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ABSTRACT Electricity generation systems are dependent on water availability and planning for future water
scarcity is currently hindered by limited data and predictive models. The Energy-Water-Emissions Dash-
board (EWED) is a novel environmental data management system that integrates multiple heterogeneous data
sources and provides information for nearly 10,000 individual power plants across the United States. This
article describes our empirical research of using machine learning models for electricity prediction and water
usage in the context of water availability constraints. We evaluate the use of linear regression, decision tree
regression, random forest regression, eXtreme Gradient Boosting (XGBoost), and Artificial Neural Network
(ANN). Based on the performance evaluation of each model, we use ANN for generation and water con-
sumption and XGBoost for water withdrawal prediction in the production environment. Model performance
evaluation is based on statistical measures including Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), coefficient of determination (R2), Willmott’s Index of Agreement (WIA), RMSE-observations to
Standard deviation Ratio (RSR), Nash—Sutcliffe model Efficiency Coefficient (NSEC), and Percent Bias
(PBIAS). This article presents performance improvements of our machine learning approach compared to
the conventional coefficient method used by EWED, for example, RMSE decreased 8.1% in generation, 59%
in water consumption, and 53% in water withdrawal prediction. The significance of this research is that it
covers a wide variety of power plant types, it uses consistent methods across energy and water systems, and
provides predictions at multiple management scales across the United States to assist with future planning
at the energy-water nexus.

INDEX TERMS Power systems modeling, electricity generation prediction, water consumption prediction,
water withdrawal prediction, machine learning, energy-water nexus.

I. INTRODUCTION

The association between energy and water systems is an
important factor to consider in environmental management,
and the term energy-water nexus has been used to draw
attention to these connections. Water plays an important role
in energy production, such as supplying cooling systems in
various types of power plants. The availability of water is
determined by a range of environmental and societal factors
including climate, water management, and competing uses
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in the agricultural, municipal, and other sectors. In addition,
electricity generation produces emissions that contribute to
climate change, which is expected to reduce water availability
in many parts of the world. Meanwhile, demand for electricity
is expected to increase, which will, in turn, likely place
more water demands on increasingly scarce water resources.
Planning for such future constraints in the energy-water nexus
is thus critical to energy reliability and managing environ-
mental impacts. However, there is not enough attention paid
to building models based on existing data and at resolutions
that can be used for planning and management purposes.
In addition, data on energy generation, emission, water
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withdrawal, and water consumption in the United States are
scattered in disparate data sources with lag time and are often
incomplete. Thus, there is a need for an integrated system
that allows users to visualize and analyze data at a finer
resolution on both temporal and spatial levels. The Energy-
Water-Emissions Dashboard (EWED) project designed and
implemented such a software system through a collaboration
of computer and environmental scientists, and was supported
by a United States Environmental Protection Agency (EPA)
Exchange Network Grant.

The EWED project integrated federal data sources from
EPA, the Energy Information Administration (EIA), and oth-
ers to support visualization and planning with both graphical
web-based user interfaces and web services. EWED provides
the services for querying and visualizing a historic system
and a projected system covering the entire United States.
The historic system integrates power plant generation, green-
house gas emissions, water usage, and hydrologic unit water
availability data at the monthly time step from 2003 to the
most-recent available. The projected system is based on the
EIA’s regional electricity generation projections out to 2050.
The current implementation of EWED produces the predic-
tion by disaggregating these regional electricity projections
to the power plant scale and multiplying that generation
by coefficients based on past environmental performance,
as described in detail in the subsequent section. As a parallel
approach, we also predicted generation, water withdrawal,
and water consumption at the power plant level using machine
learning models.

This article describes our machine learning approach of
prediction, including data cleaning and pre-processing, fea-
ture selection, and training. We evaluate the use of linear
regression, decision tree regression, random forest regression,
eXtreme Gradient Boosting (XGBoost), and Artificial Neural
Network (ANN) [1]. We implement the machine learning
part of the project using Python because ample libraries are
available. Scikit-learn [2] is used for linear regression, deci-
sion tree regression, and random forest regression. XGBoost
is based on the implementation provided by [3]. Our ANN
is built based on the Keras sequential model [4]. Other
models and tools exist for machine learning. However, we did
not perform an exhaustive search to evaluate all options in
this version of the project because it is widely accepted
that ANN and the ensemble learning approach, such as
XGBoost, are very powerful compared to other models.
In addition, the performance of ANN and XGBoost are
excellent in this project in the context of a wide variety of
power plants, which satisfied the purpose of this empirical
study. We use various statistical measures to evaluate the per-
formance, including Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), coefficient of determination (R?),
Willmott’s Index of Agreement (WIA), RMSE-observations
to Standard deviation Ratio (RSR), Nash-Sutcliffe model
Efficiency Coefficient (NSEC), and Percent Bias (PBIAS).
Based on the performance evaluation results, we use ANN
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for the prediction of generation and water consumption, and
XGBoost for water withdrawal prediction.

In the related work section, we discuss related machine
learning research for generation and water usage predictions.
As detailed in Section VI, existing power generation predic-
tion studies focus on specific types of power plants, such
as solar [5], [6], [7], [8], [9], [10], wind [11] [12] [13],
and thermal [14]. Existing machine learning research on the
prediction of water use is limited, for example, for build-
ing water consumption [15], for water consumption of a
city [16], for water treatment [17], and for water resource
management [18].

Compared to the related research and the coefficient
approach, the main contributions of this research are:

o Our machine learning approach has a better performance
than the conventional coefficient approach to prediction.
RMSE decreased 8.1% in electricity generation, 59% in
water consumption, and 53% in water withdrawal.

o This project covers power generation prediction of
nearly 10,000 power plants with a wide range of gener-
ation capacities and power plant types across the United
States, compared to existing machine learning research
that focused on a specific type of power plant generation
prediction.

« We provide water consumption and withdrawal predic-
tion for power plants. Power plant water usage predic-
tion lacks attention and study in the existing literature.

The rest of the article is organized as follows. Section II
provides an overview of the EWED project. Section III
describes our machine learning approach to the prediction
of future power plant generation, while Section IV presents
water consumption and withdrawal prediction. Section V
discusses issues and solutions in the implementation process.
Section VI describes related work. Section VII summarizes
and concludes the article.

Il. THE EWED PROJECT

To identify our set of power plants, we first integrated data
from the EPA Facility Registry Service (FRS) web ser-
vice [19] through the filter of “EIA860.” This dataset con-
tains power plants reported from the U.S. Energy Information
Administration (EIA) program to the EPA FRS. The regis-
tration information includes registry identifier, plant code,
facility name, address, latitude, longitude etc. Most of the
data from FRS are accurate, but they contain inaccurate
attribute values for some plants, such as latitude, longi-
tude, and address. They also contain outdated attribute val-
ues, such as county and watershed (eight-digit hydrologic
unit code, or HUC-8), that need to be replaced. We used
Geographical Information System (GIS) software, Google
Maps API, customized Python scripts, and GeoJSON files
retrieved from United State Census [20] and USDA Water
Supply Stress Index Model (WaSSI) [21] in order to pro-
duce up-to-date information and add additional attributes
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FIGURE 1. EWED Interface displaying watershed-scale prediction.

to power plants. Other data sources that we integrated
are EPA GHGRP (EnviroFacts) greenhouse emissions [22]
and the U.S. Energy Information Administration (EIA)
Plant-level Generation [23]. Both are web services with
Restful APIs.

We retrieved the information of water withdrawal and
consumption per power plant from the EIA’s thermoelectric
cooling water data [24], which is in the format of excel files.
Historic water availability data were retrieved from USFS
WaSSI [21] in the format of CSV files. Future generation
prediction was provided by the EIA Annual Energy Outlook
2019 (AEO) [25] through Restful APIs, providing data only
at the level of regions. Future water availability predictions
from twenty climate models, each using two different climate
scenarios, are obtained from WaSSI [26] in the format of
CSV files. Those heterogeneous sources have different for-
mats with different qualities, present incomplete data, have
different unique identifiers, and are challenging to reference
each other. Eventually, the data were cleaned thoroughly and
stored in Microsoft SQL Server database with 108 tables.
In addition to providing web-based graphical interface to
registered users, EWED also offers Web Services through
EPA Virtual Node Services.

EWED aggregates power plant data to different scales,
such as state, county, and hydrologic unit levels, providing
information about future usage and alerting users to pos-
sible water constraints. Users can select a future year and
month to compare the predicted water availability and the
predicted water withdrawal or consumption for a hydrologic
unit, which can be used to support planning and decision
making for this hydrologic area. For example, if the predicted
water use is constantly more than water availability for a
region in consecutive time periods, the types of plants that
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consume more water may need to be replaced. Figure 1 is a
snapshot of the EWED interface, which presents the projected
data in 2049 and 2050 using the conventional coefficient-
based approach for Hassayampa Watershed (alternative term
for HUC in this project), in which projected water consump-
tion and withdrawal values are more than the water that is
available.

Ill. POWER PLANT GENERATION PREDICTION

Most of the existing, related research predicts specific types
of power generation based on factors such as humidity, wind
speed, and temperature, for example, for solar power sys-
tems [5], [6], [7], [8]. EWED has nearly 10,000 power plants
across the United States with various energy technologies
and operating under a range of environmental and opera-
tional conditions. To cover the large variety of power plants,
the practical solution for EWED’s projection system was to
use data published by the EIA AEO 2019 [25]. The AEO is
based on modeling from the fusion of domain experts that
consider not only physical climate conditions, but other fac-
tors such as economic growth, energy prices, and technolog-
ical development. As a result, complicated factors, including
both climate and non-climate concerns, are incorporated in
our prediction.

EIA AEO 2019 provides yearly generation data to
2050 under different energy sector scenarios (called “cases’”)
for each Electric Market Module (EMM) region, per
fuel type and prime mover (together called ‘‘fuel-mover”
herein). There are eight cases representing variability
in energy markets due to ranges of potential economic
growth, oil prices, and technology development. There are
22 EMM regions throughout contiguous United States,
which correspond to the North American Electric Reliability
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Corporation (NERC) and Independent System Opera-
tor (ISO) regions. For example, EMM code TRE corresponds
to the Texas Reliability Entity. There are 13 fuel types — for
example NG is natural gas—and two prime movers used only
to differentiate solar photovoltaic (SLR-PHTVL) from solar
thermal (SLR-THERM), for a total of 14 fuel-mover types.
We stored each case in a relational table with EMM code,
fuel-mover, generation year, and generation value.

Because the EIA AEO data are yearly and at the regional
scale, they cannot satisfy the need to show monthly data
for each power plant or other scales such as county, state,
or watershed (HUC-8). To produce plant-level monthly data,
we used the coefficient approach of disaggregating the AEO
raw data by calculating the percent contribution to the total
EMM-regional generation by a power plant for each month
in the historic data for year 2018. We then applied that per-
centage to AEQO’s projected regional generation to produce
monthly data at the plant level for future years. Note that the
most recent complete calendar year for raw data of generation
with dominant types is 2018, due to lag time of reporting
to the EIA. At the time of this writing in 2020, only 19%
of the plants reported a dominant type in 2019 and zero had
been reported for 2020. The subsequent sub-sections present
an alternative way of using machine learning to achieve the
same goal of predicting monthly generation, but with better
performance.

A. DATA PRE-PROCESSING AND FEATURE SELECTION
Data in our database have been cleaned both by our cus-
tomized computer programs and manually by environmental
scientists in our team to ensure data consistency and to enable
correct cross-referencing among different database tables.

The target in this supervised learning is monthly generation
per power plant. Table 1 show the selected features, which are
from different data sources and stored in different tables in
the database. The regional data correspond to EMM region.
Power plants within different regions, even with the same
fuel-mover, may have different generation, since different
regions have different climate conditions, efficiencies, energy
policies, and other operational factors that affect the makeup
of generation technologies. Plant Code uniquely identifies
a power plant with a specific generation pattern. Even with
the same fuel-mover in the same EMM region, the power
generation of each plant can be affected by conditions such
as electricity demand. To use this data as our training data,
we need to further transform our database data according to
these features. Each power plant is associated with one EMM
region, which is located using a GIS software, recorded in
our database table, and reflected in our plantEmmMapping
database virtual table (view).

Although fuel-mover is not an attribute of the FRS data in
the historic system, dominant type is retrievable from EIA.
The EIA annual data web service (historic data) provides
information on the combination of fuel type and prime mover
for each power plant annually, which we be retrieve through
REST APIs. More than one combination of fuel type and
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TABLE 1. Features for Generation Prediction.

Features Description Type

Plant Code Unique identifier of a power  Discrete
plant

EMM Code Unique name for each EMM  Categorical
region

Fuel-mover Prime mover such as steam Categorical
turbine, gas turbine

Regional data Aggregated yearly data per Continuous
EMM region per fuel-mover
type

Month Month Discrete

Recent generation ~ Last year’s generation in the ~ Continuous

given month

TABLE 2. Samples of Relationships Between Dominant Type and
Fuel-Mover.

Dominant Type Fuel-Mover
DFO-CA PET NA
DFO-CT PET NA
JF-GT PET_NA
LFG-CT BGM_NA
NG-CA NG_NA
OG-GT NG_NA
SUN-CP SLR_THERM
SUN-PV SLR_PHTVL

prime mover can be used in one power plant, so we use
a dominant type to present the combination that generates
the maximum amount of electricity within a power plant in
a given year. Table 2 shows the examples of relationships
between dominant type and fuel-mover, which are stored
in our database table. There are 75 dominant types and
13 fuel-mover types.

One feature in Table 1 is the yearly data of EMM regions
per fuel type. In the production environment, we retrieve
EMM regional data from EIA AEO 2019 to fulfil this feature.
Our training set is based on historic data retrieved from
EIA monthly data web services, which does not have EMM
regional data. To prepare the training data with this feature,
we use aggregation functions within database queries. Dif-
ferent from popular approaches of using Pandas data frames
for data manipulation, we perform a majority of the work
at the database level using database views and queries. The
following are the code snippets of the views we created to
prepare the training data. The view of generation_structure is
queried directly to produce the data frame to perform training,
validation, and testing.

create or alter view dbo.generationAll as

select g.plantCode as plantCode, g.genYear as genYear,

g.genMonth as genMonth,g.genData as genPerPlant,

p.FuelMover, e.emmCode as EMM, d.dominantType
from generation as g join dominantPlantType as d on

(g.plantCode = d.plantCode and

g.genYear = d.genYear)

join PlantTypeToFuelMover as p

on (d.dominantType = p.PlantType)

join plantEmmMapping as e on

(g.plantCode = e.plantCode)
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create view dbo.genPerEmmFuel_hist as
select EMM as emmCode, fuelMover, genYear,
CASE when sum(genPerPlant) is NULL then 0
else sum(genPerPlant)/1000000
END as genData
from dbo.generationAll
group by EMM, fuelMover,genYear
create or alter view generation_structure as
select cur.plantCode, cur.emmCode,cur.fuelMover,
cur.genData, cur.genMonth,cur.genYear,
recent.genData as recGenPerPlant,
cur.genPerPlant
from (select t.emmCode, t.fuelMover, t.genData,
p-plantCode, p.genMonth, p.genYear,
p-genPerPlant
from genPerEmmFuel_hist as t join
generationAll as p on
(t.emmCode = p.EMM and t.fuelMover
= p.fuelMover and t.genYear
= p.genYear)) as cur,
generation as recent
where cur.genYear = (recent.genYear + 1) and
cur.plantCode = recent.plantCode and
cur.genMonth = recent.genMonth
The data frame contains 15 years of monthly data from
9,961 power plants. We use one-hot encoding for the EMM
code, fuel-mover, and month. Although plant code is numeric,
this numeric value only serves as a unique identifier. It is not
realistic to use one-hot encoding for more than 9,000 power
plants because it will increase the dimensions to more than
9,000. Instead, we use Hashing Encoder of Scikit Learn [27]
with hyperparameter of “n_component = 16” which pro-
duces 16 dimensions. The process of data preparation before
training is shown in Figure 2, illustrating that after data are
retrieved from heterogeneous data sources, database opera-
tions such as join and aggregate are performed to produce
the initial data frame. Feature scaling and different encoding
techniques are used before finally splitting the data into train-
ing set and testing set. The validation set is within the training
set, which is explained in the subsequent paragraphs.
Training data are based on the historic data using the data
structures presented above. We summarize the generation val-
ues of a power plant in a month and year in the training set as
follows, where G is the generation values in the generationAll
view. T is the symbol of grouping and aggregation function
in relational algebra.
V p € {Plant Code}, i €[2004], [2018], j € [1], [12], m
€ {linear regression, decision tree regression, random forest
regression, XGBoost, ANN}

Gyear(i),p,month() < Vm(Gyear(i—1), enim, mover, monthj,

13 » Yemm, year(i), fuel_mover,sum(Gyear(i)) (generationAll))

In the production environment, we use different cases, such
as HighMacro, from EIA AEO, which can be summarized as
follows:
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Test Set

V p € {Plant Code}, i €[2021], [2050], j € [1], [12], m
€ {linear regression, decision tree regression, random forest
regression, XGBoot, ANN}, k € {HighMacro, AEO19_NO,
HighPrice, HighRT, LowMacro, LowPrice, LowRT, REF19}

-

Gyeax(i),p,month(j) <~ 1ﬁm(Gyear(i—l), emm, mover,
month(j), p, AEO(K )year(i))

B. TRAINING

We measure the performance of a model by both RMSE and
R2. Root Mean Square Error (RMSE) is used to measure the
errors made in the predictions, which is defined as (1), where
m is the number of instances. For the i instance, yp® is the
predicted value, and y® is the label.

1 m . 2
_ /2 (i) — ()
RMSE_\/mE o (p® — y®) (1)

A coefficient of determination (R2) is defined by [28] as
“Given the variance of the data generating process pdata,
this metric is proportional to the probability of predicting new
samples that actually belong to pdata.” In definition (2) [28],
r; is the residual and y is the average. In other words, R2
compares the model with the simple model that uses the
average of target values. In general, an R? score that is close
to 0 or negative means unsatisfactory prediction, while close
to 1 means almost perfect prediction (it can have exceptions).
In all of our prediction results, the decrease of RMSE and the
increase of R? are consistent.

RP=1-— El—ylz

i =)’

The research in [29], [30], [31], and [32] use various addi-
tional measures for performance evaluation. Motivated by
their evaluation approaches, our research used the following

additional statistical measures: Mean Absolute Error (MAE),
Willmott’s Index of Agreement (WIA), RMSE-observations

@
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to Standard deviation Ratio (RSR), Nash—Sutcliffe model
Efficiency Coefficient (NSEC), and Percent Bias (PBIAS).

The research in [29], [30], [31], and [32] used Mean Abso-

lute Percentage Error (MAPE). MAPE is defined as

1 m | yp@ — y@®

MAPE = — Zi:l 5

In our database, 5.3% of the records (rows) have O gener-

ation value. To avoid “divided by 0” problem in the MAPE

calculation, we add a very small Epsilon (say 0.0000000001)

to the denominator. However, if the predicted value is not
equal to 0, say 0.01, then after the division of

3)

10.01 — —0]/|0 + Epsilon| = 0.01,/0.0000000001
= 100, 000, 000

the result will be a very large number. Notice that zero
generation typically is not part of a constant pattern for a
power plant. A power plant can have zero generation if the
plant does not generate energy in the given month or year.
However, the same plant may generate a huge amount in any
other months or years. This type of prediction error, even
only a few, will make MAPE unreasonably large. We feel that
MAE, as defined in (4), is better than MAPE to measure the
performance in this specific application.

e | o
MAE=—3% ‘yp(’) - y(’)’ )

Among different approaches to normalize RMSE based
on the scale of the data, for the same reason, we believe
the following is the most suitable way in our application,
as defined in (5). Y is the set of actual values.

RMSE
NRMSE = . o)
max (Y) — min (Y)

NRMSE provides a clear presentation of errors over the
range of values in the data. In this project, NRMSE is rela-
tively small, as presented in the subsequent sections. To show
the difference in models more perceptibly, we compare the
performance using RMSE. We use NRMSE to show the errors
over the value ranges in different models.

The models covered in this research are linear regression,
decision tree regression, random forest regression, eXtreme
Gradient Boosting (XGBoost), and Artificial Neural Network
(ANN) [1]. The goal of this project is to use a good model
that has a better performance than the coefficient model.
Our focus is not an extensive evaluation of different machine
learning models. To achieve our goal, we follow the typical
way of selecting a model in machine learning, which has been
described in [1]. Firstly, we divide the data into a training set
and a test set using Scikit-learn “train_test_split” method,
in which 80% is the training set and 20% is the test set. The
test set is not touched until a model is selected. We use the
training set to do a preliminary selection of the preferred mod-
els. K-fold cross validation is used for the selection, specifi-
cally, 10-fold cross validation. K-fold cross validation divides
a setinto k subsets, which are called folds. This approach uses
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one fold for evaluation and the other k-1 folds for training.
Each time, a different fold is picked for evaluation and the
other k-1 folds are for training. We use the Scikit-Learn
cross-validation feature for linear regression, decision tree
regression, random forest regression, and XGBoost. A com-
mon practice is to try out different models without focusing
on tuning the hyperparameters, in order to shorten the list
of promising models [1]. Following this practice, we use the
default hyperparameters for each model and the results show
that XGBoost is the best. The average RMSE cross validation
scores of linear regressions, decision tree, random forest, and
XGBoost are 136,409, 69,622, 56,328, 50,814, respectively.
ANN is also well known for its performance, so we also
consider ANN as one promising model in our preliminary
selection.

After the preliminary selection, we use the training set
to train of all models. Although models such as the linear
model are not in the short list, we still perform training on
them, as discussed in the subsequent paragraphs. Our work
on water consumption and withdrawal also follows the same
methodology.

Since XGBoost and ANN are in the short list, these two
models are presented in detail here. Gradient Boosting is an
ensemble learning approach, which sequentially adds predic-
tors into an ensemble. The successor corrects its predeces-
sor to improve the learning, specifically by considering the
residual errors made by the predecessor. eXtreme Gradient
Boosting (XGBoost) is an optimized implementation of Gra-
dient Boosting, as provided by [3]. In XGBoost, a validation
set is mandatory. We split the training set into a validation
set (20% of the training set), and a reduced training set (80%
of the training set), using the Scikit-learn “train_test_split”
method. We use the validation set for the parameter of
“eval_set” in the regressor’s “fit” function during training.
We set 10 as the value of the “max_depth” hyperparameter
and use default values for all other hyperparameters. Hyper-
parameter tuning was performed manually. We are interested
in exploring non-manual ways in our future research.

Similarly, ANN also needs a validation set. The validation
set is provided to the ‘“‘validation_data” parameter during
training. We split the training set into a validation set (20% of
the training set), and a reduced training set (80% of the train-
ing set), using the Scikit-learn “train_test_split” method.
ANN simulates the way a neuron works in a human brain.
ANN consists of an input layer, one or more hidden layers,
and an output layer. Figure 3 is a sketch of our ANN model
for generation prediction. In the input layer, the number of
nodes is the same as the dimensions of the training data. The
6 features in Table 1 produce 64 dimensions after one-hot and
hashing encoding. We use Keras sequential mode [4] to add
two hidden layers; each layer has 253 neurons. The output
layer has only one node in this regression problem, which cor-
responds to plant-level generation. We tried different quanti-
ties of hidden layers, number of neurons, and learning rates.
The architecture was designed with the assistance of Random-
izedSearchCV of sklearn [2]. The optimizer is “nadam”. The
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FIGURE 3. ANN for generation prediction.

output of each layer is processed by the activation function
of ReLU [33], which is defined as r(z) = max(0, z). The
structure is summarized as follows [33]. The input layer is
X = [xo, X1, X63]. In general, the layer can be presented

as [N, N, N2, |, where j = 1,2,3. The first hidden

layer is [Nél),Nl(l), .. 2(;;] In the first hidden layer, a

neuron is Nl.(l) =r(). w,(((i))xk), in which we use the input

k=0
and the associated weights. The second hidden layer is
252
[N N2, ND], where N& = 13- Outpua Vi),

k=0
which uses the output from the first hidden layer and
associated weights. The third layer produces the output,
which has one output for this regression problem: Né3) =

252 @)
r(Y OutputPwy).
k=0
After a model is trained, we perform testing using the test

set for each model. To ensure that our choices of XGBoost
and ANN are correct, we use the same test set to test each
model. This approach is applied to water withdrawal and
consumption prediction too. Default values of the hyperpa-
rameters are used except with XGBoost and ANN.

The results of testing different models using the test set are
shown in Table 3. In all the tables of this article, we use bold
fonts to highlight the best results. Specifically, the following
are bolded: the lowest RMSE, NRMSE, MAE, and RSR
value; PBIAS with the smallest absolute value; the highest
R2, WIA, and NSEC value; the name of the best model.
As shown in Table 3, XGBoost and ANN have the smallest
RMSE, NRMSE, MAE, and RSR values. XGBoost and ANN
also have the highest R? score, WIA, and NSEC. As shown
in Table 3, XGBoost outperforms ANN slightly. Random
Forest is better than decision tree, and decision tree is better
than the linear model in most of the statistical measures. For
example, the RMSE of linear regression is about three times
that of ANN. RMSE of decision tree and random forest is
about 34% and 9% more, respectively, than XGBoost. The

VOLUME 9, 2021

TABLE 3. Performance Comparison Using Different Machine Learning
Models.

Linear Decision Random  XGBoost ANN
Regression Tree Forest
RMSE 135,713 68,938 55,861 51,311 52,353
NRMSE  0.0433 0.022 0.0178 0.0159 0.0163
R? 0.5088 0.8732 0.9168 0.9311 0.9283
MAE 63,756 19,008 16,743 14,607 16,203
RSR 0.701 0.356 0.288 0.262 0.268
PBIAS 0.0145 -0.6789 -0.3144 0.0146 3.2691
WIA 0.8095 0.9672 0.9777 0.9819 0.9812
NSEC 0.5088 0.8732 0.9168 0.9311 0.9283
le6
_ A Actual &
£ 1.50 1 Predicted £
g 2
= 1.25 &
=]
i
g 1.001 &
g &
- 0.75 A
>
5
= 0.50 4 -
c .
o 5
T 0.25 p
v
S
o - B
< 0.004
&
(I) 2l|)0 460 G(I)O 860 1OI00
Record

FIGURE 4. Performance of XGBoost (Using ordered records).

PBIAS values of XGBoost and Linear regression show the
smallest overestimation of the two models. Overall, the best
models are XGBoost and ANN. We did further evaluation
using AEO data that is presented in the next subsection. Based
on the results of both evaluations, we select ANN for our
production environment.

The plotted chart of XGBoost and ANN for 1000 ordered
rows/records are shown in Figure 4 and Figure 5, respectively.
We order the records in ascending order of the generation
values (label) in order to show the relationship between
the predicted values and the actual values. Figure 4 and
Figure 5 visually show that the predicted values are close
to the actual values. Using unordered records, we randomly
select 1,000 records, plot the results with the X-axis as the
predicted values and the Y-axis as the actual values, as shown
in Figure 6 and Figure 7. If a predicted value is the same as the
actual value, the dot falls on the blue line. The figures illus-
trate that a majority of dots are on or close to the line, which
indicates that our predictions have relatively small deviations
from the actual values in both XGBoost and ANN.

C. COMPARISON WITH THE COEFFICIENT APPROACH

As described above, the coefficient approach considers the
historic percent-contribution of a plant over each fuel-mover-
EMM region combination to disaggregate the future gener-
ation given by the EIA AEO 2019. One main limitation of
this approach is that if a plant has a negative generation value
in 2018, we have to set it to zero to avoid offsetting the
total. As a result, this plant will be excluded from any future
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FIGURE 7. Comparison of predicted and actual values with random
selected records (ANN).

prediction. This approach also assumes that a plant’s future
percent-contribution to its fuel-mover-EMM region quantity
will remain the same in any future year and month as it did
in 2018. Compared to the coefficient approach, the machine
learning approach considers the history of generation since
2003, accommodates negative values, and has better results.

To compare the performance of the two approaches,
we apply the coefficient method to 2017 data in order to
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TABLE 4. Comparison of Coefficient With XGBoost and ANN.

Coefficient XGBoost ANN

RMSE 66,307 65,385 60,956
NRMSE 0.0213 0.021 0.0195
R? 0.8340 0.8386 0.8597
MAE 15,312 20,710 19,664
RSR 0.407 0.402 0.375
PBIAS -1.0116 37.9179 31.465
WIA 0.958 0.9653 0.9681
NSEC 0.834 0.8386 0.8597

predict the data in 2018. In the machine learning approach,
we use 2003-2017 data as the training data to predict 2018.
EIA AEO has the prediction for 2018, which of course varies
from the actual generation reported. It is expected that this
difference will be propagated to our prediction and will cause
larger RMSE in both the coefficient and machine learning
approach. However, because we are using AEO for our future
prediction, it is reasonable to use this AEO predicted data
instead of the aggregated actual data for this evaluation.

EWED initially had 7,271 power plants, but recently added
another 2,700 plants creating a total of 9,961 plants. Most
of these new plants have a scattered pattern; many of them
only have a few months of generation reported instead of the
whole year, and some only have data for the most recent few
years. We therefore evaluated the cases for both 7,271 and
9,961 plants. The performance of both XGBoost and ANN
is better without the 2,700 power plants due to the scattered
nature of their data. In the case of 7,271 plants, the perfor-
mance difference between the coefficient approach and ANN
is more outstanding; RMSE decreased 27% and R? score
increased from 0.828 to 0.907.

Table 4 shows the performance of 9,961 power plants
based on the REF19 case model, in which ANN outperforms
XGBoost. Both ANN and XGBoost have a better perfor-
mance than the coefficient approach. As shown in Table 4,
compared to the coefficient approach, the RMSE of ANN
decreased 8.1%; R? increased 0.0257; RSR decreased 0.032;
WIA increased 0.01; NSEC increased 0.0257. The MAE and
PBIAS of the coefficient model are better. When training
ANN, a “loss” parameter, such as ‘“mean_squared_error”
or ““mean_absolute_error’, needs to be specified as the goal
of a regression problem. The environmental and computer
scientists in our team collectively decided that Mean Squared
Error is the best way to evaluate both generation and water
use, so we used it as the training goal in the current version
of the project. As a result, the trained ANN is optimized for
RMSE, not for other statistical measures such as MAE (only
one value such as MSE can be chosen for the loss parameter).
We are interested in exploring other regression “‘loss’ values
in our future work.

Figure 8 shows the RMSE comparisons of ANN with the
Coefficient approach using 9,961 plants, based on each of
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the eight AEO 2019 case models. Similarly, Figure 9 shows
the comparisons of R? scores. The X-axis depicts the
eight case models. The Y-axis values correspond to RMSE
in Figure 8 and R? score in Figure 9. Visually, we can see
that ANN outperformed the coefficient approach in all cases.

IV. PREDICTION OF WATER CONSUMPTION AND
WITHDRAWAL

Cooling water data retrieved from EIA [24] include raw val-
ues for water withdrawal and consumption self-reported by
power plants to the EIA in years 2014-2018. Power plants typ-
ically withdraw water from the nearby water sources such as
lakes, river, and reservoirs. Water consumption is the amount
that is withdrawn but does not return to the water source.
In the coefficient approach used by EWED, for each month of
a power plant’s operation (from 2014-2018), we calculate the
ratio of total water consumption divided by total generation.
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TABLE 5. Features of Water Consumption.

Features Description Type

Plant Code Unique identifier of a power Discrete
plant

EMM Code Unique name for each EMM Categorical
region

Dominant type Dominant combination of fuel Categorical
type and prime mover

Generation Power generation of a power Continuous
plant

Month Month Discreate

Recent consumption  Last year’s water consumption Continuous
in the given month

TABLE 6. Features of Water Withdrawal.

Features Description Type

Plant Code Unique identifier of a power Discreate
plant

EMM Code Unique name for each EMM Categorical
region

Dominant type Dominant combination of fuel Categorical
type and prime mover

Generation Power generation of a power Continuous
plant

Month Month Discrete

Recent withdrawal Last year’s water withdrawal in ~ Continuous

the given month

Next, using the predicted monthly generation multiplied by
this ratio, we calculate predicted water consumption. Water
withdrawal can be calculated similarly. This article presents
an alternative approach using machine learning models to
achieve better performance.

A. FEATURE SELECTION

The amount of water withdrawal and consumption is related
to the generation amount and the fuel-mover type of the
power plant. The amount of withdrawal can be different
in different months, since warmer weather may require
more cooling water. Accordingly, since weather differs from
region to region, water use rates can vary widely across
the United States. However, individual power plants gen-
erally follow a similar pattern of water use from year to
year. The highest correlation feature which predicts future
consumption/withdrawal is recent consumption/withdrawal.
The features for water consumption and withdrawal are listed
in Table 5 and Table 6, respectively. These features are from
different data sources and are stored in different tables in
the database. We use complex queries and views to join and
aggregate data to produce the features.

B. TRAINING AND COMPARISON

We did training, validation, and testing using Linear Regres-
sion, Decision Tree, Random Forest, XGBoost, and ANN.
As discussed in Section IIT (B), we use default hyperpa-
rameters for Linear Regression, Decision Tree, and Random
Forest. In XGB, we use “max_depth = 12" and use default
for other hyperparameters. With the assistance of Random-
izedSearchCV of sklearn [2], the ANN model for water con-
sumption consists of 2 hidden layers, with each hidden layer
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TABLE 7. Different Models of Water Consumption.

Linear Decision Random  XGBoost ANN
Regression Tree Forest

RMSE 167.62 143.20 114.91 107.25 95.87
NRMSE 0.0643 0.0549 0.0441 0.0411 0.0368
R? 0.4586 0.6048 0.7455 0.7783 0.8229
MAE 92.92 43.71 48.66 38.20 38.23
RSR 0.736 0.629 0.504 0.471 0.421
PBIAS 1.5038 0.2445 1.268 -8.1555 5.6962
WIA 0.7836 0.8946 0.9222 0.9314 0.9494
NSEC 0.4586 0.6048 0.7455 0.7783 0.8229

TABLE 8. Different Models of Water Withdrawal.

Linear Decision Random  XGBoost ANN
Regression Tree Forest

RMSE 9438.11 4035.11  4148.19  3206.03 3670.32
NRMSE 0.0604 0.0258 0.0265 0.0205 0.0235
R? 0.4409 0.8978 0.8920 0.9355 0.9155
MAE 5873.89 1313.00  1498.13 1092.40 1256.10
RSR 0.748 0.32 0.329 0.254 0.291
PBIAS 6.5587 -0.3174 0.9898 -2.0064 1.4519
WIA 0.788 0.9741 0.971 0.9829 0.9781
NSEC 0.4409 0.8978 0.892 0.9355 0.9155

containing 344 neurons. The input layer has 78 nodes, due
to one-hot and hash encoding of features. “Adam” is the
optimizer and the learning rate is 0.00032983006724298584.
The activation function is ReLU. The ANN model for water
withdrawal consists of one input layer with 78 nodes, 2 hid-
den layers with 253 neurons in each layer, and one node in
the output layer. The optimizer is “Adam” and the learning
rate is 0.0012178834831452913. The activation function is
RelU.

Table 7 and Table 8 present the evaluation results for
different models. The best model for water consumption is
ANN. The best model for water withdrawal is XGBoost.
As shown in Table 7 for water consumption, ANN outper-
forms all other models in RMSE, NRMSE, R2, RSR, WIA,
and NSEC. ANN is only 0.08% more than XGBoost in MAE.
Decision tree has the best performance in PBIAS, but is
worse than XGBoost and ANN in other measures. As shown
in Table 8 for water withdrawal, XGBoost outperforms others
on RMSE, R2, MAE, RSR, WIA, and NSEC. Decision tree
is the best regarding PBIAS, but is worse than ANN in other
measures. Based on the results, we selected to use ANN for
water consumption and XGBoost for water withdrawal.

To evaluate the coefficient approach, we used 2014 to
2017 EIA cooling water data to predict 2018 data based
on the coefficient method, then further compared the results
with the actual data in 2018. Table 9 presents a compari-
son of the coefficient approach with the machine learning
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TABLE 9. Comparison in Water Consumption and Withdrawal.

Water Consumption Water Withdrawal

ANN Coefticient XGBoost = Coefficient
RMSE 95.87 232.45 3206.03 6831.25
NRMSE 0.0368 0.0890 0.0205 0.0430
R? 0.8229 0.4131 0.9355 0.7577
MAE 38.23 45.95 1092.40 1630.61
RSR 0.421 0.766 0.254 0.492
PBIAS 5.6962 -7.0364 -2.0064 -1.9006
WIA 0.9494 0.7729 0.9829 0.9349
NSEC 0.8229 0.4131 0.9355 0.7577

approach. Table 9 shows the decrease of RMSE, NRMSE,
MAE, and RSR and the increase of R2, MAE, WIA, NSEC
using the machine learning models. The machine learning
approach demonstrates dramatic improvement in comparison
to the coefficient approach in water usage, with an RMSE
decrease of 59% and 53% in water consumption and with-
drawal, respectively. For water consumption, ANN outper-
forms the coefficient approach in all measures; for example,
MAE decreased 16.8%, R? increased 0.41, RSR decreased
0.345, WIA increased 0.1756, and NSEC increased 0.4168.
For water withdrawal, XGBoost outperforms the coefficient
approach in RMSE, R2, MAE, RSE, WIA, and NSEC. For
example, R? increased 0.1778; MAE decreased 33%; RSR
increased 0.238; WIA increased 0.048; NSEC increased
0.1778.

V. DISCUSSION

This empirical study uses datasets from real-world data
sources, and the results are applicable to a concrete appli-
cation in planning for water scarcity in the U.S. electric-
ity sector. During this process, the collaboration of domain
experts in environmental science and data engineering con-
tributes greatly to the learning process. The features listed in
the previous sections come from heterogeneous data sources
with varying structures. After data cleaning, data are stored
in 108 tables and features are located in different tables. We
note that the design of the table schema is for the purpose of
serving the EWED application, rather than for machine learn-
ing only. We used various SQL queries and views to link data
from different tables and to perform aggregations, so features
are ready to be presented in one data frame before training.
In comparison to querying multiple data frames, database
queries are especially convenient for complex queries and
nested queries. Compared to learning based on simple struc-
tures, such as a few tables (or data frames), handling complex
systems like EWED is more challenging and requires more
in-depth knowledge across different domains.

The generation prediction system was initially trained
based on the features of plant code, EMM region, fuel-mover,
regional data, and month. This is a typical set of features
that a data scientist would produce based on the semantic.
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However, this set of features did not yield anything better than
an RMSE of 111,498 and an R? of 0.654991. Is there anything
we can learn from the conventional coefficient approach?
The coefficient approach used the generation value of the
previous year (most recent available year) to calculate the
percentage of contribution to future values. This motivated
us to investigate the previous year’s generation data in our
feature selection process for the machine learning approach.

We observed that the generation of each power plant in
consecutive years is related, as shown in Figure 10. The
X-axis is generation per plant, and the Y-axis is the plant’s
generation in the previous year. Adding the recent generation
feature ended up making the prediction much more accurate.
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FIGURE 10. Generation data in two consecutive years.

We have a similar observation and solution for water
consumption and water withdrawal. Water consumption and
withdrawal are related to the type of the power plant, the gen-
eration value, month, and the region. However, using these
features yielded poor results (R? < 0.29). A possible mod-
ification from a data scientist’s point of view is to use a
finer regional granularity to better reflect environmental and
management conditions, with the processing cost of increased
dimensions. Instead, the environmental science approach
of using coefficients again motivated our feature selection
process by considering the previous year’s water use. This
“thinking out of the box” way of feature selection improved
the performance significantly, in which R? increases from
0.29 to 0.82.

On the other hand, not everything originating from the
domain knowledge of environmental science contributes to
a better result. One feature that seems useful is cooling
system type, which classifies how power plants withdraw
and consume water. For example, an “open-loop” cooling
system releases almost all water to the water source, which
results in a higher value of withdrawal with a lower value of
consumption. Two other features that may not be as useful
as cooling system type, but possibly helpful are water type,
such as fresh, saline, and mix, and water source, such as
ground, surface, and reclaimed. This combination of features

VOLUME 9, 2021

TABLE 10. Additional Features for Water Consumption.

Model Measures | None of the All three Cooling
three features | features system
type only
XGBoost RMSE 107.25 130.35 116.14
NRMSE 0.0411 0.062 0.0455
R? 0.7783 0.4237 0.7470
MAE 38.20 38.08 34.24
RSR 0.471 0.535 0.503
PBIAS -8.1555 -0.9789 -3.5175
WIA 0.9314 0.9149 0.9245
NSEC 0.7783 0.7142 0.747
ANN RMSE 95.87 118.60 106.42
NRMSE 0.0368 0.0397 0.0373
R? 0.8229 0.7634 0.7876
MAE 38.23 41.48 38.87
RSR 0.421 0.486 0.461
PBIAS 5.6962 -4.1339 1.3946
WIA 0.9494 0.9246 0.9374
NSEC 0.8229 0.7634 0.7876

produces 16 more dimensions after one-hot encoding.
We trained different models by adding the above three fea-
tures, as well as adding only cooling system type.

Table 10 presents the evaluations of all three features,
only one feature, and none of the features. Similar to other
evaluations presented in other tables, XGBoost and ANN are
consistently better than other models, which is also the case
in this comparison. To make the comparison focus on the
features instead of model selection, we only present XGBoost
and ANN in Table 10.

Table 10 shows that best RMSE value is 95.87, which
is ANN without any of the three features. All other mea-
sures except PBIAS are also slightly better without the three
features. Comparing “‘none of the three features™ with “all
three features” and ‘“‘cooling system type only”’, RMSE
increased 23.7% and 11%; R2 decreased 0.059 and 0.0353;
MAE increased 8.5% and 1.67%; RSR increased 0.065 and
0.04; WIA decreased 0.025 and 0.012; and NSEC decreased
0.0595 and 0.0353, respectively. The conclusion is that
adding the features slightly decreased the performance and
the best result is without any of the three features.

VI. RELATED WORK

There are many research projects on power generation pre-
diction, most of which are for solar power. Many of the
solar power predictions are based on environmental fac-
tors, such as [5], [6], [7], [8], as mentioned in Section III.
Similarly, the research in [9] used ensembled decision trees
for photovoltaic power generation, based on the analysis
of environmental data. The research in [10] used particle
swarm optimization algorithm to optimize the weight and
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threshold of the neural network to predict photovoltaic power
generation.

Reported in [11], the researchers used a model-driven and
data-driven approach for the prediction of wind power sys-
tems with doubly fed induction generators. Another wind
power generation prediction is the research in [12], which
is for small-wind turbines. The prediction is based on the
atmospheric variables of the locations of wind power farms.
The research in [13] predicted wind power generation using
Echo State Networks, which consist of randomly connected
neural networks.

The research in [14] is the prediction of thermal power gen-
eration. It provided an optimized method based on the neural
network model and tailored it for multimedia applications.

Although these existing research projects are related to our
research, the focus is completely different. They targeted a
specific type of power generation prediction. In contrast, our
research covers a wide variety of power plants with various
fuel types and fuel-movers.

There is limited research on the prediction of water usage
using machine learning. The research in [15] used deep learn-
ing models to predict future water consumption based on
the data collected from multiple buildings in a university
campus. The research in [16] modeled the dynamics of water
consumption time series based on the data from smart meters
by a water utility in France to predict future water con-
sumption behaviors. It used a mixture of non-homogeneous
hidden Markov models for the consumption behavior series.
In [17], the researchers used fractal theory for the prediction
of urban hourly water consumption in cities. The work in [18]
performed anomaly detection in water treatment facilities.
Genetic algorithms are used in [18] for water resource man-
agement, such as optimization of water distribution system
and operation of reservoirs.

To the best of our knowledge, there is no other research
using the same or similar data sets to compare our results
with. Our research focused on power plant level generation,
water consumption and withdrawal and as such, represents a
novel synthesis of predictions in energy and water systems.
Different levels of aggregations, such as HUC, county, and
state, are also provided in EWED to facilitate decision mak-
ing in accordance with water availability constraints.

VIl. SUMMARY

The interdependency among electricity generation, emis-
sions, water withdrawal, water consumption, and water avail-
ability has become increasingly important challenge in our
modern society. Awareness of water constraints is critical
for decision making in future energy management. Unfor-
tunately, there is not enough attention nor studies on power
plant water use and prediction in the existing machine learn-
ing literature, which makes our unique empirical research
significant. The EWED project is a comprehensive infor-
mation system that calculates and presents integrated data
in a temporal and geographical environment. This article
described our approach of using machine learning for the
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prediction of generation, water consumption, and water with-
drawal, which can be used to predict water use and potential
conflicts with water supplies. This approach improved on
the conventional approach of EWED to use coefficients to
proportionally predict results. Compared to the conventional
approach, the machine learning approach produced better
predictions. The performance enhancement is especially sig-
nificant for water consumption and water withdrawal, with a
decrease of 59% and 53% of RMSE, respectively. In addition,
this article presented the practical issues raised and solved
in this real-world project, including data preparation using a
database-oriented method and feature selection.

To the best of our knowledge, this is the first machine
learning project that has covered such a wide variety of power
plants across United States with both energy and water pre-
diction in a cohesive environment, allowing users to retrieve
data at different geographic scales and perform data analysis
at the finest possible granularity, as well as supporting timely
decision making with rich visualization. The current version
of EWED uses the EIA AEO 2019 projection. A future
research direction is to retrieve the new AEO data and apply
our research results to the new data for the production envi-
ronment. EIA releases AEO data annually with updated and
refined projections. AEO data is an important feature in our
prediction, so we expect our results to be improved accord-
ingly. In addition, we will retrieve more data from different
data sources upon their new release and add them to our
training data. More data for the training can also potentially
improve the predictions.
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