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ABSTRACT This paper deals with decomposition of complete graphs on n vertices into circulant graphs
with reduced degree r < n − 1. They are denoted as Cn(a1, a2, . . . , am), where a1 to am are generators.
Mathematical labeling for such bigger (higher order and huge size) and complex (strictly regular with
so many triangles) graphs is very difficult. That is why after decomposition, an edge irregular k-labeling
for these subgraphs is computed with the help of algorithmic approach. Results of k are computed by
implementing this iterative algorithm in computer. Using the values of k , an upper bound for edge irregularity
strength is suggested for Cn(a1, a2, . . . , am) that is |E|/2 log2 |V |.

INDEX TERMS Edge irregular labeling, circulant graph, graph algorithm, computational complexity, Sidon
sequence.

I. INTRODUCTION AND PRELIMINARY RESULTS
Let G be a connected, simple and undirected graph with ver-
tex set V (G) and edge set E(G). In graph theory, degree of a
graph is used as one of the most important graph invariant for
comparison purpose. The degree of a vertex v is the number of
edges incident to v, it is denoted as deg(v). The minimum and
maximum degree of a graph G is denoted by δ(G) and 1(G)
respectively. If every vertex in a graph G has the same degree
r , that is δ(G) = 1(G) = r , then G is called an r-regular
graph. A complete graph Kn is a circulant regular graph of
order n and degree r = n − 1, where every pair of distinct
vertices is connected by a unique edge. That is why Kn is
considered as super-circulant graph with biggest size that can
be calculated using the property, |E(Kn)| = n(n− 1)/2.
In graph theory new graphs are evolved from exist-

ing graphs by applying certain graph operations like by
adding or deleting vertices or edges. Decomposition is
one of the elementary graph operation in which a sub-
graph is extracted from a super-graph. Graph decomposition
can be done by deleting 2-factors or Hamiltonian cycles
from a supergraph that results as reduction of two-degree.
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In 2001 graph decomposition was introduced by Knopf-
macher and Mays [13], they used enumerations to develop
formulae for few families of graphs like paths, cycles, trees
etc. In 2012 Cichacz et al. [8] decomposed the complete
graphs into (0, 2)-prisms. In 2015 Tichenor and Mays used
decompositions for deleting edges from complete graphs and
derived formulae for paths, cycles, star graphs and disjoint
graphs using generating functions [21].

In computer science graphs play a vital role in
computational linguistics, decision making software, cod-
ing theory and path determination in networks. In fifth-
generation-computers, the interconnection network of the
parallel processors are represented as complete graph Kn,
by considering vertices as n processors and edges as link
between them [17]. Circulant graphs also have wide applica-
tions in the field of cloud computing and network topologies
like ring topology and fully connected networks [5]. Sipper
and Ruppin in [18] using the idea of [6] worked on cellular
programing based on circulant graphs. In [14] Lu worked
on fast methods for designing circulant network topology
by decomposing complete graphs to construct new circulant
graphs.

In real world applications temporal graphs are used more
than complete graphs. A temporal graph is a dynamic
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graph that changes with discrete time to develop connec-
tivity between the nodes or vertices according to changed
situation [16]. ‘‘Recent research shows that many graph prop-
erties and problems become radically different and substan-
tially more difficult when an extra time dimension is added to
them.’’ This situation motivates to explore new graphs, their
labeling and need of designing algorithms for more and more
versatile types of graphs.

Chartrand et al. in [7] introduced an edge k-labeling of
a graph G such that distinct vertices have distinct weights,
where the weight of a vertex is the sum of labels of its incident
edges. Such labeling is known as an irregular assignment
whereas the irregularity strength s(G) of a graph G is known
as the minimum k for which G has an irregular assignment
using labels at most k . Lot of research work has been carried
out in the area of irregularity strength for different graph
families [10]–[12], [15].

There are known many variations of irregular assignments.
In 2014 Ahmad et al. [1] introduced a new type of a ver-
tex labeling and established a lower bound for this type of
labeling. A vertex k-labeling V (G) → {1, 2, . . . , k} of a
graph G is defined to be an edge irregular k-labeling if for
every two different edges their weights are distinct. In this
case the weight of an edge is defined as the sum of labels of
its ends. The minimum k for which a graph G has an edge
irregular k-labeling is called the edge irregularity strength of
G denoted by es(G). In recent years lot of work has been done
on es(G) for different families of graphs and trees [2], [3],
[19], [20].

The following theorem given in [1], established a lower
bound for the edge irregularity strength of a graph G.
Theorem 1: [1] Let G = (V ,E) be a simple graph with

maximum degree 1(G). Then

es(G) ≥ max
{⌈
|E(G)| + 1

2

⌉
,1(G)

}
.

An upper bound based on Fibonacci numbers is presented in
the next theorem.
Theorem 2: [1] Let G = (V ,E) be a graph of order p.

Let the sequence Fn of Fibonacci numbers be defined by the
recurrence relation Fn = Fn−1 + Fn−2, n ≥ 3, with seeds
values F1 = 1 and F2 = 2. Then es(G) ≤ Fp.
Primary objective of this article is to relate the es(Kn) with the
es(Cn, r). Section-II, explains the circulant regular graphs as
subgraphs of complete graphs. Hence the es(Cn, r) must be
less than es(Kn).

II. DECOMPOSITION OF COMPLETE GRAPHS
In 2018 Asim et al. [4] computed an edge irregular k-labeling
for complete graphs using algorithmic approach and sug-
gested a better upper bound as es(Kn) ≤ n(n−1)/2 log2 n that
is much better than previously known mathematical result
using Fibonacci numbers Fn. Evidently, for complete graph
Kn all vertex labels are unique and edge weights are also
unique. These results are worth to compare themwith a Sidon
sequence to support the optimality of algorithmic results.

A Sidon sequence A = a0, a1, a2, . . . is a set of natural
numbers in which all pairwise sums ai + aj, i ≤ j must be
different. Sidon introduced this concept for Fourier series.
In 2010 Cilleruelo et al. [9] solved the issue by giving a
formula to calculate Sidon sequence terms. Table 1 shows the
comparison between the algorithmic results of k computed in
[4], Sidon sequence terms from [9] and Fibonacci numbers
Fn as an upper bound from [1]. It can be seen clearly that
algorithmic results are better than both sequences.

Successful results of es(Kn) computed in [4] motivated
us to extend the same approach for similar graph families,
that is why edge irregular k-labeling of circulant graphs
is computed in this article. Let n,m and a1, a2, . . . , am be
positive integers, 1 ≤ ai ≤ bn/2c and ai 6= aj, for all
1 ≤ i, j ≤ m. An undirected graph with the set of vertices
V = {v1, v2, . . . , vn} and the set of edges E = {vivi+aj : 1 ≤
i ≤ n, 1 ≤ j ≤ m}, the indices being taken modulo n, is
called a circulant graph and denoted by Cn(a1, a2, . . . , am).
The numbers a1, a2, . . . , am are called the generators and we
say that the edge vivi+aj is of type aj. It is easy to see that
the circulant graph Cn(a1, a2, . . . , am) is a regular graph of
degree r , where

r =

{
2m− 1 if

n
2
∈ {a1, a2, . . . , am}

2m otherwise.

Formation of circulant graphs leads us to the fact that
degrees, generators and their decomposition depends on order
of graph as even or odd. Both cases are explicitly explained
as follows:

Case 1: n ≡ 0 (mod 2)
If the order is even, then degrees will be odd, starting from
r = n − 1 for Kn up to r = 3 as maximum decomposed
circulant graph. The value of m = n/2 and the graph can
be represented as Cn(1, 2, . . . , n/2). The first decomposition
can be done by deleting one 2-factor (outer cycle) that will
result as (n − 3)-regular graph and graph can be represented
as Cn(2, 3, . . . , n/2) = Cn,n−3. The second decomposition
can be done by deleting the second 2-factor that means all
edges of type 2 will be deleted and the graph representation
will be like Cn(3, 4, . . . , n/2) = Cn,n−5. This decomposition
can continue until graph becomes 3-regular and can be repre-
sented as Cn(n/2+ 1, n/2) = Cn,3.
Case 2: n ≡ 1 (mod 2)

If the order is odd, then degrees will be even, starting
from r = n − 1 for Kn up to r = 4 as maximum
decomposed circulant graph. Circulant graph with degree
r = 2 is innermost cycle Cn whose es(Cn) has been
proved already in [1]. The value of m = (n− 1)/2 and
the graph can be represented as Cn(1, 2, . . . , (n− 1)/2). The
first decomposition can be done by deleting a Hamiltonian
cycle (outer cycle) that will result as (n − 3)-regular and
the graph can be represented as Cn(2, 3, . . . , (n− 1)/2) =
Cn,n−3. The second decomposition can be done by delet-
ing another 2-factor that means all edges of type 2
will be deleted and the graph representation will be like
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TABLE 1. Comparison of upper bounds for es(Kn) presented in [4] with sidon and fibonacci sequences.

FIGURE 1. Decomposition of Kn from higher to lower degree.

Cn(3, 4, . . . , (n− 1)/2) = Cn,n−5. This decomposition can
continue until graph becomes 4-regular and can be repre-
sented as Cn((n− 3)/2, (n− 1)/2) = Cn,4.
Phenomena of decomposition for both of the above cases

is reflected in Figure 1.

III. ALGORITHMIC RESULTS
Using the decomposition process explained in Case 1 and 2,
it is obvious that successive subgraphs have lesser size and
according to handshaking lemma, size of each r-regular sub-
graph can be determined as nr/2. In [4] an upper bound for
es(Kn) is computed as |E(Kn)| log2 |V (Kn)|. The complete
graph is super-circulant graph hence this result is considered
as an upper bound, whereas a lower bound for any es(G) is
given ins Theorem 1. On the basis of these two references
we established the following theorem and we proved it using
algorithmic results.
Theorem 3: Let Cn,r be an r-regular circulant graph of

order n, n ≥ 5 and r ≥ 3. Then

max
{⌈

nr + 2
4

⌉
, r
}
≤ es(Cn,r ) ≤

nr
2

log2 n.

Proof 1: The size of a circulant graph Cn,r is nr/2,
therefore using Theorem 1 we obtained the (nr + 2)/4 as
a lower bound for es(Cn,r ). To prove the upper bound, an
iterative algorithm is designed using back-tracking design
strategy.

This algorithm computes an edge irregular k-labeling for
a circulant graph Cn,r with order n ≥ 5 and any positive
integer 4 ≤ r ≤ n − 1 as degree. Algorithm returns output
in the form of an array containing label of vertices where nth

location vertex is k . Values of edge weights are computed,
then compared their uniqueness and finally stored in a 2-D
array.

Input: A positive integer n ≥ 5 as the order of the graph
and r as degree of the graph.

Output: Labels of vertices V [n]→ {1, 2, . . . , k}

Algorithm 1 CR-Labeling(n, r)
1: V [n]← {1, 2, 3, 4}
2: Diff ← n− r
3: dfact ←

⌊
Diff
2

⌋
4: for each edge wφ(x, y)← 1 where x 6= y
5: t ← 5
6: m← 4
7: repeat
8: V [t]← m+ 1
9: Edge-Calculate(G, t)
10: if (Edge-Duplicate(G, t) 6= TRUE)
11: t ← t + 1
12: until t ≤ n
13: return V
Edge-Weights(G, t)
1: for i← 1 to t − dfact − 1
2: for j← dfact + i+ 1 to t
3:

4: if (i ≤ dfac AND j ≥ n− dfac+ i)
5: E[i][j]← NULL
6: else
7: E[i][j]← V [i]+ V [j]

Description of the Algorithm: CR-Labeling(n, r) com-
putes the label of vertices {1, 2, . . . , k} and store them
in an array V [n], where {1, 2, 3, 4} are four initial labels
used as seed values to initialize the back-tracking algo-
rithm. Algorithm computes a variable ‘‘dfact’’ (difference
factor), using the given inputs n and r that actually identi-
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TABLE 2. Algorithmic results for circulant graphs (n − 3) to (n − 9) and suggested upper-bound.

fies how many generators are deleted from Kn. This vari-
able controls the starting and termination of loops. Algo-
rithm is designed in a way that it can handle the even
and odd value of n. Sub-procedure ‘‘Edge-Weights(G, t)’’
is based on two nested loops, that are executed in style of
Gaussian arithmetic series to compute weights of all edges
and then store in two dimensional array. Whereas ‘‘Weight-
Duplicate(G, t)’’ ensures that all the edge weights are unique
to verify the condition w(u, v) 6= w(u′, v′) for all edges (u, v)
and (u′, v′). CR-Labeling(n, r) works in a fashion of back-
tracking because any of the ith label for Ci(a1, a2, . . . , am) is
computed using the labels of Ci−1(a1, a2, . . . , am).

FIGURE 2. Labeling of circulant graph C10 from (n − 1) to (n − 7) regular.

Weight-Duplicate(G, t)
1: for i← 2 to t − dfac− 2
2: for j← dfac+ i+ 1 to t − 1
3: for l ← 1 to i− 1
4: for w← j+ 1 to t
5: if E[i][j] = E[l][w] AND E[l][w] 6= NULL
6: return TRUE
7: break
8: return FALSE

Outcomes of the algorithm is shown pictorially in Figure 2
as labeled graphs and their representation in 2-D matrices.
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FIGURE 3. Comparison of es(Cn(a2, a3, . . . , am)) with its asymptotic
bounds.

It can be observed clearly that by deleting one generator
sequentially, the graph is decomposed from 9-regular to
3-regular and the value of the largest label is also reduced
from k = 47 to k = 14.

Examples of circulant graphs given in Figure 2, in Table 2
and the chart given in Figure 3 for higher order circulant
graphs, prove the claim of this study. It can be observed as
mathematical inequality that

max
{⌈

nr + 2
4

⌉
, r
}
≤
nr
4

log2(n) ≤
nr
2

log2(n),

that completes the proof.

IV. CONCLUDING REMARKS
Using the values of k for circulant graphs calculated with
the help of algorithm, and suggested upper bound that
is definitely smaller than upper bound of complete graph
because decomposed circulant graphs are subgraphs of Kn.
Line chart given in Figure 3 shows the comparison between
the curves of a lower bound for any graph, algorithmic
results of circulant graphs as k , suggested upper- bound
of es(Cn(a2, a3, . . . , am)) ≤ |E|/2 log2(|V |) ≤ es(Kn) =
|E| log2 |V |.
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