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ABSTRACT Mobile Crowdsourcing, which uses a crowd of workers to complete computer-complexity
tasks, has become more and more popular. How to maximize the total profit, which is the difference between
total task utility and total worker costs, is a key design goal in such crowdsourcing system. However,
this problem is extremely hard because even in the offline situation, this problem has been proved to be
NP-hard. In the online situation, we need to consider not only future unknown task arrivals, but also the
heterogeneity of both tasks and workers. In this paper, we address this challenging problem from following
aspects. To solve this problem, we first build an optimization framework to formulate this problem by
explicitly modelling task utility and worker costs. Then, under this framework, we design efficient online
assignment algorithms to assign tasks to workers. To analyze the efficiency of our proposed algorithms,
we develop a dual-fitting method to analyze both primal objective and dual objective. We prove that our
designed algorithms can achieve a constant competitive ratio of 2. Finally, we conduct extensive trace-driven
simulations to demonstrate that the online algorithms can outperform baseline algorithms by nearly 20% in
terms of the total profit achieved.

INDEX TERMS Task utility, worker costs, online task assignments, dual-fitting method, competitive
performance.

I. INTRODUCTION
Mobile crowdsourcing systems are becoming effective plat-
forms for workers to perform tasks that are extremely diffi-
cult for computers. In Amazon Mechanical Turk [1], typical
tasks include translating some paragraphs from Chinese into
English, labelling contents of images, or collecting school
addresses in a specific area. In mobile crowdsourcing, work-
ers are assigned tasks and get paid for completing tasks. The
payment of a task is also called task utility, which can be
formulated by a utility function. In a utility function, the input
is completed tasks and the output is utility. The task utility
function can be considered as a concave function [2]. The cost
of a worker can be formulated by a cost function. In a cost
function, the input is also completed tasks and the output is
a cost. We can model a cost function as a convex function,
which has been adopted in [3]. The profit of a task is the
difference between the utility achieved by completing the task
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and the cost incurred during processing the task, which is
similar to the models built in existing works [2], [10], [30].

In this paper, we aim to address the problem of maximizing
the total profit in an online manner, which is a key design
goal in a crowdsourcing system. This is a very hard prob-
lem. The hardness stems from following four aspects. First,
the workers and the tasks in the crowdsourcing are hetero-
geneous. Different tasks have different utility, which results
the heterogeneity of tasks [4]. Different workers in the same
system may have different prices [5]. Second, existing mech-
anisms mainly consider the scenario where all tasks belong
to a monopolistic system. In this system, a worker cannot
refuse task assignments. However, a worker can refuse task
assignments to produce fail-assignments when the profit of a
task cannot satisfy his requirement. Third, a task assignment
decision needs to be made in an online manner, which turns
out to be an integer programming problem [6].With thewhole
knowledge of all task arrivals, it is NP-hard of assigning a
task to a proper worker to maximize the total profit. Without
knowing future arriving tasks, it is more difficult to assign a
task to a proper worker to achieve this aim. Fourth, every task
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assignment will affect remaining task assignments, which is
intractable to analyze the competitive performance of online
algorithms [7].

A practical task assignment scheme for a crowdsourcing
system to maximize its total profit should satisfy the follow-
ing four requirements: scheduling tasks in an online manner,
meeting the heterogeneity requirement of both tasks and
workers, utility functions being concave, and cost functions
being convex. At the best of our knowledge, no prior scheme
meets all these requirements. The scheme proposed in [8]
meets the requirement of heterogeneity of both tasks and
workers. But it is an offline scheme. The scheme proposed
in [9] is an online scheme. It also meets the requirements
of the heterogeneity of both tasks and workers. But it uses a
linear utility function. The scheme proposed in [2] meets the
requirements of scheduling tasks in an online manner, con-
sidering the heterogeneity of both tasks and workers, utility
functions being concave. But it does not consider convex cost
functions. Note that a linear function is a special case of both
its corresponding concave function and convex function. The
scheme proposed in [10] meets the requirements of schedul-
ing tasks in an online manner, the heterogeneity of workers.
But this scheme does not consider the heterogeneity of tasks.

In this paper, we propose a task assignment scheme to
maximize its total profit that meets the above four require-
ments. To achieve an online manner, we propose an online
optimization framework to model the problem in slotted time.
To meet the task heterogeneity requirement, we let each task
having a unique utility function. To meet the worker hetero-
geneity requirement, we use different parameter to model
the heterogeneity of each worker. We utilize the primal-
dual approach to solve this optimization framework, which
contains a concave utility function and a convex cost function.
In this optimization problem, we rely on the previous assign-
ments to design online algorithms. To solve this NP-hard
problem, we transform the integer programming problem
to a fraction programming problem, which uses available
tasks and workers to construct a pseudo-tree. In the online
algorithms, we design an objective value to search an appro-
priate task in the pseudo-tree. To analyze the competitive
performance, we develop a dual-fitting approach to analyze
online algorithms by splitting one optimization problem into
two sub-problems.

In this paper, we have made the following contributions:

• We propose a novel optimization framework which
meets the heterogeneity requirement of both tasks and
workers for profit maximization in an online manner.
Moreover, our optimization framework can handle a
concave utility function and a convex cost function,
which is processed by the primal-dual approach.

• We design two efficient online algorithms TAOA (Task
Assignment Online Algorithm) which transform the
integer programming problem into a fraction program-
ming problem to solve the NP-hard problem. In these
proposed algorithms, we use available tasks and workers

to construct a pseudo-tree for appropriate task assign-
ments.

• We analyze the competitive performance of online algo-
rithms by a dual-fitting method, which can achieve a
constant ratio 2. In addition, we examine the perfor-
mance of online algorithms by extensive trace-driven
simulations and these algorithms outperform baseline
algorithms nearly 20% by real dataset.

II. RELATED WORK
In recent years, task assignments have been extensively stud-
ied in mobile crowdsourcing markets. For example, in [13]–
[15], the utility of spatial crowdsourcing system is defined
as the number of finished tasks, while in [16] it is defined
as the reliability and diversity of finished tasks. In order to
maximize the utility of all tasks, Tong and She [11] propose
a Hungarian-based method called TGOA with competitive
ratio 1

4 in random order model. They also utilize a greedy-
based method called TGOA-Greedy to achieve a competitive
ratio of 1

8 when tackling the same model [17]. Both [11]
and [17] use a threshold-based method to maximize utility
in bipartite matching [11] and trichromatic matching [17].
A threshold of utility is sampled beforehand and this method
makes an assignment when task utility is above the threshold.
Goel et al. [18] design an incentive-compatible mechanism to
get an optimal utility under matching constraints.

Many studies have been done on task assignments about
cost minimization in mobile crowdsourcing systems. Singer
and Mittal [19] put forward a constant-competitive mecha-
nism that improves assignment number under a budget and
finds out a minimum total price. Cheng and Varma [20]
put forward a new price plan and show the change of task
remuneration, which has an effect on the number of workers
willing to complete tasks. Bernstein et al. [21] use the queu-
ing theory to analyze retainer model for optimizing total costs
and show the performance of the real-time crowdsourcing
platform. In particular, Mao and Humphrey [22] allocate
resource to virtual machines within deadlines and minimum
financial costs. Be consistent with others, [23] considers the
problemwhich contains a fixed time-limit and a resource cost
budget in a cloud environment.

In addition, there are many models to study the profit
in mobile crowdsourcing systems. Xia [10] first establish
a task reward pricing model with task temporal constraints
(i.e., expected completion time and deadline). Xia et al. [24]
develop a workload allocation policy that makes a reasonable
tradeoff between worker utility and platform profit. Liu [8]
design four incentive mechanisms to select workers to form a
valid team and determine each individual worker’s payment.
In [30], Zhang et al model social welfare (profit) maximiza-
tion problem using a primal-dual optimization framework.
This framework provides richer structures for convex pro-
grams that guide the design of online auctions.

The primal-dual approach [25], [26] has been used to
design online algorithms and auctions for various prob-
lems, such as ski rental problem and metrical job system
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problem. As a classic tool for the design of approximation
algorithms, the primal-dual approach has been successfully
applied to online optimization problem with linear objectives
[31]. The original primal-dual approach focuses on linear
program and does not naturally model convex cost function.
Recently, there are many studies about extending the primal-
dual approach to solve the convex program problems, such
as online scheduling on speed-scalable machines [27] and
online combinatorial auctions with production costs [28]. The
primal-dual approach with convex programs is also used for
an online concave matching problem to get optimal compet-
itive ratios [29].

There is a significant difference between a dual-fitting
method and the primal-dual approach. A dual-fitting method
is only used as a tool to analyze a given algorithm, while
the primal-dual approach guides the design of optimization
algorithm. The dual-fitting method is first developed by [32]
and is widely used for the analysis of online algorithms [34].
In particular, [33], [34] address linear objectives and use the
dual-fitting method to derive competitive bounds for tradi-
tional scheduling algorithms. In [35], the dual-fitting method
is based on a non-convex program and Lagrangian duality to
solve optimization problems. Anand et al. [37] give a more
direct and interesting approach for analyzing online schedul-
ing algorithms with resource augmentation. Reference [36]
considers the general online covering and packing problems
with convex objectives and shows online algorithms with
competitive ratios. Agrawal and Devanur [38] uses the dual-
fittingmethod to get near-optimal regret guarantees for online
stochastic convex programming problems.

III. ONE TASK FOR ONE WORKER MODEL
As we know, a ridesharing platform (DiDi and Uber) is
considered as a typical mobile crowdsourcing system. In this
ridesharing platform, the available taxis in one area do
not change often. The customer requests a taxi service by
mobile devices and the system assigns this request to a taxi
driver. At last, the customer will pay some money to this
driver and this diver need consumes a certain amount of
resource such as the gasoline consumption. In this model,
we consider that workers are chosen from an available set [39]
and arrive a mobile crowdsourcing system randomly [10].
We consider that time is slotted and task j enters the system
at time aj. Each task has a deadline dj [11], which specifies
the finished time. Each worker can only serve one task at any
time slot and all workers are indexed by [1, 2, · · · ,M ]. Upon
arrival, multiple tasks join a global queue managed by the
system andwait to be assigned toworkers. Thus, we canmake
online task assignments in mobile crowdsourcing systems.
After task j is processed by a worker and this worker will
receive a utility. Furthermore, worker i charges for a cost
when this worker is serving a task at time t . The cost is
additive by time t such as the gasoline consumption. In this
paper, our goal is to maximize the total profit, which is the
difference between total utility and total costs. Our system

FIGURE 1. The mobile crowdsourcing system diagram.

TABLE 1. The notations of scheduling parameters.

diagram is shown in Fig.1 and all scheduling variables are
summarized in Table 1.

A. UTILITY MAXIMIZATION
In this section, we consider each task has a utility function.
In addition, task j has a concave utility function fj(·) [2], which
is inferred from the completed task by deadline dj. x ij (t) is a
scheduling decision variable, which represents whether task j
is served by worker i at time t . If worker i accept task j, x ij (t)
will keep 1 until task finished. cj is served as a parameter
for heterogeneous tasks. In this paper, we adopt a same type
of the utility function in [40] and the utility maximization
problem can be formulated as follows:

max
{x(t)}

N∑
j=1

fj
( dj∑
t=aj

M∑
i=1

x ij (t) · cj
)

(1a)

s.t.
M∑
i=1

x ij (t) ≤ 1 ∀j, t, (1b)

aj ≤ t ≤ dj, (1c)

x ij (t) ∈ {0, 1} , ∀j, i, t. (1d)

Here, the first constraint (1b) denotes that each task can
only be assigned to one worker at any time slot. The second
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constraint (1c) denotes that task j is not available beyond its
availability window [aj, dj].
Assumption 1: For all j ∈ [1, 2, · · · ,N ], cj is known when

task j enters to the crowdsourcing system.

B. COST MINIMIZATION
In this section, we consider workers are heterogeneous and
each worker will incur a certain amount of cost. In addition,
the cost of each worker is additive by time t [3]. ri serves as
a parameter to model the resource consumption on worker i.
As such, minimizing overall costs yield the following opti-
mization problem:

min
{x(t)}

M∑
i=1

∞∑
t=0

N∑
j=1

x ij (t) · ri (2a)

s.t.
N∑
j=1

x ij (t) ≤ 1, ∀i, t, (2b)

x ij (t) ∈ {0, 1} , ∀j, i, t, (2c)

t ∈ [0,∞). (2d)

The first constraint (2b) denotes that each worker can only
process one task at any time slot. The second constraint (2d)
states that worker i is available all the time until leaving the
system.
Assumption 2: For all i ∈ [1, 2, · · · ,M ], ri is known to

the crowdsourcing system.

C. OPTIMIZATION PROBLEM FOR PROFIT MAXIMIZATION
In this section, we focus on maximizing the total profit,
which is defined as the difference between total utility and
total costs. Define xj(t) = {x1j (t), x

2
j (t), · · · , x

M
j (t)} and

x(t) = {x1(t), x2(t), · · · , xN (t)} as the vector of scheduling
decision variables. In our model, one worker will be assigned
one task, which cannot exceed worker’s capacity. Moreover,
the time constrain of utility function is inconsistent with the
time constrain of cost function. Thus, we use x ij (t) = 0 and
t 6∈ [aj, dj] to replace aj ≤ t ≤ dj in the utility function. In this
paper, we aim to maximize the total profit by determining
x(t). We formulate the profit optimization problem P1 as
follows:

max
{x(t)}

N∑
j=1

fj
( ∞∑
t=0

M∑
i=1

x ij (t) · cj
)
−

M∑
i=1

∞∑
t=0

N∑
j=1

x ij (t) · ri

s.t. x ij (t) = 0, t 6∈ [aj, dj],∀j, i, t,

Eq. (1b), (1d), (2b) are satisfied. (P1)

D. COMPETITIVE PERFORMANCE METRICS
At the beginning of each time-slot, the system needs to decide
which tasks can be scheduled without knowing future task
arrivals. This scheduling problem turns out to be an integer
programming problem, which is NP-hard even for a linear
utility function [30]. As such, we use an approximation online
algorithm to solve this integer programming problem in P1.

The following definition characterizes the competitive per-
formance of an algorithm by an approximation ratio c.
Definition 1: An algorithm is c-competitive if the algo-

rithm’s objective P is within a factor of c to the optimal
solution’s objective P∗, i.e., P∗ ≤ c · P.

In our model, the smaller approximation ratio is, the better
solution is. For the reason that this approximation solution is
closer to the optimal solution.

IV. ONLINE DUAL-FITTING OPTIMIZATION FRAMEWORK
In the primal problem P1, the profit reveals only when a
task leaves a worker. Moreover, the online decision for the
task assignment should be made before the task is exe-
cuted. As such, it is intractable to solve P1 directly in an
online manner. To deal with this issue, we adopt the primal-
dual approach to design approximation online algorithms.
Observe that the two constraints in P1 are linear. We let
α = (αj

∣∣j = 1, 2, · · · ,N ) and β = (βi
∣∣i = 1, 2, · · · ,M )

denote Lagrangian dual variables corresponding to the first
and second constraints respectively. Thus, the dual problem
of P1 can be formulated as:

min
α≥0,β≥0

max
p

8(p,α,β)

s.t. x ij (t) ∈ {0, 1} , (D1)

where 8(p,α,β) is given by:

8(p,α,β)

=

N∑
j=1

fj
( ∞∑
t=0

M∑
i=1

x ij (t)·cj
)
−

M∑
i=1

∞∑
t=0

N∑
j=1

x ij (t)· ri

−

N∑
j=1

∞∑
t=0

αj(t) ·
(
1−

M∑
i=1

x ij (t)
)

+

M∑
i=1

∞∑
t=0

βi(t) ·
(
1−

N∑
j=1

x ij (t)
)
. (3)

We split the dual problem D1 into optimization problem T
and optimization problem M . T is used to yield an approxi-
mation algorithm andM is used to update dual variables from
the task assignment. Thus, we get the following optimization
problems:

min
α,β

T +M

where T = max
{ N∑
j=1

M∑
i=1

∞∑
t=0

x ij (t) · (αj(t)− βi(t))
}
,

s.t. αj(t) ≥ 0, ∀j, t, βi(t) ≥ 0, ∀i, t,

T ≥ 0, ∀i, j, t,

x ij (t) = 0, t 6∈ [aj, dj],∀j, i, t,

Eq. (1b), (1d), (2b) are satisfied. (D2)
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FIGURE 2. The pseudo-tree for One task for one worker.

M is shown as:

M = max
α≥0,β≥0

{ N∑
j=1

fj(
∞∑
t=0

M∑
i=1

x ij (t) · cj)

−

M∑
i=1

∞∑
t=0

N∑
j=1

x ij (t) · ri

− (
N∑
j=1

∞∑
t=0

αj(t)−
M∑
i=1

∞∑
t=0

βi(t))
}

(4)

A. DESIGN APPROXIMATION ALGORITHM
It turns out that, the task utility function is more than a sum
of multiple timely-dependent functions. We illustrate this
property via the following lemma.
Lemma 1: There exist a function sequence vj(t) such that

fj(
∑dj

t=aj

∑M
i=1 x

i
j (t)· cj)≥

∑dj
t=ajvj(t) ·

∑M
i=1 x

i
j (t) · cj .

where vj(t) =
dfj

(∑M
i=1

∑t
τ=aj

xij (τ )·cj

)
d

(∑M
i=1

∑t
τ=aj

xij (τ )·cj

) .

Readers may refer to Appendix VII-A for the detailed
proof of Lemma 1. By Lemma 1, we can solve this optimiza-
tion problem in a time-slot.

The optimization problem T can be solved in each indi-
vidual time slot, by doing this, we can determine whether
to allocate a task to a worker in an online manner. The
scheduling decision variables need to satisfy

∑M
i=1 x

i
j (t) ≤ 1

and
∑N

j=1 x
i
j (t) ≤ 1, which yields the following optimization

problem:

max
{x(t)}

N∑
j=1

M∑
i=1

x ij (t) ·
(
αj(t)− βi(t)

)
s.t. αj(t) ≥ 0, ∀j, t, βi(t) ≥ 0, ∀i, t,

αj(t) > βi(t) ∀j, i, t,

Eq. (1b), (1d), (2b) are satisfied. (D3)

To solve the integer programming problem in D3, a com-
mon method is to relax x ij (t) as many continuous variables,
i.e., x ij (t) ∈ [0, 1]. Moreover, the sum of these continu-
ous variables is 1. After this, we round the fractional value
to an integer. Similar to the method developed in exist-

Algorithm 1TaskAssignment Online Algorithm to One Task
for One Worker Model
1: Input: cj−1, cj, ri, vj−1(t − 1);
2: Output: x ij (t), vj(t);
3: Initialize : x ij (t) = 1 and caclulate vj(t);
4: When tasks and workers arrive at the system, the system

utilizes tasks and workers to construct a pseudo-tree;
5: Update dual variablesαj(t)= vj−1(t−1) ·cj−1 andβi(t)=
ri;

6: while tasks are available do
7: Find a child task j for worker i which is satisfied
8: j = maxj∈[1,2,··· ,N ]

{
x ij (t) · (αj(t)− βi(t))

}
;

9: if αj(t) > βi(t) then
10: Assign task j to worker i;
11: x ij (t) = 1;
12: Calculate vj(t), utility and cost;
13: Remove task j and worker i from the constructed
14: tree;
15: else
16: x ij (t) = 0, remove the edge between worker i
17: and task j;
18: end if
19: end while

ing work [12], the system uses tasks and workers to con-
struct a pseudo-tree in Fig.2. The worker is considered as
a root node and tasks are regarded as leaf nodes. If x ij (t) >
0, there is an edge between worker i and task j. Then,
the system finds out a worker’s child task following j =
maxj∈[1,2,··· ,N ]

{
x ij (t) · (αj(t)−βi(t))

}
and checks whether

the constraint αj(t) > βi(t) is satisfied. If the condition is
satisfied, the system sets x ij (t) = 1 and assigns task j to worker
i. Then, task j and worker i will be removed from the con-
structed tree. If this constraint is violated, the system rejects
to assign task j to worker i and removes the edge between
them. Moreover, the failed-assignment task will be allocated
to another worker by constructing a new edge at time t .

It remains to update the dual variables in each time slot,
to achieve this, we adopt the primal-dual approach. After
solving D3 and making scheduling decisions in time slot
t − 1, we can get vj−1(t − 1) · cj−1 and ri. We substitute
αj(t) = vj−1(t − 1) · cj−1 and βi(t) = ri into D3. Then,
we can make the task assignment in time t and calculate
vj(t) using x ij (t). We update next dual variables by applying
αj(t + 1) = vj(t) · cj and βi(t + 1) = ri. By these updated
dual variables, the system can determine the task assignment
in time t + 1 on worker i. The optimal solution of D3 can
be derived efficiently with complexity of at most O(N ) by
solving the corresponding KKT equations [43]. The corre-
sponding pseudo-code of TAOAO is shown in Algorithm 1.

B. COMPETITIVE PERFORMANCE ANALYSIS
In this section, we analyze the competitive performance of
TAOAO by a dual-fitting method. Let P and D denote the
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primal and dual objective values respectively. Based on the
primal problem P1, the primal objective value P can be
denoted by:

P =
N∑
j=1

fj
( ∞∑
t=0

M∑
i=1

x ij (t) · cj
)
−

M∑
i=1

∞∑
t=0

N∑
j=1

x ij (t) · ri. (5)

Applying weak duality theory, we have, the dual objective
value D is more than the optimal solution’s objective value
P∗, i.e., P∗ ≤ D [26]. Thus, we can use the dual objective
value to set up performance analysis. By the dual problem
D2, D can be expressed by:

D =
N∑
j=1

M∑
i=1

∞∑
t=0

x ij (t)
(
αj(t)− βi(t)

)

+

( N∑
j=1

fj
( ∞∑
t=0

M∑
i=1

x ij (t) · cj
)
−

M∑
i=1

∞∑
t=0

N∑
j=1

x ij (t) · ri
)

−

N∑
j=1

∞∑
t=0

αj(t)+
M∑
i=1

∞∑
t=0

βi(t). (6)

Following the primal-dual approach, we update αj(t) =
vj−1(t − 1) · cj−1 and βi(t) = ri. At the end, we can
get

∑N
j=1

∑M
i=1

∑
∞

t=0 αj(t) =
∑N

j=1
∑M

i=1
∑
∞

t=0 vj(t) · cj by
ignoring the last one. Thus, the value of T can be given by:

T =
N∑
j=1

M∑
i=1

∞∑
t=0

x ij (t)
(
αj(t)− βi(t)

)

=

N∑
j=1

M∑
i=1

∞∑
t=0

x ij (t)
(
vj(t) · cj − ri

)
(7)

Considering lemma (1), we have fj(
∑
∞

t=0
∑M

i=1 x
i
j (t) ·cj) ≥∑

∞

t=0 vj(t) ·
∑M

i=1 x
i
j (t) · cj. Thus, we can get:

T =
N∑
j=1

M∑
i=1

∞∑
t=0

x ij (t)
(
vj(t) · cj − ri

)

≤

N∑
j=1

fj
( ∞∑
t=0

M∑
i=1

x ij (t) · cj
)
−

N∑
j=1

M∑
i=1

∞∑
t=0

x ij (t) · ri (8)

Therefore, we have T ≤ P.
By the constraint αj(t) > βi(t) for every assignment,

we can get
∑N

j=1
∑
∞

t=0 αj(t) −
∑M

i=1
∑
∞

t=0 βi(t) > 0. Thus,
the value of Q is guaranteed by,

Q =
N∑
j=1

fj
( ∞∑
t=0

M∑
i=1

x ij (t) · cj
)
−

M∑
i=1

∞∑
t=0

N∑
j=1

x ij (t) · ri

−

N∑
j=1

∞∑
t=0

αj(t)+
M∑
i=1

∞∑
t=0

βi(t)

<

N∑
j=1

fj
( ∞∑
t=0

M∑
i=1

x ij (t) · cj
)
−

M∑
i=1

∞∑
t=0

N∑
j=1

x ij (t) · ri

= P. (9)

Thus, we can get Q < P.
Combine Eq(8) and Eq(9), the primal objective valueP and

the dual objective value D satisfy:

D = T + Q < 2P (10)

We can conclude that P ≤ P∗ ≤ D < 2 · P and c = 2
where P∗ is the objective value of optimal solutions. TAOAO
is a 2-competitive algorithm with respect to the total profit.

V. MULTIPLE TASKS FOR ONE WORKER MODEL
In crowdsourcing system, multiple passengers can carpool
a car at the same time by Shun Feng Che. In this section,
we consider a worker can serve multiple tasks simultaneously
[41]. Upon arrival, multiple tasks join a global queue man-
aged by the system and wait to be assigned to a worker at
the beginning of each time slot. If a task is satisfied with
the worker’s capacity constraint, it will be assigned to the
worker. Then, the system will use this capacity constraint to
find out another taskwhich can also be assigned to theworker.
When one task is completed, this worker proceeds to process
unfinished tasks. In this model, our goal is also to maximize
the total profit.

A. COST MINIMIZATION
In this model, ri is a constant that serves as a parameter to
characterize heterogeneous task consumption on worker i.
For all i ∈ [1, 2, · · · ,M ], ri is known to the crowdsourcing
system.Moreover, we assume thatmultiple tasks can be run in
parallel on worker i. The sum of ri cannot exceed the worker’s
capacity Xi. The cost function of each worker is additive
by time t . We formulate cost function as a convex function
similar to [3]. As such, minimizing overall costs yield the
following optimization problem:

min
{x(t)}

M∑
i=1

∞∑
t=0

git
( N∑
j=1

x ij (t) · ri
)

(11a)

s.t.
N∑
j=1

x ij (t) · ri ≤ Xi, ∀i, (11b)

x ij (t) ∈ {0, 1} , ∀j, i, t. (11c)

B. OPTIMIZATION PROBLEM FOR PROFIT MAXIMIZATION
In this section, we focus on maximizing the total profit,
which is defined as the difference between total utility and
total costs. Similar to section III-D, our profit maximization
problem is an integer optimization programming problem,
which is NP-hard. Paralleling Section III-A, we utilize Eq(1)
to denote the utility function. In this paper, we aim to max-
imize the total profit by determining x(t), which yields the
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optimization problem P2, as shown below:

max
(x(t))

N∑
j=1

fj(
∞∑
t=0

M∑
i=1

x ij (t) · cj)−
M∑
i=1

∞∑
t=0

git (
N∑
j=1

x ij (t) · ri)

s.t.
M∑
i=1

x ij (t) ≤ 1, ∀j, t,

N∑
j=1

x ij (t) · ri ≤ Xi, ∀i,

x ij (t) = 0, t 6∈ [aj, dj],

Eq. (1d) are satisfied. (P2)

C. ONLINE DUAL-FITTING OPTIMIZATION FRAMEWORK
Based on the dual problem, we can design approximation
algorithms and conduct performance analysis. We adopt the
primal-dual approach to solve this dual problem. Observe
that the two constraints in P2 are linear. We let λ =

(λj
∣∣j = 1, 2, · · · ,N ),γ = (γi

∣∣i = 1, 2, · · · ,M ) denote the
Lagrangian dual variables corresponding to the first and sec-
ond constraints respectively. The dual problem of P2 can be
formulated as:

min
λ≥0,γ≥0

max
p

8(p,λ, γ )

s.t. x ij (t) ∈ {0, 1} , (D4)

where 8(p,λ, γ ) is given by:

8(p,λ, γ ) =
N∑
j=1

fj
( ∞∑
t=0

M∑
i=1

x ij (t) · cj
)

−

M∑
i=1

∞∑
t=0

git
( N∑
j=1

x ij (t) · ri
)

−

N∑
j=1

∞∑
t=0

λj(t)
(
1−

M∑
i=1

x ij (t)
)

+

M∑
i=1

∞∑
t=0

γi(t)
(
Xi −

N∑
j=1

x ij (t) · ri
)
. (12)

We split the dual problem D4 into optimization problem A
and optimization problem B. A is utilized to yield an approx-
imation algorithm and B is used to update the dual variables
from the task assignment. Thus, we can get the following
optimization problems:

min
λ,γ

A+ B

where A = max
{ ∞∑
t=0

N∑
j=1

M∑
i=1

x ij (t)(λj(t)− γi(t) · ri)
}
,

s.t. λj(t) ≥ 0, ∀j, t, γi(t) ≥ 0, ∀i, t,

λj(t) >
N∑
j=1

γi(t) · ri, ∀i, j, t,

FIGURE 3. The pseudo-tree for multiple tasks for one worker model.

x ij (t) = 0, t 6∈ [aj, dj],

Eq. (1b), (1d), (11b) are satisfied. (D5)

B is shown as:

B = max
λ≥0,γ≥0

{ N∑
j=1

fj(
∞∑
t=0

M∑
i=1

x ij (t) · cj)

−

M∑
i=1

∞∑
t=0

git (
N∑
j=1

x ij (t) · ri)

−

∞∑
t=0

(
N∑
j=1

λj(t)−
M∑
i=1

γi(t) · Xi)
}

(13)

D. DESIGN APPROXIMATION ALGORITHM
In this section, we design approximation algorithms based on
the primal-dual approach. It turns out that, the worker cost
function is less than a sum of multiple functions. We illustrate
this property as follows.
Lemma 2: There exist a function sequence oi(t) such that

git (
∑N

j=1 x
i
j (t) · ri) ≤

∑N
j=1 oi(t) · x

i
j (t) · ri.

where oi(t) =
dgit

(∑j
κ=1 x

i
κ (t)·ri

)
d

(∑j
κ=1 x

i
κ (t)·ri

) .

Readers may refer to Appendix VII-B for the proof of
Lemma 2. By Lemma 1 and Lemma 2, we can solve this
optimization problem in a time-slot.

Based on the solution of A, we can determine whether to
allocate a task to a worker in each time slot. In our model,
scheduling decision variables need to satisfy

∑M
i=1 x

i
j (t) ≤ 1

and
∑N

j=1 x
i
j (t) ·ri ≤ Xi, which yields the following optimiza-

tion problem:

max
{x(t)}

N∑
j=1

M∑
i=1

x ij (t)
(
λj(t)− γi(t) · ri

)

s.t.
N∑
j=1

γi(t) · ri < λj(t), ∀j, i, t,

N∑
j=1

x ij (t) · ri ≤ Xi, ∀i,
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x ij (t) = 0, t 6∈ [aj, dj],

Eq. (1b), (1d), (11b) are satisfied. (D6)

To solve the integer programming problem in D6, a com-
mon method is to relax x ij (t) as many continuous variables,
i.e., x ij (t) ∈ [0, 1] . Moreover, the sum of these continuous
variables is 1. After this, we round the fractional value to
an integer. Similar to the method developed in existing work
[12], the system utilizes tasks and workers to construct a
pseudo-tree in Fig.3. Then, we update the dual variables by
λj(t) = vj−1(t − 1) · cj−1 and γi(t) = oi(t − 1). The system
proceeds to find out a worker’s child task following j =
maxj∈[1,2,··· ,N ]

{
x ij (t)·(λj(t)−γi(t)·ri)

}
and checks whether

Xi ≥
∑N

j=1 x
i
j (t) · ri is satisfied. If this condition is satisfied,

the system will assign task j to worker i and remove task j
from the constructed tree. Then, the system searches another
task which can also be assigned to worker i at time t . If this
constraint is violated, the system rejects task j and removes
the edge between them. Moreover, the failed-assignment task
will be allocated to another worker by constructing a new
edge at time t . At last, we calculate vj(t) · cj and oi(t)
for the next assignment. The optimal solution of D6 can
be derived efficiently with complexity of at most O(N ) by
solving the corresponding KKT equations [43]. The pseudo-
code of TAOAM is shown in Algorithm 2.

Algorithm 2 Task Assignment Online Algorithm to Multiple
Tasks for One Worker Model
1: Input: cj−1, cj, ri, vj−1(t − 1);
2: Output: cj, cj−1, ri,Xi, vj−1(t − 1), oi(t − 1);
3: Initialize : x ij (t) = 1 and caclulate vj(t), oi(t);
4: When tasks and workers arrive at the system, the system

utilizes tasks and workers to construct a pseudo-tree;
5: Update dual variables λj(t) = vj−1(t−1)·cj−1 and γi(t) =
oi(t − 1);

6: while tasks are available do
7: Find a child task j for worker i which is satisfied
8: j = maxj∈[1,2,··· ,N ]

{
x ij (t)(λj(t)− γi(t) · ri)

}
;

9: if λj(t) >
∑N

j=1 γi(t) · riXi ≥
∑N

j=1 x
i
j (t) · ri then

10: Assign task j to worker i;
11: x ij (t) = 1;
12: Calculate vj(t), oi(t), utility and cost;
13: Update dual variables λj(t) and γi(t);
14: Remove task j from the constructed tree;
15: else
16: x ij (t) = 0, Reject task j for worker i
17: end if
18: end while

E. COMPETITIVE PERFORMANCE ANALYSIS
In this section, we analyze the competitive performance of
TAOAM by a dual-fitting method. Let P and D denote the
primal and dual objective values at the end.Wefirst infer from
the primal problem P2, the primal objective value P can be

expressed by:

P =
N∑
j=1

fj
( ∞∑
t=0

M∑
i=1

x ij (t) · cj
)
−

M∑
i=1

∞∑
t=0

git
( N∑
j=1

x ij (t) · ri
)
.

(14)

By dual problem D5, the dual objective value D can be
denoted by:

D =
∞∑
t=0

N∑
j=1

M∑
i=1

x ij (t)
(
λj(t)−γi(t) · ri

)

+

N∑
j=1

fj
( ∞∑
t=0

M∑
i=1

x ij (t) · cj
)
−

M∑
i=1

∞∑
t=0

git
( N∑
j=1

x ij (t) · ri
)

−

( N∑
j=1

∞∑
t=0

λj(t)−
M∑
i=1

∞∑
t=0

γi(t) · Xi
)

(15)

Following the primal-dual approach, we update λj(t) =
vj−1(t−1) ·cj−1andγi(t)= oi(t−1). For worker i, we can get∑N

j=1
∑
∞

t=0 λj(t) =
∑N

j=1
∑
∞

t=0 vj(t)·cj and
∑
∞

t=0 γi(t)·ri =∑
∞

t=0 oi(t) · ri by ignoring the last one. Thus, at the end,
the value of A can be given by:

A =
∞∑
t=0

N∑
j=1

M∑
i=1

x ij (t)
(
λj(t)− γi(t) · ri

)

=

∞∑
t=0

N∑
j=1

M∑
i=1

x ij (t)
(
vj(t) · cj − oi(t) · ri

)
(16)

Consider the lemma (1) and the lemma (2), we have
fj(
∑
∞

t=0
∑M

i=1 x
i
j (t) · cj) ≥

∑
∞

t=0
∑M

i=1 vj(t) · x
i
j (t) · cj and

git (
∑N

j=1 x
i
j (t) · ri) ≤

∑N
j=1 oi(t) · x

i
j (t) · ri. Thus, we can get:

A =
∞∑
t=0

N∑
j=1

M∑
i=1

x ij (t)
(
vj(t) · cj − oi(t) · ri

)

≤

N∑
j=1

fj
( ∞∑
t=0

M∑
i=1

x ij (t)· cj
)
−

M∑
i=1

∞∑
t=0

git
( N∑
j=1

x ij (t) · ri
)
(17)

Therefore, we have A ≤ P.
Inferred from λj(t) >

∑N
j=1 γi(t) · ri, we can get λj(t) ≥

γi(t) · Xi for every task assignment. Thus,

∞∑
t=0

( N∑
j=1

λj(t)−
M∑
i=1

γi(t) · Xi
)
≥ 0 (18)

Thus, the value of B is guaranteed by,

B =
N∑
j=1

fj
( ∞∑
t=0

M∑
i=1

x ij (t)·cj
)
−

M∑
i=1

∞∑
t=0

git
( N∑
j=1

x ij (t) · ri
)

−

( N∑
j=1

∞∑
t=0

λj(t)−
M∑
i=1

∞∑
t=0

γi(t) · Xi
)
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≤

N∑
j=1

fj
( ∞∑
t=0

M∑
i=1

x ij (t)· cj
)
−

M∑
i=1

∞∑
t=0

git
( N∑
j=1

x ij (t) · ri
)

(19)

Thus, we have B ≤ P.
Combine (17) and (19), the primal objective value P and

the dual objective value D satisfy:

D = A+ B ≤ 2 · P (20)

We can conclude that P ≤ P∗ ≤ D ≤ 2·P and c = 2 where
P∗ is the objective value of optimal solutions. TAOAM is also
a 2-competitive algorithm with respect to the total profit.

VI. PERFORMANCE EVALUATION
In this section, we evaluate the performance of our proposed
online algorithms using a real dataset, which is collected from
a practical ridesharing platform. In crowdsourcing systems,
the passengers submit their current locations and destinations
to the platform by mobile phones. In the platform, the dif-
ferent car presents different unit-price and the payment of a
passenger can be viewed as her utility. In addition, each car
consumes a certain amount of resource such as the gasoline
consumption, which can be viewed as a worker cost. Note that
a worker can refuse the task assignment, if the profit of this
assignment doesn’t make a satisfaction. As a result, we apply
the approximation algorithms to make online assignments in
such a platform.

A. EXPERIMENT FOR TAOAO
Experiment Setup: We use three months’ data from
March to May in 2013 [42] as a training data set to evaluate
our proposed algorithms. Based on the trace data, we obtain
arrival time aj and finished time dj for each task j. Moreover,
we can get the running length of each task and the unit-price
of every car. Similar to [40], the utility of task j is modeled
as a concave function fj(xj) = zj(xj · cj)s. Here, we consider
s = 1/2, zj is generated from a uniform distribution in [1,5]
and cj is the running length of each task. For the cost function,
ri is generated from a uniform distribution in [1,5], which is
similar to [40].

Baseline Algorithms:We use the following four schemes
as baselines for comparison with our proposed algorithms:
• OEC: (Optimization Estimations Costs). In each time-
slot, the crowdsourcing system assigns the task to a
worker by cvx to minimize cost.

• NLF: (Nearest Length First). In each time-slot,
the crowdsourcing system assigns the task to the nearest
worker.

• BUF (Biggest Utility First). In each time-slot,
the crowdsourcing system chooses the task with the
biggest utility to schedule.

• PDOAO (Primal-Dual Online Algorithm One). In each
time-slot, the system chooses the task based on [30] in
one task for one worker model.

In our proposed algorithms, we find out a worker’s child
task with the maximum objective value by every task assign-
ment. Therefore, the different number of workers will affect

FIGURE 4. The impact of worker number and scheduling intervals in the
one task for one worker model.

FIGURE 5. The utility, the costs, the total profit and the ratio of nearest
workers.

the total profit. In this section, we scale out the different
number of workers in a ridesharing platform to show its
impact on the total profit. Results in Fig. 4a show that when
the number of workers is 200, the total profit is better than that
of the other seven situations. Given economic efficiency and
the total profit, we ignore that the number of workers is more
than 1600 and choose the number of workers to be 200 for
TAOAO.

In our model, every task assignment will affect the remain-
ing task assignments. In the proposed algorithms, the differ-
ent length of each time slot will contain different number of
workers and tasks, which will make an influence in remaining
task assignments. Thus, it is necessary to study the length of
each time slot for total profit. In this part, we evaluate the
performance by tuning the length of a scheduling interval,
i.e., the length of each time slot. Fig. 4b shows the total profit
of 5 seconds is more than the total profit of the other schedul-
ing intervals. As one may expect, with shorter scheduling
interval, TAOAO makes better scheduling decisions which
tasks are assigned to appropriate workers accurately. Given
passengers’ waiting time, we choose the scheduling interval
to be 5 seconds for TAOAO.

With the parameters set above, we proceed to compare the
performance of TAOAOwith the other four baseline schemes,
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namely, OEC, NLF, BUF and PDOAO. Fig. 5a shows the
utility of all tasks when different algorithms iterate over time.
For TAOAO, the curve is always upper that of the other
four algorithms. OEC and BUF are closely throughout the
entire simulation. NLF and PDOAO are closely throughout
the entire simulation. Fig. 5a also shows that TAOAO is 20%
larger than the other four algorithms. In summary, TAOAO is
aimed to maximize total utility. BUF is based on the schedul-
ing priority for the task with the maximum utility. NLF and
PDOAO assign a task to a worker without considering the
utility.

In Fig. 5b, we depict the costs of all workers with respect to
different algorithms iterate over time. For TAOAO, the curve
is always under that of OEC and BUF. TAOAO is closely
to NLF throughout the entire simulation. The curve of
PDOAO is under that of other four algorithms. That is to say,
the worker costs of PDOAO is less than that of others. Fig. 5b
also shows that, TAOAO reduces total cost vector by nearly
10% comparing to OEC and BUF. In summary, TAOAO
algorithm is based on the online primal-dual approach, which
will minimize overall costs in each time-slot. In the NLF
algorithm, the system assigns the task to the nearest length
worker, which will decrease the subsection costs by mini-
mizing empty-car length. The BUF algorithm assigns tasks to
workers without considering the costs. In the PDOAO algo-
rithm, the system assigns tasks to workers mainly considering
the costs.

Fig. 5c shows the total profit when different algorithms
iterate over time. For TAOAO, the curve is always above
that of the other four algorithms throughout the entire sim-
ulation. The curve of NLF is always under that of the other
four curves, which is the mean that the total profit of NLF
is smaller than that of others. In a ridesharing platform,
it is therefore justified to adopt TAOAO as the scheduling
algorithm which aims to maximize the total profit. Fig. 5c
shows that TAOAO improves the total actual profit by 20%
comparing to the other four algorithms. Therefore, our online
algorithm TAOAO shows a good performance as compared to
the baseline algorithms.

Fig. 5d shows the ratio of nearest workers to all workers
for the four algorithms. For TAOAO, the histogram is always
lower than that of the other four algorithms. The histogram
of NLF is always above of the other four histograms, which
each task is assigned to the nearest worker. Fig. 5d shows that
TAOAO algorithm only chooses nearly 43% nearest workers
to accomplish tasks and OEC algorithm chooses nearly 51%
nearest workers to accomplish tasks. Fig. 5d shows that BUF
algorithm chooses nearly 60% nearest workers to accomplish
tasks and PDOAO algorithm chooses nearly 70% nearest
workers to accomplish tasks. Therefore, we can get that
appropriate workers don’t include all nearest workers in a
ridesharing platform.

B. EXPERIMENT FOR TAOAM
We use three months’ data fromMarch toMay in 2013 [42] as
a training data set to evaluate our proposed algorithms. Based

FIGURE 6. The impact of worker number and scheduling intervals in the
multiple tasks for one worker model.

on the trace data, we obtain arrival time aj and finished time
dj for each task j. Moreover, we can get the running length
of each task and the unit-price of every car. Similar to [40],
the utility of task j is modeled as a concave function fj(xj) =
zj(xj · cj)s. Here, we consider s = 1/2, zj is generated from
a uniform distribution in [1,5]. The cost function is defined
as gi(xj) = qi(

∑N
j=1 xj · ri)

m, which is a convex function form
similar to [30]. Here, we considerm = 2, qi is generated from
a uniform distribution in [1,5].

Baseline Algorithms: We use OEC, RA, BUF, PDOAM
as baselines for comparison with our proposed algorithms:
• RA: (RandomAssignment). In each time-slot, the crowd-
sourcing system assigns a task to a worker randomly.

• PDOAM (Primal-Dual Online Algorithm Multiple).
In each time-slot, the system chooses the task based on
[30] in multiple tasks for one worker model.

C. THE IMPACT OF M FOR TAOAM
In this section, we scale out the different number of workers in
a ridesharing platform to show its impact on the total profit.
Results in Fig. 6a shows that when the number of workers
is 400, the total profit is better than that of the other seven
situations. Given the total profit, we choose the number of
workers to be 400 for TAOAM.

In this part, we evaluate the performance by tuning the
length of a scheduling interval, i.e., the length of each time
slot. Fig. 6b shows the total profit of 5 seconds is more than
that of the other scheduling intervals. As onemay expect, with
shorter scheduling interval, TAOAMmakes better scheduling
decisions which tasks are assigned to appropriate workers
accurately. Given passengers’ waiting time, we choose the
scheduling interval to be 5 seconds for TAOAM.

With 400 workers and 5 seconds, we proceed to compare
the performance of TAOAM with the other four baseline
schemes, namely, OEC, RA, BUF and PDOAM. Fig. 7a
shows the utility of all tasks when different algorithms iterate
over time. For TAOAM, the curve is always upper that of
the other four algorithms. OEC, RA and BUF are closely
throughout the entire simulation. The curve of PDOAM is
under others, which is the mean that the utility of PDOAM
is less than that of others. Fig. 7a also shows that TAOAM is
10% larger than the other four algorithms. TAOAM utilizes
the online primal-dual approach to maximize total utility,
which is better than others.
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FIGURE 7. The utility, the costs, the total profit and the ratio of nearest
workers.

In Fig. 7b, we depict the costs of all workers with respect to
different algorithms iterate over time. For TAOAM, the curve
is always under that of OEC, RA, BUF and PDOAM. That is
to say, the worker costs of TAOAM is less than that of other
four algorithms. Fig. 7b also shows that, TAOAM reduces
the total costs by nearly 5% comparing to the other four
algorithms. In summary, TAOAM algorithm is based on the
online primal-dual approach, which will minimize overall
costs in each time-slot.

Fig. 7c shows the total profit of all workers when different
algorithms iterate over time. For TAOAM, the curve is above
that of the other four algorithms. In a ridesharing platform,
it is therefore justified to adopt TAOAM as the scheduling
algorithm which aims to maximize the total profit. Fig. 7c
shows that TAOAM improves the total profit by 20% com-
paring to the other four algorithms. Therefore, our online
algorithm shows a good performance as compared to the
baseline algorithms.

Fig. 7d shows the ratio of nearest workers to all workers
for the five algorithms. For TAOAM, the histogram is lower
than that of the other four algorithms. Fig. 5d shows that
TAOAM algorithm only chooses nearly 40% nearest workers
to accomplish tasks and OEC algorithm chooses nearly 56%
nearest workers to accomplish tasks. Fig. 5d shows that RA
algorithm chooses nearly 50% nearest workers to accomplish
tasks and BUF algorithm chooses nearly 65% nearest workers
to accomplish tasks. For PDOAM, the histogram is higher
than that of the other four algorithms. Therefore, we can get
that appropriate workers don’t include all nearest workers in
a ridesharing platform.

VII. CONCLUSION
In this paper, we make an attempt to study the online opti-
mization problem by considering both task utility and worker
costs to maximize the total profit in mobile crowdsourcing

systems. Following this framework, we construct a pseudo-
tree to search the maximum objective value for task assign-
ments and study two optimization problems based on work-
ers’ capacity. In addition, we present the online algorithms for
task assignments and analyze the competitive performance
using a dual-fitting method. Trace driven simulations vali-
date our designed online solutions perform much better than
baseline algorithms. As future work, we plan to combine
our model with deep-learning for task online scheduling in
a crowdsourcing system.

APPENDIX
A. PROOF OF LEMMA 1

Proof: To prove this lemma, it suffices to show that fj(·)
is a concave and increasing function, for any t ∈ [aj, dj],
it follow that,

fj
( dj∑
t=aj

M∑
i=1

x ij (t) · cj
)

= fj
( M∑
i=1

x ij (t1) · cj +
M∑
i=1

x ij (t2) · cj + · · · +
M∑
i=1

x ij (tn) · cj
)

≥ f ′j
( M∑
i=1

x ij (t1) · cj
) M∑
i=1

x ij (t1) · cj

+ f ′j
( M∑
i=1

x ij (t1) · cj +
M∑
i=1

x ij (t2) · cj
) M∑
i=1

x ij (t2) · cj

+ · · ·+f ′j
( M∑
i=1

x ij (t1)·cj+· · ·+
M∑
i=1

x ij (tn)·cj
) M∑
i=1

x ij (tn)·cj.

(21)

where t1, t2 . . . tn are the time slots.
Let vjt replace every derivative term:

f ′j
(∑M

i=1
x ij (t1) · cj

)
= vj(t1),

f ′j
(∑M

i=1
x ij (t1) · cj +

∑M

i=1
x ij (t2) · cj

)
= vj(t2),

. . .

f ′j
(∑M

i=1
x ij (t1)· cj+ · · · +

∑M

i=1
x ij (tn)·cj

)
=vj(tn).

(22)

Inferred from E.q(22), we have:

tn∑
t=t1

f ′j
( tn∑
t=t1

M∑
i=1

x ij (t) · cj
)
·

M∑
i=1

x ij (t) · cj

=

tn∑
t=t1

vj(t) ·
M∑
i=1

x ij (t) · cj. (23)

Thus, we have:

fj
( tn∑
t=t1

M∑
i=1

x ij (t) · cj
)
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≥

tn∑
t=t1

f ′j
( tn∑
t=t1

M∑
i=1

x ij (t) · cj
)
·

M∑
i=1

x ij (t) · cj

=

tn∑
t=t1

M∑
i=1

vj(t) · x ij (t) · cj. (24)

This completes the proof. �

B. PROOF OF LEMMA 2
Proof: To prove this lemma, it suffices to show that

git (·) is a convex and increasing function, for any t ∈ [0,∞],
it follow that,

git
( N∑
j=1

x ij (t) · ri
)

= git
(
x i1(t) · ri + x

i
2(t) · ri + · · · + x

i
N (t) · ri

)
≤ g′it

(
x i1(t) · ri

)
· x i1(t) · ri

+ g′it
(
x i1(t) · ri + x

i
2(t) · r

i
2

)
· x i2(t) · ri + · · ·

+ g′it
(
x i1(t)· ri+x

i
2(t)· ri+· · ·+x

i
N (t)·ri

)
· x iN (t)· ri.

(25)

Thus, we have:

git
( N∑
j=1

x ij (t) · ri
)
≤

N∑
j=1

g′it
( j∑
κ=1

x iκ (t) · ri
)
x ij (t) · ri (26)

Let oi(t) replace the derivative term, we have:

g′it
( j∑
κ=1

x iκ (t) · ri
)
x ij (t) · ri = oi(t) · x ij (t) · ri. (27)

Thus, we have:

git
( N∑
j=1

x ij (t) · ri
)
≤

N∑
j=1

oi(t) · x ij (t) · ri. (28)

This completes the proof. �
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