but an N x N discriminant
matrix as shown in Figure 4. Each element in the discriminant
matrix is calculated from corresponding patch (called recep-
tive field (RF)) in input image. Dp s and Dp_js are two N xN
discriminant matrixes fully connected after Dp. Each element
in Dp s represents real/fake judgement the corresponding
receptive field. Each element in Dp s whose receptive field
includes pixels of object region is marked as object; each
element whose receptive field excludes pixels of object region
is marked as background. See Figure 4 for more details. In this
way, we assume that object location (or segmentation) could
be given by the dataset. Dp s is trained to accurately classify
real image patches as background or object, while Dp_,r still
competes with background generator. The loss function of Dp
can be formulated as, (11), as shown at the bottom of the next
page, where y is the coefficient of real/fake term. This study
uses Dp to add constraint on background output. f; can be
formulated as:

fo =y (=Egp[log(Dp_rr (Gr(zp)])

- ]Es'vps [IOg(DB_cls(GB(ZB)))] . (1 2)
The generated background is expected to be discriminated as
real by Dp ,y and classified as background by Dp ;. Using

(2)(3)(6)(7)(8)(9)(10), the loss functions of DGattGAN'’s
generators and discriminators can be rewritten as:

Lp, = =By ~p,, Nlog Dr(xz, 9)]

— Es~p,[log(1 — DL, 9))], (13)
Lpy = —Exy~p,, log Dy (xp, 5)]
— Es~p,[log(1 — DIy, 9))1, (14)
L6p,60 = —Esp,[log(Dr UL, )] — Es~p, [log(Dp Uy, )]
+fc + MLpamsm - (15)

DGattGAN should optimize the background discriminator
Dg at the same time according to (11).

29589



IEEE Access

H. Zhang et al.: DGattGAN: Cooperative Up-Sampling Based Dual Generator Attentional GAN on Text-to-Image Synthesis

9}?

Up-sample

]
: :
i I
0 ]
1

1

I
: :
! ]
i I
0 ]
1
1 n+l !
) |
. :
i I
0 ]
! :
: :
U |
i I
0 ]
i |

_________

(a)

pe

1
1
1
1
1
1
1
1
:
Up-sample ! n+l
LB
1
1
1
1
1
1
1
1
1
1

(b)

FIGURE 5. Comparing different up-sampling schematic, (a) common up-sample; (b) the proposed cooperative up-sampling scheme.

C. COOPERATIVE UP-SAMPLING MODULE

In [9], FineGAN uses two generators which are mutually
independent and never share their features. Then two main
problems seem to be: (i) unsynchronization between the gen-
erated background and object; (ii) degeneration from dual to
single generator. In specific, degeneration might happen in
situation that G learns faster than G and finally gains ability
generating both object and background. In this case, mask M
tends to have all elements equal to 1, and thus final image
only reflects object generation. This degeneration issue can
be seen from following formula:

0(Gp(z8), Go(zp) = M GO+ (1—-M)OB=~ 0,
~~—— [ —
~1 ~0

(16)

where dual generator degrades into single generator. Accord-
ing to the chain rule of derivatives and (16), we have

8£GB,GO _ BEGB,GO ) 3(p
3GB 3(;3 aGB
L 30 30
~ 2ZGG0 - T2 _ ) where — =0. (17)
30  3Gp 3G

Thus, Gp cannot have its weight updated. Then, G should
always fail to synthesize background matching Gop, and
degeneration is irreversible.

Based on the concern of synchronizing generation, this
study proposes a cooperative up-sampling module to have
two generators share their features. Figure 5 shows the archi-
tecture of this cooperative up-sampling module. By adopting
interflow (Conv 1 x 1), each generator fuses the other’s
features before every up-sampling. Here, object features and
background features of the nth up-sampling are denoted as 6"

and B". 9"t is given by up-sampling the concatenation of 6",
and convolved 8" with 1 x 1 convolution. Still assume that,
Gp has lower learning speed than Go. By adopting coopera-
tive up-sampling, after m times up-sampling, generation can
be formulated in terms of (16) as:

¢(Ga(zB), Go(z0)) ~ O = F(6™)

=FWe™", g1y, (18)

where F is the mapping function (Conv 3 x 3) from
0™ to O, U denotes cooperative up-sampling. Consider-
ing that ™m=1 and ,3"’1 are all relevant to Gp, therefore,
AF (U™, p"1))/aGp # 0, the updating formulation
becomes:

aLGB)GO _ aLGByGO . 8(p
aGp 17 d0Gp
oL aF (U™, pm-1
~ GB,GO. ( ( ﬁ ))#O (19)
A 0Gp

Such that even when M tends to have all elements equal to 1,
Gp can be updated by interflow. Therefore, the proposed dual
generator structure should benefit from adopting cooperative
up-sampling in two aspects: (i) easy synchronization between
Go and Gg; (ii) prevention of irreversible degeneration.

IV. EXPERIMENTAL RESULTS

A. DATASET

We use Caltech-UCSD Bird!(CUB) [28] and Oxford-102
dataset? [29] to evaluate our DGattGAN. CUB and

1http://www.vision.caltcch.edu/visipedia/CUB—ZOO—ZO1 1.html
2http://Www.robots.ox.ac.uk/ vgg/data/flowers/102/

Lpy = y(—Exg~p,, [108(Dp_ir (x3))] — Es~p,[log(l — Dp_(Gp(zp)))])

real [fake loss
_EXBNPXB [log(DB_cls(xB))] - EonpXO [log(l - DB_CIS(-XO))]v

Y

background /object loss
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Oxford-102 provide object description texts that describe
visual attributes of object with less background infor-
mation. CUB dataset consists of 8855 training images
from 150 species of birds and 2933 testing images
from 50 other species. Oxford-102 dataset contains 7034
training images from 82 species of flowers and 1155 testing
images from another 20 species. Both datasets provide 10
text descriptions for each image. CUB dataset marks all
objects using bounding boxes and Oxford-102 gives objects’
segmentation maps.

B. EVALUATION METRICS

The performance of DGattGAN is evaluated using two quan-
titative metrics Inception Score (IS) [30] and R-precision [2].
Instead of human annotators, these two metrics are regarded
as alternatives for efficient human evaluation over a large
number of synthesized data. IS is used to evaluate quality
and diversity of generated images. Evaluating this score needs
a pre-trained Inception v3 model [26] on ImageNet [31].
A higher value of IS indicates better visual diversity and
quality. As reported in [30], IS calculates the KL-divergence
Dg;, between the conditional class distribution p(y|x) and the
marginal class distribution p(y):

1S(G) = exp(Ex~p, Dk (p(y1X)[Ip(1))), (20)

where p, is generation distribution of the model, x is a
generated image sampled from pg. In this article, we use the
fine-tuned Inception v3 model provided by Zhang et al. [6]
that is more valuable for fine-grained dataset to predict class
labels on testing images.

R-precision is proposed to evaluate text consistency of gen-
erated images in text-to-image synthesis task by Xu et al [2].
Given a single image, we pick R text descriptions consis-
tent with it and N — R descriptions inconsistent with it.
After global image features and N sentence-level features are
encoded respectively by image and text encoders, the cosine
similarities between them are calculated. Finally, candidate
text descriptions are ranked in descending similarity. If r text
descriptions are found consistent in the top R ranked results,
the R-precision is computed as r/R. We take R = I, N =
100 in our experiments referring to many other text-to-image
algorithms [2], [15], [32], etc.

C. IMPLEMENTING DETAILS

Original images with objects location labels are resized to
128 x 128 as real background samples for background dis-
criminator training. For Dy and Dp, object areas mostly
occupying only small region in CUB would be cropped and
resized into 64 x 64 and 128 x 128 as real image samples.
Sentence-level features are 256-dimension fed together with
resized images. DGattGAN’s generators and discriminators
are trained using ADAM solver [33] with batch size 16 and
an initial learning rate of 0.0002. According to [33],
ADAM’s parameters f1 and B, are set to 0.5 and 0.999 in
all experiments. The Conv 1 x 1 interflow used in
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cooperative up-sampling quarter the number of feature chan-
nels. Parameter y is set to 10 referring to FineGAN [9]
and A is set to 5 by experiments shown in section IV.G.
All sentences in test set are utilized to generate test sam-
ples. Totally, 29330 samples on CUB and 11550 sam-
ples on Oxford-102 are obtained to evaluate DGattGAN.
Our experiments are conducted on the platform where
Python version is 3.7 and Pytorch version is 1.5.1. The
network architecture is built on a server with Intel (R)
Core (TM) i17-9700K CPU (4.9 GHz) with 32GB mem-
ory, NVIDIA GeForce RTX 2080Ti (GPU) with 11GB of
memory.

Go's Feeding Gp’s Feeding o's Feeding Dropout Gp's Feeding
< £ < 1 <
N ||
w w w
Al s 11l il < sy
Noise Go Noise s Noise o Noise U
"o N " N

=)

Attentional
Fusion

Attentional
Fusion
Module

Attentional
Fusion

(@) (b)

FIGURE 6. Schematic of the two information feeding schemes, (a)
symmetric; (b) asymmetric.

D. EVALUATION ON ASYMIMETRIC INFORMATION
FEEDING SCHEME

In this study, asymmetric information feeding is a special
scheme when training dual generator, which plays an impor-
tant role in dominating each generator’s synthesis behavior.
To better show the effect of asymmetric information feeding,
as shown in Figure 6(a), we conduct a symmetric information
feeding training for comparison with following modifica-
tions: remove dropout layer before Gp, so that G can obtain
all sentence-level information; fuse word-level features with
Br using the same attentional fusion module in Go, so that
Gp can obtain all word-level information. Symmetric infor-
mation feeding indicates that both Gp and G obtain the same
entire object information. Figure 6(b) shows the schematic
of the asymmetric information feeding scheme. Figure 7
presents some examples of images generated under sym-
metric/asymmetric information feeding schemes. One can
found from this figure, symmetric information feeding strat-
egy leads to generators’ confusing synthesis behaviour. More
specially, the generated background may also depict object’s
visual attributes, so that the object mask has some ‘hole’ areas
marked as background (see wings). This can be seen a failure
in decoupling object and background, in that both Go and
Gp synthesize different parts of object. In contrast, asym-
metric information feeding scheme helps both generators
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Symmetric B85

Asymmetric i‘ f

(a) This bird has white eyebrows a black throat and a
short pointed bill.

Symmetric

Asymmetric

(c) This b1rd has speckled wing bars and secondarles
and it is a variation between tan and dark brown.

Final Image

Background Object Mask

Final Image

(b) A whlte yellow a.nd black bird that is standmg on
a branch.

(d) Thls b1rd has a spotted breast and belly a short bill
and a short neck.

FIGURE 7. Comparisons of symmetric/asymmetric information feeding schemes. For each text description, the first and second rows show images
generated by symmetric/asymmetric information feeding training methods. Background, objects, object masks and final results are listed from left

to right.

Cooperative Background Mask

Up-sampling

w/o
w/
(a) Th1s small b1rd has pale brown feathers with a long
tail short legs and a short beak.
w/o
w/

(c) The bird has a bill a gray belly and the wings are
covered in brown and black feathers.

Final Image

Background Mask

Final Image

F

(b) This bird has a white belly and neck With a brown
crown and wings.

(d) This is a small bird with a sharp pointed with a
white belly and breast and yellow secondaries.

FIGURE 8. Ablation study of cooperative up-sampling mechanism. For each text description, the first and second row are generated images
without (w/0) and with (w) cooperative up-sampling. Background, masks and final results are listed from left to right.

of DGattGAN successfully implement their different tasks.
To validate the effectiveness of the proposed asymmetric
scheme, we conducted image synthesizing experiment on
all text images of CUB dataset. Table 1 lists both Inception
Scores and R-precision. Symmetric information feeding leads
to an evident decrease on R-precision by 4.52%, which may
be caused by inappropriate fusion of background feature and
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word-level feature. Using the proposed asymmetric scheme,
the Inception Score is raised from 4.27 to 4.45.

E. ABLATION EXPERIMENT ON COOPERATIVE
UP-SAMPLING MECHANISM

To illustrate how our proposed cooperative up-sampling
mechanism works, we ablate all interflows before each
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StackGAN StackGAN++ HDGAN AttnGAN

Ground truth

A yellow bird with
a black crown with
a black eyering with
brown secondaries.

This  medium size
bird has brown wings
a spotted belly and
a  cream  colored
eyebrow.

This small bird is grey
all its body with small
section of yellow in its
wings and head.

A bird has a white
belly a short black
beak and a royal blue
crown.

A small sized bird that
has tones of grey and
black tipped wings.

This bird has a yel-
low pointy beak with
a black crown white
breast and grey belly.

(a) Subjective visual comparisons on CUB dataset

StackGAN StackGAN++ HDGAN Ours Ground truth

This flower is pink,
white, and yellow in
color, and has petals
that are striped.

This flower has petals
that are dark pink with
white edges and pink
stamen.

This flower is white
and yellow in color,
with petals that are
wavy and smooth.

This flower has a very
large number of s-
mall purple petals in
a dome-like configura-
tion.

(b) Subjective visual comparisons on Oxford-102 dataset

FIGURE 9. Generated images on CUB and Oxford-102 datasets. In (a), from left to right are StackGAN [6],
StackGAN++ [1], HDGAN [12], AttnGAN [2], Ours and Ground truth. In (b), from left to right are StackGAN, StackGAN++,
HDGAN, Ours and Ground truth. Zoom-in for better observation.
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up-sampling to make two generators mutually indepen-
dent as shown in Figure 5(a). In this case, the cooper-
ative up-sampling mechanism is degraded onto common
up-sampling. Figure 8 shows synthesis results by models
with (w/) and without (w/0) cooperative up-sampling mech-
anism. As we can see, masks generated without coopera-
tive up-sampling tend to have all region marked as object
and the backgrounds are incompatible with final images.
This indicates that the generative model has degraded into
a single generator structure. With cooperative up-sampling,
however, synthesized masks with clear shape of the object
are gained. Besides, dual generator becomes synchronized
and irreversible degeneration could be well prevented.
We also provide a quantity evaluation in our ablation study,
as listed in Table 2. It could be seen that Inception Scores
seen a significant increase from 4.32+0.03 to 4.4540.05,
while R-precision also increase by about 1%. This reflects
an overall increase on image quality, generation diversity
and text consistency. Therefore, the proposed cooperative
up-sampling scheme seem to well tackle previous dual gener-
ator difficulties and achieve improved performance in image
generation.
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4.

Y 7% 4 —1 al o ! AN ! (. 2B, .
FIGURE 10. Comparisons of AttnGAN (left) and Ours (right). Same bird species are listed in same row for two methods (A = 5.0 for both

TABLE 1. Quantity Evaluation With Different Information Feeding
Schemes on Test Images of CUB Dataset, Highlighted Values Represent
the Best Results.

Inception Score

4.27(£0.05) 57.93
4.45(£0.05) 62.45

R-precision (%)

Symmetric
Asymmetric

F. SUBJECTIVE VISUAL COMPARISONS

Visual quality and text consistency are two key factors when
evaluating generation quality in text-to-image synthesis task.
As shown in Figure 9, it compares the generated images
of StackGAN? [6], StackGAN+-+* [1], HDGAN® [12],
AttnGAN® [2] and DGattGAN on CUB and Oxford-102
datasets. It could be seen from the experiments that Stack-
GAN obtain the most basic quality of image generation where
some artifacts appear among most results with rough object
shapes generated. StackGAN++, HDGAN achieve relatively

3 https://github.com/hanzhanggit/Stack GAN
“4https://github.com/hanzhanggit/Stack GAN-v2
5https://github.com/ypxie:/HDGan
Ohitps:/github.com/taoxugit/AttnGAN
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better smoothness and boundary coherence with few gen-
erated images lacking vivid object appearance. Besides,
AttnGAN seems to outperform StackGAN, StackGAN++-,
HDGAN in generating vivid detail and clear object texture
information such as ““a spotted belly” and ‘“‘a cream colored
eyebrow” in the second row of Figure 9. However, AttnGAN
shows relatively poor generation in realistic object outline.
In general, our method shows advantages in terms of object
shape and detailed information which is most likely to compe-
tently meet appearance-focused tasks. In terms of text consis-
tency, StackGAN seems to perform less satisfied since similar
image appears for different text description. AttnGAN and
our method show better reflection on text meaning such as
“yellow in its wings and head” and ‘‘black tipped wings” in
Figure 9(a), and ““dark pink with white edges” in Figure 9(b).

TABLE 2. Quantity Evaluation of DGattGAN With Cooperative
Up-Sampling Mechanism or Not, Highlighted Values Represent the Best
Results.

Cooperative Up-sampling

w/o 4.32(%0.03) 61.20
w/ 4.45(£0.05) 62.45

Inception Score  R-precision (%)

G. QUANTITY EVALUATION ON GENERATORS

We next quantitively compare DGattGAN with several state-
of-art algorithms: GAN-INT-CLS [5], GAWWN [34], Stack-
GAN [6], StackGAN++ [1], HDGAN [12], AttnGAN [2],
MirrorGAN [15] and SegAttnGAN [32], etc. Table 3 reports
the Inception Score and R-precision on CUB and Oxford-102,
and all figures are from their respective papers. Except for
MirrorGAN (4.56+0.05), our DGattGAN achieves higher
score than previous methods both on CUB and Oxford-102
datasets at 4.45+0.05 and 3.48+0.06 respectively. This indi-
cates that our DGattGAN can generate more realistic and
diversity images conditioned on text descriptions than most
previous models. Although training models of some networks
are not available publicly, we could still observe the pre-
formation of AttnGAN, MirrorGAN and SegAttnGAN from
these R-precision values mentioned in their papers shown
in Table 4. From these R-precision values demonstrated
in Table 4, we can observe that DGattGAN achieves the
highest R-precision score at 62.45% compared with 53.31%
and 57.67% of AttnGAN and MirrorGAN. This indicates
consistency with text descriptions on synthesizing images
of this proposed DGattGAN. According to Tables 3 and 4,
MirrorGAN achieves the highest Inception Score, which is
approximately 0.1 higher than ours. However, they show a
slightly lower R-precision at 57.67%, while our approach
arrives at 62.45 on R-precision. Therefore, this validates the
effectiveness of our framework in terms of text-to-image
consistency.

H. USER EVALUATION
In this section, a human perceptual evaluation is arranged
on CUB test dataset. Totally, 30 volunteers with different
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TABLE 3. The Inception Score Comparisons on CUB and Oxford-102
Datasets, Highlighted Values Represent the Best Results.

Datasets

Models CUB Oxford-102
GAN-INT-CLS [5] 2.88(£0.04)  2.66(£0.03)

GAWWN [34] 3.62(£0.07) -
StackGAN [6] 3.70(£0.04)  3.20(40.01)
StackGAN++ [1] 4.04(£0.05)  3.26(£0.01)
HDGAN [12] 4.15(£0.05)  3.45(40.07)

AttnGAN [2] 4.36(%0.03) -

MirrorGAN [15] 4.56(40.05) -
SegAttnGAN [32] 4.44(4+0.06)  3.36(40.08)
Ours 4.45(£0.05)  3.48(%0.06)

TABLE 4. The R-Precision Comparisons on CUB Dataset, Highlighted
Values Represent the Best Results.

Models R-precision (%)
AttnGAN [2] 53.31
MirrorGAN [15] 57.67
SegAttnGAN [32] 52.29
Ours 62.45

professional backgrounds are recruited to conduct two tests:
recognition test and text consistency test. In specific, recog-
nition test is presented to compare the recognizability
and reality of synthesized object using different methods,
while text consistency test is applied to compare match-
ing degree between text and image. Each participant is
presented with 100 groups of images, in which 4 images
from StackGAN++, HDGAN, AttnGAN and DGattGAN
are arranged in random order given by the same text
description. In recognition test, participants are asked to
select the most realistic and recognizable image among 4
results. In text consistency test, participants are asked to
select the image that best matches given text. The sta-
tistical results shown in Table 5 demonstrate that images
of DGattGAN gain 42.07% and 43.36% of preference for
recognition and text consistency respectively. In addition,
the proposed method seems to gain more satisfied visual
results from human perception as compared to quantitative
analysis.

TABLE 5. The Vote Rate of Each Model in all Recognition Tests and Text
Consistency Tests. In That There are 30 Volunteers and 100 Groups for
Each Volunteer, We Have Totally 3000 Samples in Each Test.

Recognition Test (%)  Text Consistency Test (%)

StackGAN++ [1] 15.43 12.10
HDGAN [12] 13.27 13.17
AttnGAN [2] 29.23 31.37

DGattGAN 42.07 43.36

I. QUANTITATIVE COMPARISON ON MODEL COMPLEXITY
Since the proposed DGattGAN mainly aims at improving
generation quality based on existing methods, model com-
plexity also raised to some extent. In this experiment, number
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of network parameters and floating-point operations (FLOPs)
for several competitive methods that synthesize images of
similar level of resolution are illustrated in Table 6. It could
be seen that StackGAN, StackGAN-++ and HDGAN have
noticeably higher model complexity compared to other meth-
ods. HDGAN has the most complicated structure, where a
high parameter number (41.23M) and FLOPs (28.97G) are
shown. This is mainly because of its deepest network archi-
tecture with residual blocks stacked after each up-sampling
layer. Also, StackGAN and StackGAN++ have slightly
larger amount of computation due to their wide structure
resulted from high dimensional text embedding. In addition,
MirrorGAN and AttnGAN have the least computational cost
as these approaches take a similar structure of less complex-
ity. In general, our model has a medium number of parame-
ters and FLOPs among compared approaches at 15.19M and
3.23G, respectively. In specific, the dual generator structure
with feature interflow by cooperative up-sampling almost
doubles the number of parameters compared to AttnGAN.
Nevertheless, background generator in DGattGAN of less
significant concern on generation quality only leads to limited
increase in terms of computational cost.

TABLE 6. Quantitative Comparisons of Parameters and FLOPs. All
Generative Models Synthesize 128 x 128 Images.

Parameters (M)  FLOPs (G)
StackGAN [6] 27.13 10.37
StackGAN++ [1] 16.33 4.73
HDGAN [12] 41.23 28.97
MirrorGAN [15] 6.82 2.17
AttnGAN [2] 6.81 2.14
DGattGAN 15.19 3.23

J. MORE COMPARISONS WITH BASELINE

Next, we show more experimental results by comparing
DGattGAN with baseline AttnGAN [2] as used by many
start-of-art models [15], [16], [18], [32]. AttnGAN mentioned
that the coefficient of DAMSM loss term A greatly affects
both generation quality and text consistency. Here, we set A
as 0.1, 1.0 and 5.0 to train DGattGAN respectively, while
AttnGAN trained using the same A is illustrated as well for
comparisons. To avoid impact of different resolutions, we set
synthesizing size at 128 x 128 for AttnGAN the same as
DGattGAN. An example (A = 5.0) of visual comparison
of AttnGAN and DGattGAN on CUB dataset can be found
in Figure 10. We found from this figure, although there are
still some images generated by DGattGAN shows unsatis-
fied object shapes, general quality verifies that DGattGAN
has achieved great improvement in synthesizing more vivid
objects. Figure 11 shows the quantitative evaluation on the
CUB dataset. It could be observed that our DGattGAN
achieves higher Inception Score and R-precision scores than
AttnGAN at all values of A. In this figure, all results for
AttnGAN are referenced from [2]. All these validate that
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DGattGAN can generate more realistic and diversity images
that consistent with text descriptions.

AttnGAN
Ours.
4.45+0.04

4.4 4.38+0.06
4.35£0.05 4.35£0.04

4.27+0.06

4.1920.06
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w w > »
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FIGURE 11. Inception Score and R-precision by AttnGAN and DGattGAN
with different A on CUB test set.

FIGURE 12. Failure cases of the proposed model on CUB dataset, text
images with size of 128 x 128.

K. FAILURE CASE ANALYSIS

Although our model shows an improvement on existing
approaches, there are still some less satisfied generating
images. In the last section, we examine the generated images
and find some bad cases on CUB dataset as shown in
Figure 12. These less satisfied generations are mostly related
to aquatic birds. From model aspect, DGattGAN’s object
generator synthesizes accurate object masks with the ten-
dency to learn objects’ shape. Aquatic and arboreal birds
differ considerably in terms of morphology (aquatic birds
are usually duck-like). Initially, distinguishable latent repre-
sentation is accomplished by CA module in DGattGAN that
maps related text embeddings to Gaussian distributions with
a large difference in mean and variance. This architecture
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would be effective if different-shape objects are uniformly
distributed in dataset, such as in Oxford-102, since their
latent Gaussian distributions have similar prior probabilities.
However, a relative proportion of arboreal and aquatic birds
at approximately 9:1 exists in CUB dataset, which possibly
results in an insufficient training of the latent distribution of
aquatic birds. Future studies might draw attention on improv-
ing generation quality of species occupying of relatively
fewer numbers in training dataset.

V. CONCLUSION

We have proposed a novel dual generator attentional GAN
based on cooperative up-sampling scheme for text-to-image
synthesis. The proposed generator architecture provides a
more thorough alternative for decoupling object and back-
ground distribution space. Unsynchronized issue in existing
dual generator models could also be solved by the proposed
cooperative up-sampling mechanism, which is considered
valuable for any dual generator design. Two optimization
strategies to harmonize synthesis behaviour accompanying
with dual generator is explored. In particular, the asymmetric
information feeding scheme is introduced as a novel train-
ing scheme for dual generator. Additionally, word-level fea-
ture fusion on targeted object would be improved by these
designs and contributes to better text-to-image generation
quality. Experimental results on standard dataset showed
that DGattGAN achieves better performance in synthesiz-
ing diverse photo-realistic and text-consistent images. For
future improvement, modifications could be made towards
more satisfied generation of a specific object category among
the whole dataset and targeted adjustment for application
tasks.
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