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ABSTRACT In this article, we study the cycle structure of (3, 19)-regular Tanner’s quasi-cyclic (QC) LDPC
codes with code length 19p, where p is a prime and p ≡ 1 (mod 57), and transform the conditions for the
existence of cycles of lengths not more than 10 into polynomial equations in a 57th root of unity of the prime
field Fp. By employing the Euclidean division algorithm to check whether these equations have solutions
over the prime field Fp, the girth values of (3, 19)-regular Tanner’s QC-LDPC codes of code length 19p are
determined. In order to show the good performance of this class of QC-LDPC codes, numerical results are
also provided.

INDEX TERMS QC-LDPC codes, Tanner graph, girth, prime field.

I. INTRODUCTION
Quasi-cyclic (QC) LDPC codes [1] are a class of well-known
channel codes, and widely used in the communication
and storage systems because of their excellent features:
low-complexity encoding and decoding algorithms [2]–[5],
good performance in the waterfall and error-floor regions
[6]–[10], and easy implementations in hardware [11]–[13].
In general, the low-complexity algorithms for decoding
LDPC codes are under the frame of iterative decoding.
However, short cycles in the Tanner graph [14] of an
LDPC code degrade the iterative decoding performance.
Hence, constructing large girth LDPC codes and/or deter-
mining their girths is of interest in coding theory and graph
theory [15], [16].

In 2001, Tanner presented a construction method to guar-
antee LDPC codes having large girths, and the proposed
codes are regular [17]. For convenience, we call them (γ, ρ)-
regular Tanner’s QC-LDPC codes in this article. As pointed
out in [1], the maximum girth value of fully-connected
QC-LDPC codes is 12. It is clear that (γ, ρ)-regular Tanner’s
QC-LDPC codes are fully-connected, and then their possible
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maximum girth value is 12. However, for a specific Tanner’s
QC-LDPC code, its girth is unknown. In 2006, Kim et al.
studied the girth of (3, 5)-regular Tanner’s QC-LDPC codes
of length 5p for p being a prime in the form of (15i + 1)
[18]. The results show that the girth of (3, 5)-regular Tanner’s
QC-LDPC codes is at least 8. In fact, there are one code
with girth 8 (for p = 31), two codes with girth 10 (for
p = 61, 151), and the remaining codes have girth 12 (for p 6=
31, 61, 151). In other words, most of (3, 5)-regular Tanner’s
QC-LDPC codes have the maximum girth value 12. This
work is so encouraging, and then the girth distributions of
the other families of (γ, ρ)-regular Tanner’s QC-LDPC codes
were studied, e.g., (3, 7)-regular codes [19], (3, 11)-regular
codes [20], (3, 13)-regular codes [21], (3, 17)-regular codes
[22], and (5, 11)-regular codes [23]. Similar conclusions were
obtained: there are several Tanner’s QC-LDPC codes with
girths 6, 8, and 10, and the remaining codes achieve the maxi-
mumgirth value 12. Recently, for finite code lengths, the girth
distribution of (γ, ρ)-regular Tanner’s QC-LDPC codes are
analyzed in [24], where γ and ρ are positive integers greater
than 2. However, the girth distribution of (γ, ρ)-regular
Tanner’s QC-LDPC codes is not given in the infinite code
lengths. In addition, girth analysis of other classes of LDPC
codes are given in [25]–[30], and some new constructions
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of LDPC codes with large girth are also proposed
[31]–[37].

In this article, we study the girth distribution of (3, 19)-
regular Tanner’s QC-LDPC codes with code length 19p,
where p is a prime in the form of (57i+ 1). We first analyze
their cycle structure, and then transform the conditions for the
existence of cycles of lengths 6, 8, and 10 into polynomial
equations in a 57th root of unity of the prime field Fp.
By checking whether these equations have solutions over the
prime field Fp, the candidate prime values p are obtained.
Then we derive the girth distribution of (3, 19)-regular Tan-
ner’s QC-LDPC codes by summarizing the obtained candi-
date values p. Finally, the iterative decoding performance of
(3, 19)-regular Tanner’s QC-LDPC codes over the AWGN
channel are presented.

II. CYCLES IN (3, 19)-REGULAR TANNER’S QC-LDPC
CODES
Let p be a prime number. It is clear that there exists a prime
field of size p, denoted by Fp. A (γ, ρ)-regular Tanner’s
QC-LDPC code of length N = ρp is given by the null space
of the following parity-check matrix

H=
[
I(bsat )

]

=


I(b0a0) I(b0a1) I(b0a2) · · · I(b0aρ−1)
I(b1a0) I(b1a1) I(b1a2) · · · I(b1aρ−1)
I(b2a0) I(b2a1) I(b2a2) · · · I(b2aρ−1)
...

...
. . .

...

I(bγ−1a0) I(bγ−1a1) I(bγ−1a2) · · · I(bγ−1aρ−1)

,
(1)

where 0 ≤ s ≤ γ − 1, 0 ≤ t ≤ ρ − 1, b and a are nonzero
elements of Fp with orders γ and ρ, respectively. There are
two points to note about the matrix H: 1) The value of (bsat )
is computed modulo p; 2) I(bsat ) stands for a p× p circulant
permutation matrix (CPM) created by cyclically shifting each
row of an identity matrix I of size p × p to the right (bsat )
positions. Furthermore, let p = γ · ρ · i + 1, and then there
exists a primitive (γρ)-th root of unity in the prime field Fp,
denoted by θ . It is easy to see that the orders of θγ and θρ

are ρ and γ , respectively. Assume that a = θγ and b = θρ .
Hence, the matrix H in (1) becomes

H =
[
I(θρ·s+γ ·t )

]
with 0 ≤ s ≤ γ − 1 and 0 ≤ t ≤ ρ − 1.

In this article, we study the (3, 19)-regular Tanner’s
QC-LDPC codes. Hence, γ = 3, ρ = 19, and the prime
p ≡ 1 (mod 57). Let P57 be the set of the primes p, i.e., p ∈
P57 = {229, 457, 571, 1483, 1597, . . .}. In the following,
the mentioned primes p are in P57. Assume that θ is a primi-
tive 57th root of unity in the prime field Fp. Hence, the parity-
check matrix of a (3, 19)-regular Tanner’s QC-LDPC code of
length 19p is given by

H =
[
I
(
θ19s+3t

)]
, (2)

where 0 ≤ s ≤ 2 and 0 ≤ t ≤ 18.

As presented in [1], a cycle of length 2i, denoted by
2i-cycle for short, in the Tanner graph ofH in (1) is expressed
as an ordered sequence of CPMs:

I(bs0at0 ), I(bs1at0 ), I(bs1at1 ), . . . , I(bs0ati−1 ), I(bs0at0 )

with for 0 ≤ k ≤ i − 1, sk 6= sk+1, tk 6= tk+1, si = s0, and
ti = t0. The positions of these ordered CPMs can be simpli-
fied as

(s0, t0) : (s1, t1) : . . . : (si−2, ti−2) : (si−1, ti−1) :, (3)

where the colon between (sk , tk ) and (sk+1, tk+1) is the CPM
I(bsk+1atk ), and (sk , tk ) stands for the CPM I(bskatk ). For
simplicity, the 2i-cycle determined by (3) is said to be of type
(s0, s1, s2, . . . , si−1). The sufficient and necessary condition
for the existence of such a 2i-cycle is presented in [1], and
further improved in [8]. Assume that the girth is g. For g ≤
2i ≤ (2g − 2), the sufficient and necessary condition for the
existence of a 2i-cycle determined by (3) is

i−1∑
k=0

(bskatk − bsk+1atk ) ≡ 0 (mod p), (4)

where for 0 ≤ k ≤ i − 1, sk 6= sk+1, tk 6= tk+1, si = s0,
and ti = t0. Since a = θ3 and b = θ19, equation (4) can be
written as follows.

i−1∑
k=0

(θ19sk − θ19sk+1 ) θ3tk = 0 (mod p).

Following the definition in [18], the above equation is
referred to as basic equation in the remaining paper. Without
loss of generality, let t0 = 0. Based on the equivalence
relation of types in [18], we provide the equivalence relation
among cycles in (3, 19)-regular Tanner’s QC-LDPC codes as
follows.
Definition 1: Type (s0, s1, . . . , si−1) is equivalent to type

(s∗0, s
∗

1, . . . , s
∗

i−1) in (3, 19)-regular Tanner’s QC-LDPC codes
if one of the following conditions is satisfied:
1) There is an integer a ∈ {0, 1, 2} such that sj = s∗j +

a (mod 3) for all j ∈ {0, 1, . . . , i− 1}.
2) There is an integer a ∈ {1, 2} such that sj = a · s∗j (mod

3) for all j ∈ {0, 1, . . . , i− 1}.
3) There is an integer a ∈ {0, 1, . . . , i− 1} such that sj =

s∗j+a for all j ∈ {0, 1, . . . , i− 1}.
4) There is an integer a ∈ {0, 1, . . . , i− 1} such that sj =

s∗i−1−j+a for all j ∈ {0, 1, . . . , i− 1}.
Note that the addition and subtraction operations in the
subscript of s are performed under modulo i.

Based on the type equivalence relation in Definition 1,
cycles of lengths 4, 6, 8, and 10 can be divided into the
following five classes of types.

1) 4-cycles: All types are equivalent to the unique class
(1, 2).

2) 6-cycles: All types are equivalent to the unique class
(1, 2, 0).

3) 8-cycles: All types are classified into the following two
classes, i.e., (1, 2, 1, 2) and (1, 2, 1, 0).
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TABLE 1. All cases in class (1, 2, 0).

4) 10-cycles: All types are equivalent to the unique class
(1, 2, 0, 1, 2).

III. GIRTH ANALYSIS OF (3, 19)-REGULAR TANNER’S
QC-LDPC CODES
Let i = t1 − t0 (mod 19), j = t2 − t1 (mod 19), k =
t3 − t2 (mod 19), and l = t4 − t3 (mod 19). Since tk 6= tk+1
for 0 ≤ k ≤ 3, then the integer variables i, j, k , and l are
not equal to zero, and they are greater than -10 and less
than 10. According to the classified five equivalent classes,
we check whether the sufficient and necessary conditions for
the existence of the corresponding cycles are satisfied, and the
candidate prime values p can be obtained. Next, we analyze
the five equivalent classes one by one.

A. CLASS (1, 2)
Based on the type equivalence relation in Definition 1, all
4-cycles have the unique class (1, 2). The corresponding
positions in (3) are (1, 0) : (2, i) : with i 6= 0 (mod 19).
Furthermore, the basic equation can be written as

1∑
k=0

(θ19sk − θ19sk+1 ) θ3tk

= θ19(1− θ19)(1− θ3i)

= 0 (mod p).

Since θ is a primitive 57th root of unity, we have θ19 6=
0, θ19 6= 1, and θ3i 6= 1, where −9 ≤ i ≤ 9 and i 6= 0.
Therefore, the above equation is not satisfied, and then there
are no 4-cycles in (3, 19)-regular Tanner’s QC-LDPC codes.

B. CLASS (1, 2, 0)
Based on the type equivalence relation in Definition 1, all
6-cycles have the unique class (1, 2, 0). Its corresponding
positions in (3) are (1, 0) : (2, i) : (0, i + j) :, where

i+ j 6= 0 (mod 19). The basic equation can be written as
2∑

k=0

(θ19sk − θ19sk+1 ) θ3tk

= θ19(1− θ19)(1+ θ3i+19 + θ3(i+j)−19)
= 0 (mod p).

Since θ19 6= 0 and θ19 6= 1, the basic equation becomes
1+ θ3i+19 + θ3(i+j)−19 = 0 (mod p). (5)

Following [18]–[22], the above modified equation is called
modified basic equation in this article. Therefore, there is a
6-cycle if and only if equation (5) holds for some possible
pairs (i, j). According to the existence of 6-cycles, equation
i + j 6= 0 (mod 19) is satisfied. In this case, the pair (i, j) is
invalid, and the other pairs are valid. Next, we will consider
all valid cases. Assume that i is a variable. Thus we can
employ the variable i to represent j. In order to facilitate
the understanding, all pairs (i, j) are recorded in Table 1.
The superscript ‘‘∗′′ of the index number indicates that the
corresponding pair (i, j) is invalid.

1) THE CASE OF (i, i)
Based on Table 1, we can see that the modified basic equation
is

1+ θ3i+19 + θ6i−19 = 1+ θ3i+19 +
(
θ3i+19

)2
.

Since i is greater than -10 and less than 10,(
θ3i+19

)3
= θ9i+57 = θ9i 6= 1,

and then(
θ3i+19

)3
− 1

=

(
θ3i+19 − 1

)((
θ3i+19

)2
+ θ3i+19 + 1

)
6= 0.
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TABLE 2. Representation of us.

Hence, (
θ3i+19

)2
+ θ3i+19 + 1 6= 0.

Therefore, the modified basic equation has no solution in Fp
for case (i, i).

2) THE CASE OF (i,2i)
Let u = θ3i+19, and the values of us can be represented by
the powers of θ for 1 ≤ s ≤ 57, as shown in Table 2. Based
on Tables 1 and 2, the modified basic equation in this case
becomes

u41 + u+ 1 = 0 (mod p).

u57 − 1 can be factorized as follows.

u57 − 1 = (u − 1)(u18 + u17 + u16 + u15 + u14 + u13 +
u12 + u11 + u10 + u9 + u8 + u7 + u6 + u5 + u4 + u3 + u2 +
u+ 1)(u2+ u+ 1)(u36− u35+ u33− u32+ u30− u29+ u27−
u26+ u24− u23+ u21− u20+ u18− u16+ u15− u13+ u12−
u10 + u9 − u7 + u6 − u4 + u3 − u+ 1).

Since u is a primitive 57th root of unity in Fp, then

u36 − u35 + u33 − u32 + u30 − u29 + u27 − u26 + u24

−u23 + u21 − u20 + u18 − u16 + u15 − u13 + u12 − u10

+u9 − u7 + u6 − u4 + u3 − u+ 1 = 0 (mod p). (6)

Furthermore, the modified basic equation u41 + u+ 1 can be
factorized into
u41 + u + 1 = (u2 + u + 1)(u39 − u38 + u36 − u35 + u33 −
u32+ u30− u29+ u27− u26+ u24− u23+ u21− u20+ u18−
u17+u15−u14+u12−u11+u9−u8+u6−u5+u3−u2+1).
Since u3 6= 1 (mod p), then u2+u+1 6= 0. Thus, u41+u+1

can be simplified as u39 − u38 + u36 − u35 + u33 − u32 +
u30− u29+ u27− u26+ u24− u23+ u21− u20+ u18− u17+
u15 − u14 + u12 − u11 + u9 − u8 + u6 − u5 + u3 − u2 + 1,
and this equation is called the reduced form of u41 + u + 1.
By applying the Euclidean division algorithm to this reduced
form and equation (6), the remainder polynomials are given
as follows.
−u20+u19−u17+u16−u14+u13−u11+u10−u8+u7−u5+
u4−u2+1, u15−u13+u12−u10+u9−u7+u6−u4+u3−u+
1,−u14+u13−u11+u10−u8+u7−u5+u4+u3−3u2+2u, u4−
u3−u2+u+1, 5u3−6u2−9u−6, (26/25)u2+ (64/25)u+
31/25, (10175/338)u+ 2675/169, 751543/4141225.
It is clear that the remainder 751543/4141225 equals zero in
F4447, and it is a nonzero element in Fp for p ∈ P57\{4447}.
The remaining remainder polynomials over Fp do not equal
zero for p ∈ P4447. Therefore, the basic equation has no
solution in Fp apart from p = 4447.

3) THE REMAINING CASES OF (i, j)
The remaining valid cases of (i, j) are (i, 3i), (i, 4i), (i, 5i),
(i, 6i), (i, 7i), (i, 8i), (i, 9i), (i,−2i), (i,−3i), (i,−4i), (i,−5i),
(i,−6i), (i,−7i), (i,−8i), and (i,−9i). Similar to the case
of (i, 2i), we can accordingly obtain their modified basic
equations, reduced forms, and candidate prime values p.
Combined with the cases of (i, i), (i, 2i), we record them
in Table 1.

Based on the results in Table 1, we can conclude that for
p = 4447, 6841, the (3, 19)-regular Tanner’s QC-LDPC code
of length 19p has girth 6, and then the girth of the other codes
is at least 8.

C. CLASS (1, 2, 1, 2)
The equivalent class (1, 2, 1, 2) corresponds to a series of 8-
cycles whose positions in (3) are (1, 0) : (2, i) : (1, i + j) :
(2, i + j + k) : for i + j + k 6= 0 (mod 19). Hence, the basic
equation can be rewritten as follows.

3∑
k=0

(θ19sk − θ19sk+1 ) θ3tk

= θ19(1− θ19)(1− θ3i + θ3(i+j) − θ3(i+j+k))

= 0 (mod p).

Since θ19 6= 0 and θ19 6= 1, the modified basic equation is

1− θ3i + θ3(i+j) − θ3(i+j+k) = 0 (mod p). (7)

Let v = θ3i, and ys can be easily obtained for 1 ≤ s ≤ 19,
as shown in Table 3. It is clear that v is a primitive 19th root
of unity in Fp for p ∈ P57. Since

v19 − 1 = (v− 1)(v18 + v17 + v16 + v15 + v14

+v13 + v12 + v11 + v10 + v9 + v8 + v7

+v6 + v5 + v4 + v3 + v2 + v+ 1)

and y 6= 1, we can obtain
v18 + v17 + v16 + v15 + v14 + v13 + v12 + v11

+v10 + v9 + v8 + v7 + v6 + v5 + v4 + v3

+v2 + v+ 1 = 0 (mod p). (8)
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TABLE 3. Representation of vs.

TABLE 4. All invalid cases (i, j, k) for 8-cycles.

Similar to class (1, 2, 0), we list all invalid cases (i, j, k)
in Table 4 for i+ j+ k = 0 (mod 19), and the other cases are
valid. According to equation (7), we can obtain the modified
basic equation and the reduced form corresponding to each
valid case. By applying the Euclidean division algorithm to
the reduced form of the modified basic equation and equa-
tion (8), and then checking whether the remainder is equal to
zero over Fp for p ∈ P57, the candidate value p is obtained.

D. CLASS (1, 2, 1, 0)
The 8-cycles also have the other equivalent class, i.e., class
(1, 2, 1, 0), and the corresponding positions in (3) are (0, 0) :
(1, i) : (0, i+ j) : (2, i+ j+ k) : for i+ j+ k 6= 0 (mod 19).
The basic equation can be rewritten as follows.

3∑
k=0

(θ19sk − θ19sk+1 ) θ3tk

= θ19(1− θ19)(1− θ3i − θ3(i+j)−19 + θ3(i+j+k)−19)

= 0 (mod p).

Since θ19 6= 0 and θ19 6= 1, the modified basic equation is
given by

1− θ3i − θ3(i+j)−19 + θ3(i+j+k)−19 = 0 (mod p). (9)

Set u = θ3i+19. For 1 ≤ s ≤ 57, us is recorded in Table 2. Just
like class (1, 2, 1, 2), there are 17 invalid cases (see Table 4)
and 307 valid cases, and the candidate values p can be also
obtained for each valid case. Note that the equation which
is employed to apply the Euclidean division algorithm to the
reduced form of the modified basic equation is equation (6).

According to the conclusion in Subsection III-B, we sum-
marize all obtained candidate values p, and (3, 19)-
regular Tanner’s QC-LDPC codes with girth 8 are found.
That is, (3, 19)-regular Tanner’s QC-LDPC codes of
length 19p have girth 8 for p ∈ G8, where G8 =

{229, 457, 571, 1483, 1597, 2053, 2281, 3079, 3307, 4219,
4561, 5701, 7411, 7753, 9349, 9463, 11059, 15619, 16759,
17443, 18583, 27361, 29983, 30553, 32833, 40813, 46171,
48337, 53923, 56431, 56659, 62701, 78889, 85159, 90403,

101347, 125287, 130873, 174763, 177841, 187987, 196879,
202693, 204517, 213523, 234499, 355909, 371299, 372667,
425107, 611839, 741457, 947341, 1462507, 1521673, 43707
61, 5414089, 5468923, 83498959, 186833917}.

E. CLASS (1, 2, 0, 1, 2)
All 10-cycles have the unique equivalent class (1, 2, 0, 1, 2),
and the corresponding positions in (3) are (0, 0) : (1, i) :
(2, i + j) : (0, i + j + k) : (1, i + j + k + l) :, where
i+j+k+l 6= 0 ( mod 19). The basic equation can be rewritten
as follows.

4∑
k=0

(θ19sk − θ19sk+1 ) θ3tk = θ19(1− θ19) ·

(1+ θ3i+19 + θ3(i+j)−19 + θ3(i+j+k) − θ3(i+j+k+l))

= 0 (mod p).

Since θ19 6= 0 and θ19 6= 1, the modified basic equation is

1+ θ3i+19 + θ3(i+j)−19 + θ3(i+j+k) − θ3(i+j+k+l)

= 0 (mod p). (10)

Similar to class (1, 2, 0), class (1, 2, 1, 2), and class
(1, 2, 1, 0), 307 invalid cases of (i, j, k, l) with i+ j+ k+ l =
0 (mod 19) are first found, and the remaining 5525 cases of
(i, j, k, l) are valid. Second, based on equation (10), we can
obtain the modified basic equation and the reduced equation
for each valid case. Third, we apply the Euclidean division
algorithm to the reduced form of the modified basic equa-
tion and equation (6), and then check whether the resulting
remainder is equal to zero over Fp for p ∈ P57, the candidate
value p is obtained from within. Finally, by summarizing
the obtaining candidate values p and combining with the
conclusions in Subsections III-B and III-D, we can find all
(3, 19)-regular Tanner’s QC-LDPC codes with length 19p
and girth 10. In order to save space, the invalid and valid
cases of (i, j, k, l), and their associated modified basic equa-
tions and reduced forms are omitted, we here only give the
obtained results. That is, the girth of (3, 19)-regular Tanner’s
QC-LDPC codes of length 19p is 10 for p ∈ G10, where
G10 = {2851, 3877, 4789, . . . } and the element number inG10
is 831. In order to facilitate the reader to view and retrieve,
G10 is given in Appendix A.

IV. NUMERICAL RESULTS
In order to show the performance of (3, 19)-regular Tanner’s
QC-LDPC codes, numerical simulation results of some codes
are provided in this section. Notice that the transmission is
over the AWGN channel with BPSK modulation and the
employed decoding algorithm is the sum-product algorithm
(SPA).

Consider p = 457, 571, 1483, 2053, 2281. By suit-
ably selecting the primitive elements, we can construct the
five prime fields Fp. Based on the parity-check matrix H
in (2) and the primitive 57th root of unity in Fp, we can
obtain five (3, 19)-regular Tanner’s QC-LDPC codes of
lengths 8683(= 19 × 457), 10849(= 19 × 571), 28177
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FIGURE 1. The error performance of Tanner’s QC-LDPC (8683, 7314),
(10849, 9138), (28177, 23730), (39007, 32850), and (43339, 36498) codes.

FIGURE 2. The rate of decoding convergence of the Tanner’s QC-LDPC
(4351, 3666) code.

(= 19 × 1483), 39007(= 19× 2053), and 43339 (= 19×
2281). Their corresponding exponent matrices P457, P571,
P1483, P2053, and P2281 are given in Appendix B. Their
parity-check matrices have two redundant rows, and they are
Tanner’s QC-LDPC (8683, 7314), (10849, 9138), (28177,
23730), (39007, 32850), and (43339, 36498) codes. Notice
that the girth of these five codes is 8. The bit error perfor-
mance of these codes decoded with the SPA are shown in Fig-
ure 1. The maximum number of iterations is 50. We can see
that, at the bit error rates (BERs) of 10−6, the (3, 19)-regular
Tanner’s QC-LDPC codes of lengths 8683, 10849, 28177,
39007, and 43339 perform about 1.05 dB, 1.0 dB, 0.8 dB,
0.75 dB, and 0.7 dB from the Shannon limit, respectively.
It can be seen that, when the length is greater than 40000 bits,
the (3, 19)-regular Tanner’s QC-LDPC codes perform about
0.7 dB away from the Shannon limit at the BER of 10−6, and
the performance gap will become smaller with the increase
of the code length.

Consider p = 229. According to the parity-check matrix
H in (2) and the primitive 57th root of unity in F229, we can
obtain the (3, 19)-regular Tanner’s QC-LDPC (4351, 3666)
code which corresponding exponent matrix P229 is given in
Appendix B. The girth of this code is 8, and its parity-check
matrix also has two redundant rows. Moreover, the BER
performance of the (3, 19)-regular Tanner’s QC-LDPC (4351,
3666) code is shown in Figure 2. The employed decoding
algorithm is the SPA with 2, 5, 10, 20, and 50 iterations.
We can see that this code converges fast. At BER= 10−6,
the performance gap between 10 iterations and 50 iterations
is less than 0.3 dB while the performance gap between 20 and
50 iterations is about 0.1 dB. That is, the decoding per-
formance is good enough when the iteration number is 20.
Besides, no error floor is observed down to BER≈ 3×10−7.

V. CONCLUSION
In this article, we obtained the girth value g of (3, 19)-regular
Tanner’s QC-LDPC codes of length 19p, p ∈ P57 (P57 is a set
of the primes with form 57s+ 1), i.e.,

g =


6, if p ∈ G6;

8, if p ∈ G8;

10, if p ∈ G10;

12, if p ∈ P57 \ (G6 ∪ G8 ∪ G10);

where G6 = {4447, 6841}, G8 and G10 is given in
Appendix A. Notice that the cardinalities of the sets G8
and G10 are 60 and 831, respectively. That is, there are
2 codes of girth 6, 60 codes of girth 8, 831 codes of girth
10, and the remaining codes have girth 12, such as for
p = 21661, 23143, 25309, 27817, . . .. Furthermore, numer-
ical simulation results show that (3, 19)-regular Tanner’s
QC-LDPC codes have good iterative decoding performance
and low error floor.

APPENDIX. A
In the following, we provide two prime sets G8 and G10 for
(3, 19)-regular Tanner’s QC-LDPC codes with girths 8 and
10. When p takes values in the set G8, the girth of (3, 19)-
regular Tanner’s QC-LDPC code with code length 19p is 8,
and the girth is 10 while p is in the set G10.
G8={229, 457, 571, 1483, 1597, 2053, 2281, 3079,
3307, 4219, 4561, 5701, 7411, 7753, 9349, 9463, 11059,
15619, 16759, 17443, 18583, 27361, 29983, 30553,
32833, 40813, 46171, 48337, 53923, 56431, 56659, 62701,
78889, 85159, 90403, 101347, 125287, 130873, 174763,
177841, 187987, 196879, 202693, 204517, 213523, 234499,
355909, 371299, 372667, 425107, 611839, 741457, 947341,
1462507, 1521673, 4370761, 5414089, 5468923, 83498959,
186833917}.
G10 = {2851, 3877, 4789, 4903, 6043, 6271, 7069, 7297,
7639, 7867, 8209, 8779, 8893, 9007, 10831, 11173, 11287,
11743, 11971, 12541, 13339, 13567, 13681, 14251, 14479,
14593, 14821, 15277, 15391, 15733, 16189, 16417, 16987,
18013, 18127, 19267, 19381, 19609, 20407, 20521, 20749,
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21319, 21433, 22003, 22573, 23029, 23371, 23599, 23827,
24169, 24967, 25423, 25537, 26107, 26449, 28387, 28729,
28843, 29527, 29641, 30781, 31123, 32377, 32491, 33289,
33403, 35569, 35797, 35911, 37963, 39901, 40129, 40357,
40471, 40927, 41269, 42181, 42409, 42751, 42979, 43777,
43891, 45259, 45943, 47881, 49363, 49477, 50047, 51871,
53239, 53353, 54151, 54949, 55291, 59167, 59509, 61333,
62131, 62929, 63841, 65437, 66463, 66919, 67033, 67261,
67489, 69427, 70111, 71479, 71707, 72733, 73189, 73417,
74101, 75013, 75583, 76039, 77863, 79231, 79801, 80599,
81853, 81967, 82651, 83221, 83791, 86413, 87211, 87553,
89833, 92683, 93253, 95419, 95989, 96331, 97813, 98041,
98269, 98953, 99409, 101119, 101917, 102259, 103171,
103399, 104311, 105337, 111493, 111949, 113089, 114229,
114343, 114571, 114799, 116167, 120157, 121867, 123121,
126199, 127681, 130531, 131101, 131671, 131899, 132241,
133153, 133723, 135661, 137143, 138283, 138967, 139537,
141931, 144667, 145009, 145807, 146719, 147289, 148429,
152989, 154927, 155383, 157321, 158803, 160969, 162907,
164617, 166669, 169063, 175333, 175447, 180463, 182059,
186619, 187189, 192091, 195511, 196081, 200869, 201667,
204859, 206341, 207481, 212383, 215689, 217969, 225493,
227089, 236209, 239857, 248293, 253423, 254791, 261061,
262543, 263911, 268813, 269041, 273943, 278617, 280327,
283519, 285457, 290359, 290473, 292069, 292867, 293893,
314299, 326611, 328777, 333451, 334363, 335047, 336643,
346903, 347359, 347929, 357733, 358987, 362863, 363889,
371869, 373693, 378823, 391021, 408691, 410629, 413251,
417811, 436621, 447451, 451669, 455431, 471391, 476863,
477091, 488833, 505819, 507757, 523489, 529531, 539107,
544123, 547087, 549481, 556093, 557803, 563047, 576613,
577867, 594511, 621301, 623353, 624721, 632473, 646609,
653563, 662797, 665761, 669181, 690271, 711133, 718087,
718999, 723901, 735529, 738379, 754111, 764143, 768589,
770527, 781129, 782497, 794923, 807463, 820459, 822739,
825361, 830719, 851239, 856369, 857053, 868909, 870049,
882019, 885553, 905161, 919183, 921919, 954979, 956119,
975157, 976411, 976639, 978349, 985531, 988951, 993283,
1006279, 1012321, 1051423, 1051879, 1062367, 1073881,
1085509, 1120849, 1142737, 1151629, 1155619, 1159153,
1181611, 1197799, 1200307, 1212847, 1217179, 1217977,
1222537, 1232683, 1253089, 1261639, 1263463, 1279081,
1290823, 1294129, 1296409, 1306213, 1317271, 1333231,
1334371, 1366747, 1430131, 1442899, 1453957, 1459771,
1466383, 1509133, 1517569, 1535923, 1562371, 1571149,
1575481, 1603183, 1615837, 1627123, 1627237, 1650379,
1652089, 1662007, 1687657, 1729153, 1738273, 1751041,
1767229, 1787179, 1806901, 1827307, 1854781, 1866751,
1947691, 1984057, 2043907, 2083693, 2094523, 2112079,
2112193, 2137159, 2147989, 2176831, 2192791, 2202253,
2203849, 2214907, 2282281, 2285587, 2308387, 2343157,
2343613, 2376559, 2386591, 2396509, 2426947, 2437663,
2453053, 2462401, 2477791, 2489647, 2507773, 2544253,
2548813, 2550181, 2583127, 2654149, 2672617, 2698609,
2707843, 2716849, 2748769, 2755153, 2883061, 2925583,
2937667, 2940517, 2948839, 3037189, 3048247, 3053719,

3077203, 3118243, 3139447, 3203857, 3227683, 3227911,
3304291, 3309307, 3377821, 3394693, 3410881, 3412477,
3450781, 3460243, 3469363, 3471301, 3534799, 3584047,
3593509, 3615967, 3663277, 3837469, 3851149, 3905527,
3921601, 3972103, 3986467, 4034689, 4058401, 4139341,
4142989, 4171261, 4217203, 4247071, 4273519, 4333027,
4348189, 4396981, 4434259, 4502317, 4625779, 4670923,
4765543, 4799401, 4922179, 4944409, 4966411, 5132053,
5233171, 5267599, 5289373, 5319697, 5505061, 5572663,
5625673, 5627269, 5681647, 5844781, 5891293, 5908393,
5918083, 5928229, 6097633, 6122029, 6238651, 6345127,
6370207, 6446131, 6456733, 6633433, 6642553, 6678691,
6744583, 6806257, 7003933, 7034143, 7290643, 7335787,
7397119, 7549537, 7594453, 7621927, 7687021, 7809913,
7854487, 7931893, 8047717, 8060257, 8150773, 8164567,
8227381, 8280619, 8283697, 8552623, 8764321, 8907391,
8967241, 9056389, 9277549, 9391663, 9511933, 9771967,
9853933, 9867841, 9954823, 9988339, 10151017,
10280293, 10560619, 10701637, 10750429, 10906267,
10932829, 10980253, 10992337, 11159233, 11330119,
11419153, 11426449, 11556409, 11577499, 11580691,
11674171, 11991433, 12022441, 12192073, 12398413,
12575341, 12819643, 12833893, 12901951, 13018801,
13070557, 13089367, 13098601, 13750567, 13772683,
13882009, 14212267, 14317603, 14318971, 14454631,
14593141, 14763457, 15382933, 15434233, 15461707,
15469687, 15604093, 16143997, 16426831, 16555309,
16875877, 17021911, 17163841, 17465827, 17612659,
18346021, 18370873, 18554527, 18788683, 18798487,
18929473, 19688029, 20124763, 20312863, 20491957,
20530603, 20872603, 20924131, 21114853, 21382981,
21830317, 22070857, 22135723, 22534153, 22537573,
22598677, 22644733, 22866463, 23244373, 24273679,
24366247, 24482527, 24631069, 24730249, 25184311,
27011389, 27938437, 27971497, 28079683, 28816693,
30118687, 30132709, 30532507, 30615727, 30632713,
30674323, 30807589, 31357297, 31436983, 31837807,
33538003, 33694183, 34535047, 35863603, 36255421,
36448651, 36915367, 37356433, 37543393, 38336833,
38376391, 38389843, 38806171, 39871501, 40758763,
41173837, 41841763, 41971723, 42178177, 44439937,
45493069, 45509143, 45804973, 46062043, 46761433,
46833937, 47277283, 47751751, 48554881, 49740139,
51616921, 52139611, 53385859, 53970793, 55712029,
56137933, 58836769, 59119033, 59928433, 60572077,
60581767, 60744331, 61390939, 63649393, 66635167,
66636649, 69055387, 69063937, 73674553, 74227339,
74326519, 74831767, 75116653, 75188131, 76954789,
77069929, 78557287, 79211989, 81448441, 82324987,
83235847, 88370179, 89867683, 89905531, 92425843,
94793737, 95310043, 96739831, 102104671, 102215023,
103481449, 105767377, 105770227, 106599919,
107337271, 114075697, 114165871, 119827567,
120027067, 121782097, 127707361, 129569779,
130587913, 131956483, 137177683, 140941279,
145457503, 146041297, 146354227, 147551113,
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160761091, 160997527, 162074257, 166400557,
169276777, 171099751, 178411027, 190106857,
193370677, 199050043, 207951391, 224704261,
251155111, 263743789, 264776857, 267067231,
278669581, 285449959, 303089407, 329689027,
360244219, 360709681, 379546129, 389655649,
397640209, 399876889, 409464859, 427385773,
438131641, 467012971, 472909963, 505984327,
515498539, 520840921, 563507929, 584072161,
654366613, 685422721, 695514913, 741595651,
793654663, 815581423, 848595823, 886508347,
958608103, 1031171041, 1197785233, 1375661143,
1384107061, 1398772591, 1413220723, 1608792511,
1610170201, 1911696667, 1932003487, 1952618791,
2086293367, 2102593543, 2110568413, 2116392673,
2190842653, 2194202119, 2591182609, 2947907191,
2978078317, 3296776603, 3349895701, 3464814313,
3747773941, 3821158477, 4169297263, 4266148927,
4976533999, 5175371203, 5456052541, 5856580141,
6145260061, 6719885041, 6878418343, 7253547313,
7370232697, 7749316441, 8084888437, 8211281263,
8560648627, 8873039863, 10253112691, 13706511157,
14603640427, 16530893191, 16720906339, 17162646307,
19765641823, 19860064489, 20418086851, 21191481433,
21285505441, 24803650549, 28471886917, 34430733151,
52511112289, 56338228291, 58815132511, 68207417977,
73503597829, 74397607147, 78449716627, 86907724669,
133002769213, 147552166273, 345171707773,
382919621131}.

APPENDIX. B
In Section IV, we construct six (3, 19)-regular Tanner’s
QC-LDPC codes of lengths 4351 (= 19 × 229), 8683
(= 19 × 457), 10849 (= 19 × 571), 28177 (= 19 × 1483),
39007 (= 19 × 2053), and 43339 (= 19 × 2281). Notice that
the selected primitive 57th unity roots are 6 in F229, 13 in
F457, 3 in F571, 2 in F1483, 2 in F2053, and 7 in F2281. Their
corresponding exponent matrices P229, P457, P571, P1483,
P2053, and P2281 are given as follows.

P229 =

 1 216 169 93 165 145 176 2 203
140 12 73 196 200 148 137 51 24
135 77 144 189 62 110 173 41 154

109 186 101 61 123 4 177 218 143 202
146 163 171 67 45 102 48 63 97 113
59 149 124 220 117 82 79 118 69 19


P457 =

 1 369 432 372 168 297 370 344 347
240 359 398 165 104 445 142 300 106
18 244 7 298 282 319 262 251 305

83 8 210 257 234 430 91 218 10 34
269 92 130 442 406 375 361 222 115 391
123 144 124 56 99 428 267 268 180 155


P571 =

 1 27 158 269 411 248 415 356 476
103 497 286 299 79 420 491 124 493
331 372 337 534 143 435 325 210 531

290 407 140 354 422 545 440 460 429 163
178 238 145 489 70 177 211 558 220 230
62 532 89 119 358 530 35 374 391 279


P1483 =

 1 8 64 512 1130 142 1136 190 37
789 380 74 592 287 813 572 127 1016
1144 254 549 1426 1027 801 476 842 804

296 885 1148 286 805 508 1098 1369 571 119
713 1255 1142 238 421 402 250 517 1170 462
500 1034 857 924 1460 1299 11 88 704 1183


P2053 =

 1 8 64 512 2043 1973 1413 1039 100
773 25 200 1600 482 1803 53 424 1339
106 848 625 894 993 1785 1962 1325 335

800 241 1928 1053 212 1696 1250 1788 1986 1517
447 1523 1919 981 1689 1194 1340 455 1587 378
627 910 1121 756 1942 1165 1108 652 1110 668


P2281 =

 1 343 1318 436 1283 2117 773 543 1488
849 1520 1292 642 1230 2186 1630 245 1919
5 1715 2028 2180 1853 1461 1584 434 597

1721 1805 964 2188 35 600 510 1574 1566 1103
1289 1894 1838 878 62 737 1881 1941 1992 1237
1762 2182 258 1816 175 719 269 1027 987 953
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