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ABSTRACT Multi-view based 3D reconstruction aims to obtain 3D structure information of objects in
space through two-dimensional images. In this paper, we propose a new multi-view stereo network that can
robustly reconstruct the scene. To enhance the feature representation ability of Point-MVSNet, a pyramid
attention module is introduced. Specifically, we exploit the attention mechanism for the multi-scale feature
pyramid to capture larger receptive fields and richer information. Instead of constructing a feature pyramid
as the input, results of the pyramid attention module at different scales are directly used for the next layer.
The network eventually generates a high-quality depth estimation for 3D reconstruction from sparse to dense
by an iterative refinement schedule. Experiments have been performed to evaluate 3D reconstruction quality
by comparison with existing state-of-the-art methods on the DTU dataset. The experimental results indicate
our method performs the best in overall quality compared with previous methods, proving the effectiveness
of our method. In the end, we use the data collected by mobile devices to implement 3D reconstruction
with a combination of traditional and learning-based methods, providing ideas for the 3D reconstruction
technology on mobile devices.

INDEX TERMS Multi-view stereo, pyramid attention, point cloud, depth estimate, deep learning.

I. INTRODUCTION
Multi-view stereo (MVS), which intends to reconstruct a
complete 3D representation of an object or scene from a series
of images taken from known camera viewpoints, has been
developed and obtained tremendous success as a division of
computer vision for decades [1]. The emergence of a large
number of consumption level data acquisition tools promotes
the application of 3D reconstruction technology and serves
different practical needs. Traditional MVS technique (e.g.,
structure from motion) that extracts handcrafted features in
images and recovers 3D structure has been proved a great
success in recent MVS benchmarks [2]–[5]. Even so, due to
the limitations of handcrafted features and methods, there are
some shortages of texture-less surfaces, computing consump-
tion, and so on.

Recently, the success of the convolutional neural networks
in various computer vision tasks has promoted the improve-
ment of MVSmethods and stimulated the interest of research
on this topic. Eigen et al. [6] firstly proposed the application
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of convolutional neural network for monocular depth esti-
mation, dividing the network into two modules for coarse
global prediction and local refinement prediction respectively
and defining loss function by scale-invariant error, which
provided ideas and guidance for further research on learning-
based 3D reconstruction methods. Then some end-to-end
neural networks are designed to predict the depth of scenes
directly from a sequence of images (e.g., MVSNet [7] and
R-MVSNet [8]). Even though the accuracy of these methods
has been verified on various datasets, most of them utilize
3D CNNs to predict depth maps or voxel occupancy, leading
to excessive memory consumption and limiting the improve-
ment of resolution. Compared with other 3D data formats,
the structure of the point cloud is simpler and easier to be
processed, so it becomes one of the research emphases of
3D reconstruction. Considering the advantages of the point
cloud in contrast to other 3D representations, a point-based
multi-view stereo network (Point-MVSNet) is proposed by
Chen et al. [9], not only processing point cloud directly but
also fusing depth and texture information for feature enhance-
ment. However, during 2D-3D information fusion, there
exists a few deficiencies such as narrow receptive fields,
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insufficient use of global context information, and time
consuming. As the attention mechanism becomes popular,
researchers try to apply it to solve related computer vision
problems [10].

In this paper, we introduce the attention mechanism to
extract richer high-level features and long-range feature cor-
respondences from the feature pyramid without too much
computation burden. Specifically, we perform convolutions
to downsample the input images to get a multi-scale fea-
ture pyramid firstly. A scale agnostic attention module [11]
which takes full advantage of self-similarities is exploited to
capture long-range feature correspondences in the top-down
pathway. The improved structure of the feature pyramid is
based on the classic feature pyramid network (FPNs) [12]
which applies ResNet [13] as a backbone to various tasks. The
improved network is tested on the DTU dataset which is stan-
dard multi-view stereo benchmarks. Experiments show that
compared with previous start-of-the-art MVS reconstruction,
ours obtains better results on the overall quality. In addition,
we implement experiments on the data collected by mobile
devices. A 3D reconstruction pipeline is used to obtain the
camera poses as the input. The reconstruction results show
better quality than traditional methods.

II. RELATED WORKS
A. TRADITIONAL MULTI-VIEW STEREO RECONSTRUCTION
According to the object models, MVS algorithms can be
roughly divided into four categories: voxel-based [14]–[17],
deformable polygonal mesh-based [18]–[20], patch-based
[21]–[23], and depth map-based approaches [24]–[29].
Recent results on MVS benchmarks have demonstrated that
the depth map-based method is the most arcuate and robust of
the above. At present, MVS algorithms referring to the clas-
sical framework of parallax calculation often perform depth
estimation by cost volume of construction and aggregation,
coarse estimation of depth maps, and multi-view refinement.
An open-sourceMVS implementation named COLMAP pro-
posed by Schonberger and Frahm [30] offers a wide range
of features for the reconstruction of ordered and unordered
image collections. Open Multiple View Geometry (Open-
MVG) [31] is a well-known open-source library that deals
with multi-view solid geometry, providing feature extraction
and matching methods and a complete toolchain for structure
from motion. While OpenMVG can recover camera poses
and a sparse 3D point cloud from an input set of images,
there is none addressing the last part of the photogramme-
try chain-flow. Then open Multi-View Stereo reconstruction
library (OpenMVS) is presented, aiming at filling that gap
by providing a complete set of algorithms to recover the full
surface of the scene to be reconstructed. However, they suffer
from the texture-less region and utilizing cross-scale features.

B. LEARNING-BASED MULTI-VIEW STEREO
Recently, an increasing number of researches on MVS
reconstruction applying the convolution neural network has

achieved remarkable progress. Ji et al. [32] firstly propose
an end-to-end learning framework named SurfaceNet for
multi-view stereo where both photo-consistency as well as
geometric relations of the surface structure can be directly
learned. Inspired by Long Short-TermMemory (LSTM) [33],
Choy et al. [34] propose a 3D recurrent reconstruction neu-
ral network (3D-R2N2), which extends the standard LSTM
framework to build the mapping of 2D graphics to 3D voxel,
completing the 3D reconstruction of single or multiple views
(input from multiple views will be treated as a sequence of
input to the LSTM). However, there is a problem that to
improve the accuracy requires to improve the resolution but
the increase of resolution will greatly increase the calculation
time. Then MVSNet and DPSNet [35] are proposed which
use a differential warping process to construct a cost volume
and regress the depth map from the cost volume. Further-
more, R-MVSNet based on the recurrent network utilizes the
gate recurrent unit (GRU) rather than 3D-CNN to regularize
the cost volume, reducing memory consumption effectively.
In addition, Point-MVSNet converts the coarse depth map
generated by MVSNet into point cloud and refines the point
cloud with the fashion of depth residual prediction between
the current iteration and the ground truth, avoiding too much
burden in 3D CNN computation.

C. PYRAMID ATTENTION
The feature pyramid is often used for object detection at dif-
ferent scales as a basic component. When recognizing objects
of Large size differences, a classic approach is to enhance the
multi-scale variation by image pyramids. While this method
can generate multi-scale feature representations via feature
extraction at every scale and produce feature maps of abun-
dant semantic information, it would greatly increase the time
consumption required and make it impractical to train an
end-to-end deep neural network in the form of image pyra-
mids. Even though common object detection networks often
exploit a single high-level feature map for prediction like Fast
R-CNN [36], it remains a problem that low-level featuremaps
are poor of the semantic information as well as the resolution.
Feature pyramid networks (FPNs), solving the above short-
comings, can combine low-resolution feature maps that have
rich semantic information with high-resolution feature maps
that have poor semantic information under the premise of
adding less computation. Pyramid attention networks are the
application of attention mechanisms on the feature pyramid.
Li et al. [37] apply feature pyramid attention (FPA) module
for semantic segmentation to learn a better and richer feature
representation via performing spatial pyramid attention struc-
ture on high-level output. In addition, Ren et al. [38] propose
a pyramid self-attention module (PSAM) for salient object
detection to capture a richer high-level feature and enlarge
the receptive field of the model.

D. NON-LOCAL ATTENTION
Non-local means is an effective algorithm widely used in
image denoising tasks [39]. Compared with local means, non-
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local mean filtering, utilizing self-similarity prior to reduce
corruptions, can efficaciously remove the noise while pre-
serving the image edge details. Inspired by the non-local
means, non-local operation [40] is presented to capture
long-range dependencies of one-dimensional temporal sig-
nals, images, and video sequences. The core idea of non-
local attention is calculating the correlation between the
block of pixels to be computed and rest blocks, high-
lighting concerned areas, and eliminating noise effectively.
Non-local attention has a tremendous performance in other
vision tasks, such as object detection [41], image restora-
tion [42], [43], semantic segmentation [44], [45] and per-
son re-identification [46], [47]. For MVS reconstruction, the
application of non-local attention has not been found yet.

However, the non-local operation only takes processing
information at the same scale into account simply, both ignor-
ing advantages of multi-scale feature fusion and involving
mismatches in attention units when performing pixel-wise
feature matching as well. In order to solve this problem, scale
agnostic attention is designed to capture correspondences
between two scales so that non-local attention can be applied
to the feature pyramid.

III. METHOD
A. PROBLEM DEFINITION AND GOALS
The current deep-learning basedMVSmethods have not been
integrated with the self-attention mechanism to improve the
accuracy of results although it has achieved the state of the art
in various benchmarks of object detection tasks. In addition,
it is difficult to capture large-scale features and obtain images
of high resolution. In this work, we focus on applying self-
attention to MVS neural network in order to obtain larger and
adaptive receptive fields, higher accuracy, and more complete
and precise point cloud. Meanwhile, we explore the appli-
cation of MVS reconstruction on mobile devices. Random
indoor objects are photographed and reconstructed by MVS
network, which ensures the completeness and accuracy of
the point cloud while achieving more convenient and fast
reconstruction.

The improved neural network is introduced in this section.
We elaborate on the principle of pyramid attention and scale
agnostic attention firstly. Then the architecture of our network
is introduced and illustrated. The complete network frame-
work is shown in Figure 1.

B. PYRAMID ATTENTION MODULE
1) FORMAL DEFINITION
Following the non-local mean filtering, the non-local opera-
tion is defined as:

yi =
1

C(x)

∑
∀j

f
(
xi, xj

)
g
(
xj
)

(1)

where i,j are indices of the input x and output y respec-
tively. In addition,x and y have the same size. The function
f computes pair-wise affinity between xi and xj. The feature
transformation function g calculates a new representation

of xj. Then the output response is normalized by a scalar
function C(x). Symbol ∀j in formula (1) indicates that all
positions are considered in the non-local operation.

Pyramid attention is applied to solve the problem of scale
constraint. Similar to non-local operation, a function com-
putes affinity between a target feature and regions in pyramid
attention.Meanwhile, we sum up the weighted input to obtain
a response feature over the multi-scale input. Given a set of
scale factor S = {1, s1, s2, . . . , sn}, pyramid attention can be
obtained by formula (2):

yi =
1

C(x)

∑
s∈S

∑
∀j

f
(
xi, x

δ(s)
j

)
g
(
xδ(s)j

)
(2)

here δ(s) is the neighborhood of s2 centered on input xj.
The formula (2) degrades the previous non-local operation
as shown in formula (1) under the situation of only one scale
factor s = 1.

2) SCALE AGNOSTIC ATTENTION
In this section, non-local operation is extended to two scales.
Given two scale factors s1, s2, it is critical to evaluate the
correlation between xi and x

δ(s)
j , where xδ(s)j is used to aggre-

gate information to achieve yi. While usual similarity mea-
surements such as Gaussian or embedded Gaussian have
been achieved great results, it is impracticable to apply these
methods to features with different dimensions. We reduce the
scale of region xδ(s)j in a pixel feature zj, so that the spatial

information of xδ(s)j could be squeezed into a single region
descriptor. Additionally, a descriptor map z =

(H
s ×

W
s

)
is obtained by down-scaling the original input x(H × W )
for search over the entire feature map. Then scale agnostic
attention can be represented by using xi and zj to describe the
correlation between xi and x

δ(s)
j , as shown in formula (3):

yi =
1

C(x, z)

∑
∀j

f
(
xi, zj

)
g
(
zj
)

(3)

hereC(x, z) is a scalar factor to normalize the response. In this
paper, we choose embedded Gaussian, a simple extension of
Gaussian function for function f :

f
(
xi, zj

)
= eθ(xi)

T ϕ(zj) (4)

where θ (xi) = wθxi, ϕ
(
zj
)
= wϕZj and the scalar factor

C(x, z) is set to
∑
∀j f

(
xi, zj

)
. The framework of scale agnos-

tic attention is shown in Figure 2.

C. THE FRAMEWORK OF NEURAL NETWORK
1) COARSE DEPTH PREDICTION
Because learning-based MVS methods produce a large
amount of memory and time consumption when calculating
cost volume, we predict a low-resolution cost volume for
coarse depth prediction when given the images and corre-
sponding camera parameters. In the coarse prediction net-
work, the cost volume is built by 1/8 the size of the reference
images which contains 48 or 96 virtual depth planes for
training and evaluation.
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FIGURE 1. The main architecture of our neural network. A pyramid attention module is added before the feature
augmented point cloud.

FIGURE 2. The framework of scale agnostic (S-A) attention. The S-A
operation is performed between two feature maps of different scales.

2) 2D-3D FEATURE ENHANCEMENT
Studies shows that it is important to take advantage of
learning-based image features to improve dense pixel corre-
spondence quality. In order to enlarge the receptive fields of
points andmake them havemoremulti-scale contextual infor-
mation, we construct a 4-scale feature pyramid. We apply
2D convolution to downsample the feature map and finally
feature pyramid is expressed as Fi =

[
F1
i ,F

2
i ,F

3
i ,F

4
i

]
for

image Ii.
As shown in Figure 3, feature maps at different levels are

manipulated by a scale agnostic module. Instead of capturing
the result in the down-top pathway, we fetch the feature maps
from four different levels in the feature pyramid as the input of
next layer. In addition, feature pyramids are shared among all
the input. We use a differential unprojection to obtain image
appearance features of each point from the multi-view feature
maps. The camera intrinsic matrix is transformed at different

FIGURE 3. The framework of pyramid attention module. The scale
agnostic attention operation is added and we capture outputs from
different scales in the top-down pathway of the feature pyramid.

level of feature maps for feature warp because the image
resolution of features F1

i ,F
2
i ,F

3
i ,F

4
i are various. A variance-

based cost metric, aggregating features from an arbitrary
number of views, is calculated by following formula:

Cj =

∑N
i=1

(
Fji − F

j
)2

N
, (j = 1, 2, 3, 4) (5)

here j represents the different level of pyramid features. Con-
sidering the normalized 3D coordinates in world space Xp,
we conduct a concatenation as shown in formula (6):

Cp = concat
[
Cj
p,Xp

]
, (j = 1, 2, 3, 4) (6)

considering that the entire network iteratively predicts the
depth residual, the position is updated after each iteration.

3) ITERATIVE REFINEMENT
A coarse depth map generated by coarse depth prediction
network need to be refined iteratively because of the low
resolution of 3D cost volume. Given the camera parameters,
we convert the depth map to a point cloud by unprojection.
Following the Point-MVSNet, we generate a sequence of
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FIGURE 4. The schematic diagram of processes for depth estimation of
images taken by mobile devices.

point with different displacement along the reference cam-
era. Inspired by dynamic graph CNN (DGCNN) [48], edge
convolution is used to enrich feature aggregation between
neighboring points. At the step of flow prediction, we use
four edge convolution layers to aggregate point features at
different scales of the neighborhood for obtaining a depth
residual map. Then the output is sent to the initial depth
map for depth refinement. During iterative refinement with
upsampling, we use nearest neighbor unsample the depthmap
D(i) and obtain D(i+1) by flow prediction.

4) TRAINING LOSS
we use L1 loss that measure the absolute difference between
the ground truth depth map and the estimated depth map as
our training loss. Meanwhile, we take the initial depth map
and iteratively refined ones into account. The training loss is
calculated in formula (7):

Loss =
l∑
i=0

λ(i)
S(i)

∑
p∈Pvalid

∥∥∥DGT (p)− D(i)(p)
∥∥∥
1

 (7)

here Pvalid denotes the valid ground truth pixel set and l is
the iteration number, while parameter λ(i) is set to 1.0 in
experiments.

D. EXPERIMENTS ON SELF-COLLECTED DATA
We design an experiment on raw image sequences without
any data preprocessing. In this work, traditional MVS recon-
struction method is utilized to implement sparse reconstruc-
tion and obtain relevant parameters needed by the neural net-
work to predict. Then these information and images are taken
as a scan of dataset for prediction and the depth estimation
of the scene can be calculated by the neural network. The
complete experimental process is shown in Figure 4.

IV. EXPERIMENTS
A. IMPLEMENTATION DETAILS
1) TRAINING
We train our neural network on the DTU dataset, a large-scale
MVS dataset which consists of 124 different indoors scenes
with different lighting conditions and is split into training,
validation and evaluation sets. Our neural network is trained
on the training set and make an evaluation on the evaluation
set. We generate depth maps from the given ground truth as in
MVSNet for data pre-processing. Similar to Point-MVSNet,
the input image resolution is set to W × H = 640 × 512,
and number of views to N = 3 during the training stage.
The 3D cost volume, sampled from 425mm to 921mm, with

D = 48 depth planes is to construct for coarse prediction.
We set flow iteration l = 2 and depth intervals 8mm and
4mm for depth refinement. Meanwhile, the number of nearest
neighbor points is set to 16.

Our network is implemented on Pytorch [49] and trained
end-to-end using RMSProp with an initial learning rate
0.0005 which is decreased by 0.9 for every 2 epochs. The
coarse prediction step is trained for 4 epochs separately and
the model is trained for another 12 epochs. Batch size is set
to 4 on 2 NVIDIA RTX 2080Ti graphics cards.

2) EVALUATION
We set image view number N = 5 and D = 96 depth layers
for initial prediction. Meanwhile, flow iteration is set to l = 3
for depth refinement. Following the same approach of post-
processing as in MVSNet, we fuse all depth maps to point
clouds and the input image resolution is set to 1280× 960.

TABLE 1. Quantitative results of reconstruction quality dataset (lower is
better).

B. BENCHMARKS RESULTS
We evaluate our network on the DTU evaluation set. Quan-
titative results are shown in Table 1. The accuracy and
completeness are calculated using the official code provided
by the DTU dataset. To evaluate the overall reconstruction
quality, the overall score is computed by the average of
the accuracy and the completeness. The accuracy of our
approach is 0.313, which is better than other MVSNet and
Point-MVSNet, although our completeness is 0.437, 0.016
higher than Point-MVSNet. While Gipuma performs the best
regarding to accuracy, our method performs the best in overall
quality compared with previous methods which a score of
0.375. Qualitative results are shown in Figure 5. Our method
generates a more complete and detailed point cloud.

C. ABLATION STUDY
In this section, we provided ablation experiments for quanti-
tative and qualitative analysis to evaluate the strength of the
key components in our work. For following studies, exper-
iments are implemented and evaluated on the DTU dataset.
Moreover, both accuracy and completeness are used to eval-
uate the performance of our network.

1) SCALE LEVELS
In this part, we investigate the influences of pyramid levels
to verify the effectiveness of pyramid attention. We conduct
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FIGURE 5. Illustration on predicted depth map, probability map and point cloud representation. (a) One reference
image of scan 4, 9, 75 and 114 of DTU dataset; (b) the predicted depth map; (c) the probability map; (d) the
generated point cloud by depth map fusion for post-processing.

FIGURE 6. The results of the accuracy and completeness with different
pyramid scales on the DTU dataset.

control experiments by adding levels to the feature pyramid
with 3mm threshold. The final pyramid consists of four
scales. The quantitative results are shown in Figure 6, which
shows that the reconstruction quality partly is optimized with
the increase of pyramid levels.

2) PYRAMID ATTENTION
he key difference between the classic non-local operation
and pyramid attention is that our module allows the network
to utilize correspondences at multiple scales. To verify the
effectiveness of our network, We construct a network with
non-local operation by replacing the scale agnostic module.
The reconstruction quality The quantitative results are shown
in Table 2, which demonstrates that although the classic
non-local operation can improve the reconstruction results
compared with original Point-MVSNet, our method shows
better.

TABLE 2. Ablation study between non-local attention and scale pyramid
attention.

FIGURE 7. Illustration on 3D reconstruction of data collected by mobile
devices. (a) The results of sparse reconstruction by COLMAP where
camera poses and parameters are computed; (b) the fused point cloud;
(c) one of the images taken by mobile devices.

D. PERFORMANCE ON SELF-COLLECTED DATA
We use the iPhone to collect two-dimensional image
sequences of indoor objects from different angles and
light conditions. General self-collected data only contains
RGB information without camera parameters. We utilize
COLMAP to conduct a sparse reconstruction, undistortion,
calculating the extrinsic and intrinsic parameters and the cam-
era poses during the reconstruction, then we obtain informa-
tion of camera files and sparse scene as the input of the neural
network. Finally, we predict the data and achieve the inferred
depth map and point cloud. The reconstruction results are
shown in Figure 7.

Both COLMAP and learning-based methods are used in
the experiment for comparison. The reconstruction results
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FIGURE 8. The results of point cloud generated by (a) COLMAP and
(b) MVS neural network.

of point cloud are shown in Figure 8. It is obvious that the
result using traditional method (COLMAP) has more noise
and poor quality.

V. CONCLUSION
In this paper, we introduce a pyramid attention module to
improve the deep learning architecture based on point cloud
for MVS reconstruction. Inspired by the self-attention mech-
anism, the pyramid attention module captures non-local rela-
tionships at multiple scales. Experiments on the DTU dataset
show that our proposed neural network performs better than
previous methods and produces high-quality point clouds.
Additionally, we use the neural network to implement 3D
reconstruction on the data collected by the mobile phone and
generate the reconstruction point cloud, providing ideas for
the development of 3D reconstruction technology on mobile
devices.
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