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ABSTRACT Recently, many PCA with robust low-dimensional representation models have been applied
in imaging. However, most models ignore the manifold geometry of the data and fail to minimize the
reconstruction error. Here, a novel robust PCA structure, locally invariant robust principal component
analysis (LIRPCA), is proposed for underwater image recognition. The contributions of LIRPCA are as
follows: (1) LIRPCA selects the l2-norm as distance metric criterion to describe the global geometry and
the intrinsic geometry, which ensures the robustness of the overall model structure. (2) LIRPCA constructs
a close relationship between the reconstruction error of the projected data and the input data in the cost
function to minimize the reconstruction error. (3) To solve the challenging optimization function of LIRPCA,
we design an iterative algorithm with fast convergence to obtain the desired solution. The proposed model
is applied to feature extraction and recognition tasks from several underwater image datasets and performs
better than other models.

INDEX TERMS Manifold geometry, principal component analysis, l2-norm, underwater image recognition.

I. INTRODUCTION
In recent years, with the rapid development of artificial intel-
ligence and machine learning, increased attention has been
paid to underwater optical image recognition technology [1].
However, an underwater image in a real environment has
unique attributes. First, because the underwater environment
is complex and changeable, fewer samples are available for
underwater environments compared with the atmosphere.
Second, the randommovement of underwater organisms usu-
ally leads to the formation of bubbles and the disturbance
of suspended solids. This is the salt-and-pepper noise that
underwater images often pick up. Moreover, the underwa-
ter optical propagation property involves diffuse reflection.
Therefore, the light incident into the camera will become
uneven based on different types of objects. In other words,
underwater images can easily contain Gaussian noise [2], [3].
Third, because there are many uncertainties in underwater
conditions, the probability of underwater image affected by
occlusion is greater than that of other media, such as plank-
ton and rocks [4]. Finally, similar to most optical images,
available underwater image data are of high dimension [5],
which greatly inhibits the efficacy of themodel learning tasks.
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Thus, determining how to construct a simple and efficient
recognition model for image classification according to the
characteristics of underwater images has become an impor-
tant issue in the field of pattern recognition.

After continuous exploration by researchers, an increasing
number of subspace learning methods have been success-
fully applied in image recognition and representation [6], [7].
Among many methods, principal component analysis (PCA)
[8] and linear discriminant analysis (LDA) [9] are the two
most widely employed models. PCA technology extracts the
most important features of image data by maximizing the
variance of projected data. LDA is a supervised learning algo-
rithm that yields the optimal solution through maximizing
interclass variance after projecting and minimizing intraclass
variance.

In image representation and recognition based on the afore-
mentioned methods, the starting point is to protect the global
geometry of the data while ignoring the manifold structure
of the data. To address this issue, He Niyogi et al. [10] put
forward the LPP method, which ensures that the structural
relationship of data samples in low-dimensional space is
consistent with that in high-dimensional space. Inspired by
LPP, many related feature extraction algorithms have been
widely developed, such as local graph embedding based
on maximum margin criterion [11], fuzzy 2D discriminant
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LPP (F2DDLPP) [12] and sparse 2DDLPP (S2DDLPP)
[13]. The method proposed in [11] effectively solves the
influence of some physical changes on image recognition,
such as illumination, posture and expression. F2DDLPP and
S2DDLPP are the representations of LPP based on a 2D
matrix [14]. F2DDLPP combines 2DDLPP with fuzzy set
theory to extract the discriminative features more accurately.
S2DDLPP obtains the optimal sparse projection matrix by
combining 2DDLPP with elastic net regression, which effec-
tively improves the performance of the model in capturing
key feature information.

The above-mentioned models adopt large distance as the
metric criterion, which affects the robustness of the model
to noise data. To avoid this problem, some methods employ
different criterion functions to enhance the robustness of the
algorithm, mainly including robust low-dimensional repre-
sentation [15], [16] and robust low-rank representation [17],
[18], and studies employing similar methods are popular in
the field of computer vision. This paper focuses on the feature
extraction of image data rather than denoising. Therefore,
models related to robust low-dimensional representation will
be mainly introduced. In the process of image recognition
based on this type of methods, l1-norm as a distance metric to
suppress noise interference is a common strategy [19]–[22].
For instance, Ke and Kanade [20] proposed an l1-norm-
based method called L1-PCA to determine reconstruction
errors in the objective function. However, solving L1-PCA
problems is computationally expensive and requires difficult
calculations. Kwak [22] maximized the variance based on the
l1-norm in a method to obtain principal components (PCs)
named PCA-L1, which uses a greedy algorithm that does not
consider the rationality of function optimization. To address
this issue, Nie et al. [23] solved the optimal solution of
PCA-L1 using an effective nongreedy iterative algorithm.
Markopoulos et al. [24] solved PCA-L1 by using a global
optimal iterative algorithm. Inspired by the l1-norm PCA
technique, l1-norm LDA [25] and l1-norm LPP [26] were
developed for feature extraction. To further this research to
include the robustness of subspace learning methods, the
l1-norm was expanded to the lp-norm; thus, based on the
lp-norm PCA [27] and LDA [28], further methods were
developed.

Feature extraction methods based on l1-norm methods are
robust to noise, but in these methods, the solutions typically
are not associated with the weighted covariance matrix of
the image [29]–[33], which is important for revealing the
global geometric information of the data space. Moreover,
these methods do not accomplish the essential purpose of
the PCA model, which is to minimize reconstruction errors.
To address these problems, Ding et al. [34] presented a
novel unsupervised feature selection algorithm called R1-
PCA, which employs an l1-normwith rotation invariance (R1-
norm) to minimize the reconstruction error. Motivated by
the R1-PCA method, a series of more effective recognition
methods [35]–[38] have been developed. For example, Gao
et al. [35] extended R1-PCA and proposed R1-2DPCA, which

effectively protected the spatial structure of data and selected
a nucleus norm as the distance metric to improve the clas-
sification effect in the classification stage. Wang et al. [37]
proposed an Angle PCA model for image analysis, which
considers the relationship between the variance of projection
data and its reconstruction error, and used l2-norm as a robust
metric. Bi et al. [38] extended the l2-norm to a more flexible
l2,p-norm and proposed a generalized PCA model for image
analysis, which can extract the important features of the
image more accurately.

In real application problems, only considering global
geometry or manifold geometry in isolation has certain lim-
itations, which make the model unable to accurately trans-
fer the structure information in the original data space. To
better balance the advantages of the two types of geometry
mentioned above, Jiang et al. [39] proposed a robust ver-
sion of the classical graph-Laplacian PCA (GLPCA) model,
called robust GLPCA (RGLPCA), which employs l2,1-norm
in the cost function to suppress the influence of noise data
on the model. Based on the gradual accumulation of con-
tributions made in [39], many GLPCA models with differ-
ent robust representations have been proposed [40]–[42].
Among them, the p-norm GLPCA (PGLPCA) model pro-
posed by Feng et al. [40] is the most influential; this model
further improves the robustness to outliers by introducing
more possibilities of p-norm into the error function. However,
the application scope of the robust metric norm and its inher-
ent properties in PGLPCA are not optimal.

According to the existing problems of underwater imaging
and the analysis of related research methods, we need to
find a more effective feature extraction scheme to accurately
capture the important information of the image and then
complete the image recognition. To address this issue, in this
paper, a new formulation for PCA, called locally invariant
robust principal component analysis (LIRPCA), is presented.
LIRPCA employs the l2-norm as the distance metric in the
optimization function, which not only improves the robust-
ness of the model but also preserves the rotational invariance
of the algorithm. Moreover, LIRPCA considers the relation-
ship between the reconstruction error of each projected data
and original input data in the cost function, which further real-
izes the demand of minimizing the data reconstruction error.
Finally, to improve modeling performance and achieve part-
based representation for the underwater optical image data, a
graph-Laplacian regularization term with robust characteris-
tics is used in the LIRPCA, which can effectively protect the
manifold geometric information of the original data space.
Experimental results based on three underwater optical image
databases fully demonstrate the excellent performance of the
proposed model.

II. RELATED WORKS
A. PCA
Consider a group of M vectorized training sample
images X = (x1, . . . , xM ) ∈ <m×M , where xk ∈
<m (k = 1, . . . , M) represents the matrix of the kth training
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image. We usually suppose that the training samples have
been standardized, i.e.,

∑M
k=1 xk = 0. The core demand of

PCA [8] is to obtain a semi-orthogonal projection matrix
V =

[
v1, . . . , vq

]
∈ <

m×q that minimizes the reconstruction
error. Generally, q is less than m in feature extraction. There-
fore, the optimal projection matrix V can be obtained after
finding the solution of the following constrained optimization
problem

min
VTV=Iq

M∑
k=1

∥∥∥xk − VVT xk
∥∥∥2
2
, (1)

where ‖∗‖2 represents the l2-norm operations and Iq ∈
<
q×q is an identity matrix. By using matrix trace operation,

the objective function (1) can be transformed into the follow-
ing set of equation

max
VTV=Iq

M∑
k=1

∥∥∥VVT xk
∥∥∥2
2
= max

VTV=Iq
tr
(
VTGtV

)
, (2)

where matrix Gt =
∑M

k=1 xk (xk)
T is called the image

covariance (scatter) matrix and operator tr (∗) indicates the
trace operation of a matrix. The projection matrix of Eq. (1)
consists of the eigenvectors of Gt corresponding to the q
largest eigenvalues.

B. PCA-L1
As discussed in the above analysis, the squared l2-norm has
an influence on the robustness of the traditional algorithm,
which is sensitive to noise, and dominates the optimal solu-
tion of PCA [34]. To improve robustness, a large number of
PCAmethods based on the l1-norm have been presented. The
most classic PCA-L1 [22] technology involves finding the
principal directions by solving the following formula

min
VTV=Iq

M∑
k=1

∥∥∥xk − VVT xk
∥∥∥
1
, (3)

where ‖∗‖1 represents the l1-norm of a vector. Although
l1-norm PCA is robust to noise, it is not flexible and does
not effectively preserve the geometric information of the
original data space. Moreover, the optimization process of
criterion function (3) is complex and time consuming, which
affects the computational efficiency of the algorithm. Thus,
the solution of equation (3) is limited. To overcome above
difficulties, PGLPCA is proposed [40], in which the opti-
mization function will be introduced below.

C. PGLPCA
PGLPCA obtains the desired projection direction V by solv-
ing the following optimization function

min
VTV=Iq

N∑
i=1

∥∥∥xk − VVT xk
∥∥∥
p
+ ξ

N∑
i,j=1

∥∥∥VT xi − VT xj
∥∥∥2
2
Wkg

= min
VTV=Iq

N∑
i=1

∥∥∥xk − VVT xk
∥∥∥
p
+ ξ tr

(
VTXLXTV

)
, (4)

where ‖·‖p calculates the p-norm of a vector and the range of
p can vary randomly from 0 to 1.
Because equation (3) uses the flexible robust norm as

the distance metric in the cost function and considers the
manifold geometry, the ability of PGLPCA to suppress noise
is greatly improved. However, PGLPCA is not the most ideal
robust model for the following reasons: (1) PGLPCA does not
consider the relationship between reconstruction error and
input data in the cost function, which affects the essential goal
of PCA-based models mentioned above. (2) The selection
of p-norm value makes it difficult for the model to retain
the rotational invariance of traditional GLPCA. (3) PGLPCA
ignores the reasonable selection of the distance metric strat-
egy in the regular term, which causes the projection direction
obtained to deviate from the expected projection direction.

To improve the robustness of PCA-based models and make
up for the defects in the overall structure, we propose a new
conception of PCA in the following section.

III. LOCALLY INVARIANT ROBUST PCA
A. MOTIVATION AND OBJECTIVE FUNCTION
Through the analysis in Section II, we know that the per-
formance of (3) is better than that of (1) and (2) in terms
of robustness and structure description. However, the opti-
mization function of (3) does not consider the relationship
between the reconstruction results of each projected data and
the original image, which causes the extracted features to
be unable to reflect the key information of the original data
space, thus affecting the robustness of the model. In other
words, ideally, the reconstruction error of each projected data
is infinitely far away from the input data, which can truly
realize the demand for minimizing the reconstruction error
based on the PCAmodel. Moreover, the robustness condition
of (3) is established by abandoning the important properties
of the traditional PCA model, such as rotational invariance,
and the solution is related to the covariancematrix. Therefore,
from the perspective of PCA robustness and its valuable prop-
erties, we hope to find a suitable robust norm as the distance
measurement criterion of the model to minimize the deviation
between the real projection direction and the expected projec-
tion direction. Finally, (3) only employs the robust distance
metric in the cost function and ignores the regular term to
protect local geometry ability, which causes the noise data
to have an obvious impact on the overall performance of the
model. Therefore, we aim to achieve the robustness of the
model in the overall structure and improve its performance in
image recognition tasks. Based on the above analysis, a more
appropriate robust metric norm should be employed for the
optimization function in (3), which can retain the important
attributes of PCA. Compared with lp-norm, it is feasible to
introduce l2-norm as a distance metric in the cost function
and regular term. Moreover, the need to minimize the recon-
struction error to the greatest extent should be considered.
Therefore, a better performing PCA model is proposed for
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underwater image recognition, which can be redefined as

min
VTV=Iq

M∑
k=1

∥∥xk − VVT xk
∥∥
2

‖xk‖2
+ 1/

2ξ

×

M∑
k,g=1

∥∥∥VT (xk − xg)∥∥∥
2
Wkg, (5)

where ξ > 0 is a nonnegative parameter that controls the
smoothness of the low-dimensional subspace. Wkg is a heart
kernel weighting and can be expressed as

Wkg =


exp

(
−

∥∥xk − xg∥∥22
2σ 2

)
, if xk ∈ Mh

(
xg
)

or xg ∈ Mh (xk) ,
0, otherwise,

(6)

where σ > 0 and h nearest neighbor set of xk is Mh
(
xg
)
.

B. OPTIMIZATION
Tomake the algorithm optimization process simple and clear,
the cost function in (5) is optimized first. Using a mathemat-
ical derivation, we have

M∑
k=1

∥∥xk − VVT xk
∥∥2
2∥∥xk − VVT xk

∥∥
2 ‖xk‖2

=

M∑
k=1

tr
[(
xk − VVT xk

)T (
xk − VVT xk

)]
dk

=

M∑
k=1

tr
[
(xk)T xk − (xk)T VVT xk

]
dk

=

M∑
tr ·

[
(xk)T xk

]
dk −

M∑
tr · VT xk (xk)T V

]
dk

= tr
(
XDXT

)
− tr

(
VTXDXTV

)
, (7)

where dk = 1∥∥xk−VVT xk∥∥2‖xk‖2 and D is a diagonal matrix

composed of the elements dk on the diagonal.
Then, the regular term in (5) can be optimized using an

algebraic operation; we obtain

1/2
M∑

k,g=1

∥∥VT
(
xk − xg

)∥∥2
2∥∥VT

(
xk − xg

)∥∥
2

Wkg

= 1/2
M∑

k,g=1

(
VT (xk − xg))T (VT (xk − xg)) W̃kg

=

M∑
k=1

(
VT xk

)T
VT xk D̃kk −

M∑
k,g=1

(
VT xk

)T
VT xgW̃kg

= tr
((

VTX
)T

D̃VTX
)
− tr

((
VTX

)T
W̃VTX

)
= tr

(
VTXL̃XTV

)
, (8)

where W̃kg =
Wkg

‖VT (xk−xg)‖2
, L̃ = D̃ − W̃ denotes the

graph-Laplacian matrix with robust characteristics; D̃ and W̃
are diagonal matrix and symmetric matrix, respectively; and
d̃k =

∑
g W̃kg.

Finally, (7) and (8) are combined, and the merged results
are substituted into (5). Now, (5) can be written as

min
VTV=Iq

tr
(
XDXT

)
− tr

(
VTXDXTV

)
+ξ tr

(
VTXL̃XTV

)
, (9)

Now, we consider a method of finding a projection matrix
V that minimizes the value of the objective function (9).
In (9), unknown variablesV,D and L̃ are related toV. There-
fore, it is difficult to directly solve the optimal projection
matrixVwithout a closed form solution. In this case,V,D and
L̃ can be obtained through a nongreedy iterative algorithm
that we propose. Next, the Lagrangian technique is employed
to solve (9). The Lagrangian function of (9) is

L (V, λ) = tr
(
XDXT

)
− tr

(
VTXDXTV

)
+ ξ tr

(
VTXL̃XTV

)
+ tr

(
λ
(
VTV− I

))
, (10)

where λ ∈ <q×q is a symmetric matrix, which controls
the importance of the orthonormality constraint of V. The
Karush-Kuhn-Tucker (KKT) condition is applied to find the
optimal solution, we take ∂L(V,λ)

∂V = 0; then,

∂L (V, λ)
∂V

= −2XDXTV+2ξXL̃XTV+2Vλ = 0. (11)

By mathematical derivation, equation (11) becomes(
XDXT

− ξXL̃XT
)
V = Vλ. (12)

Next, setting ∂L(V,λ)
∂λ
= 0, we have

VTV = I. (13)

By substituting (14) and (13) into the objective function in
(9), we can easily obtain the projection matrixV that satisfies
the objective function. This matrix is composed of the first
q eigenvectors of XDXT

− ξXL̃XT corresponding to the q
largest eigenvalues, and this method minimizes the objective
function. Then, dk is updated. The iterative procedure is
repeated until it converges, as shown in Section III C. The
calculations for V and dk are summarized in Algorithm 1.

C. CONVERGENCE ANALYSIS
In this subsection, we first theoretically prove that Algo-
rithm 1monotonically decreases the value of objective func-
tion (5) in each iteration; then, we show that the proposed
method converges to a local optimal solution. Before com-
pleting the convergence analysis, we first introduce the fol-
lowing theorem.
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Algorithm 1 LIRPCA Procedure

Input: The sample matrix X = (x1, . . . , xM ) ∈ <m×M ,
with parameters ξ , q and σ , where X is centralized.
Initialize: Set V(t) ∈ <m×q and t = 1, where V satisfies
VTV = Iq.
while not converge do
1. Compute the diagonal matrix D ∈ <M×M by each
diagonal element dk = 1

/∥∥xk − VVT xk
∥∥
2 ‖xk‖2.

2. Compute W̃ ∈ <M×M , D̃ ∈ <M×M and L̃ ∈ <M×M ,
where L̃ = D̃− W̃.
3. Compute the covariance matrix XDXT

− ξXL̃XT .
4. Solve matrix V(t+1) by equation (11). V(t+1) is called
the optimal projection matrix, and its column vectors
are composed of the eigenvectors corresponding to the q
largest eigenvalues of weighted covariance matrix.
5. If the convergence condition J

(
V(t)

)
− J

(
V(t+1)

)
≤

δ is satisfied, end the while process; otherwise, go to
step 6, where J (V) = tr

(
XDXT )

− tr
(
VTXDXTV

)
+

ξ tr
(
VTXL̃XTV

)
.

6. t ← t + 1.
end while
Output: V(t+1) ∈ <m×q.

Theorem 1: Suppose any two vectors e(t) ∈ <m and
e(t+1) ∈ <m, we can obtain the following inequality [36]∥∥e(t+1)∥∥2∥∥e(t)∥∥2 − p

2

∥∥e(t+1)∥∥22∥∥e(t)∥∥22 − 1+
1
2
≤ 0, (14)

where e(t) must be a non-zero vector; otherwise, the denom-
inator is zero, and the inequality is meaningless.
Theorem 2: The value of objective function (5) monotoni-

cally decreases in each iteration until it eventually converges
to the local optimality using the iterative method depicted in
Algorithm 1.
Proof:As shown inAlgorithm 1, in the (t + 1)th iteration,

we have

M∑
k=1

tr
(
(xk)T xkd

(t)
k

)
−

M∑
k=1

tr
((

V(t+1)
)T

xk (xk)T V(t+1)d (t)k

)
+ ξ tr

((
V(t+1)

)T
XL̃XTV(t+1)

)
≤

M∑
k=1

tr
(
(xk)T xkd

(t)
k

)
−

M∑
k=1

tr
((

V(t)
)T

xk (xk)T V(t)d (t)k

)
+ ξm

((
V(t)

)T
XL̃XTV(t)

)
. (15)

Because the equation
∥∥xk − VVT xk

∥∥2
2 = tr

(
xk (xk)T

)
−

tr
(
VT xk (xk)T V

)
holds for each k , (15) can be transformed

to the following inequality

M∑
k=1

∥∥∥∥xk − V(t+1)
(
V(t+1)

)T
xk

∥∥∥∥2
2
d(t)k + ξ tr

×

((
V(t+1)

)T
XL̃XV(t+1)

)
≤

M∑
k=1

∥∥∥∥xk − V(t)
(
V(t)

)T
xk

∥∥∥∥2
2
d(t)k + ξ tr

×

((
V(t)

)T
XL̃XV(t)

)
. (16)

By denoting e(t+1)k = xk−V(t+1)
(
V(t+1)

)T xk , e(t)k = xk−
V(t)

(
V(t)

)T xk and u(t)k = xk , according to the definition of
dk , (16) can be reformulated as

M∑
k=1

∥∥∥e(t+1)k

∥∥∥2
2∥∥∥u(t)k ∥∥∥2 ∥∥∥e(t)k ∥∥∥2 + ξ tr

((
V(t+1)

)T
XL̃XV(t+1)

)

≤

M∑
k=1

∥∥∥e(t)k ∥∥∥2∥∥∥u(t)k ∥∥∥2 + ξ tr
((

V(t)
)T

XL̃XV(t)
)
, (17)

By transposition inequality (17), we obtain

M∑
k=1

∥∥∥e(t+1)k

∥∥∥2
2∥∥∥u(t)k ∥∥∥2 ∥∥∥e(t)k ∥∥∥2 ≤

M∑
k=1

∥∥∥e(t)k ∥∥∥2∥∥∥u(t)k ∥∥∥2
+ ξ tr

((
V(t)

)T
XL̃XV(t)

)
− ξ str

×

((
V(t+1)

)T
XL̃XV(t+1)

)
, (18)

Based on the property in Theorem 1 and multiplying
1
/∥∥∥u(t)k ∥∥∥2 > 0 on both sides of the inequality, for each index
k , we have

M∑
k=1

1
2

∥∥∥e(t+1)k

∥∥∥2
2∥∥∥u(t)k ∥∥∥2 ∥∥∥e(t)k ∥∥∥2

≥

M∑
k=1

∥∥∥e(t+1)k

∥∥∥
2∥∥∥u(t)k ∥∥∥2 −

M∑
k=1

∥∥∥e(t)k ∥∥∥2∥∥∥u(t)k ∥∥∥2 +
M∑
k=1

1
2

∥∥∥e(t)k ∥∥∥2∥∥∥u(t)k ∥∥∥2 . (19)
Combining (18) with (19), we obtain

M∑
k=1

∥∥∥e(t+1)k

∥∥∥
2∥∥∥u(t)k ∥∥∥2 + ξ tr

((
V(t+1)

)T
XL̃XV(t+1)

)

≤

M∑
k=1

∥∥∥e(t)k ∥∥∥2
‖u(t)

‖ + ξ tr
((

V(t)
)T

XL̃XV(t)
)
. (20)
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According to the manifestation of e(t+1)k , e(t)k and u(t)k , (20)
can be further expressed as

M∑
k=1

∥∥∥xk − V(t+1)
(
V(t+1)

)T xk∥∥∥
2

‖xk‖2

+ ξ tr
((

V(t+1)
)T

XL̃XV(t+1)
)

≤

M∑
k=1

∥∥∥xk − V(t)
(
V(t)

)T xk∥∥∥
2

‖xk‖2

+ ξ tr
((

V(t)
)T

XL̃XV(t)
)
. (21)

Based on the existence of ξ > 0, by combining (21) with
(8), we obtain

M∑
k=1

∥∥∥xk − V(t+1)
(
V(t+1)

)T xk∥∥∥
2

‖xk‖2

+1/2ξ
M∑

k,g=1

∥∥∥∥(V(t+1)
)T (

xk − xg
)∥∥∥∥

2
Wkg

≤

M∑
k=1

∥∥∥xk − V(t)
(
V(t)

)T xk∥∥∥
2

‖xk‖2

+1/2ξ
M∑

k,g=1

∥∥∥∥(V(t)
)T (

xk − xg
)∥∥∥∥

2
Wkg. (22)

Equation (22) indicates that the objective function of (5)
monotonically decreases in each iteration. Combinedwith the
convergence conditions provided in Algorithm 1, it can be
determined that objective function (5) has a lower boundary
and finally converges to the local optimal solution. More-
over, we also verify that the objective function (5) is non-
incremental in the following experimental section. It is worth
noting that the objective function (5) employs the Euclidean
norm as the distance measurement criteria. Therefore, it is
easy to prove that the proposed method has rotational invari-
ance. Finally, note that the execution process of Algorithm 1
involves only one iterative update process, and the most
important step is to obtain projection matrix V by decom-
posing weighted covariance matrix XDXT

− ξXL̃XT . Based
on this important information, it is not difficult to analyze
that the time complexity of the algorithm designed for the
optimization problem of LIRPCA can be defined as O

(
tm3

)
,

where t is the number of iterations until Algorithm 1 con-
verges to the optimal solution. Among many PCA models
with robust low-dimensional representation, LIRPCA has
relatively low time complexity.

In conclusion, compared with many PCA models using
a robust norm metric, LIRPCA is highly robust, directly
minimizes the data reconstruction error and characterizes
the real geometric information of the data space, which has
an important impact on the recognition results. Moreover,
the proposed method protects desirable properties of PCA

such as the rotational invariance, which is one of the basic
properties mentioned many times in the context. Finally,
LIRPCA displays fast and effective convergence.

IV. EXPERIMENTAL RESULTS
In this section, we validate the effectiveness of the pro-
posed method using the FDT-UT [43], JEDI-UT [44] and
EPIDHEU-UT [38] databases and compare it with state-
of-the-art image recognition algorithms (PCA [8], PCA-
L1 greedy [22], R1-PCA [34], Angle PCA [37], l2,p-PCA
(p = 0.5) [15] and PgLPCA [40]. FDT-UT and JEDI-UT
contain relatively well-known underwater image information.
In addition, considering the diversity of the experiment, the
EPIDHEU-UT database was established in the experimental
site provided by Harbin Engineering University. Fig. 1 shows
the real collection area of underwater image samples. In the
experiments, we employ the 1NN classifier and reconstruc-
tion error to estimate the performance of differentmethods for
underwater image recognition, in which the reconstruction
error is obtained by

E =
1
n

n∑
k=1

∥∥∥xcleank − VYclean
k

∥∥∥
2
, (23)

where Yclean
k = VT xcleank denotes the feature vector of the

k-th clean training sample.
To better verify the influence of different training samples

on the model and ensure the consistency of experimental
conditions, we need to fix the selection of feature dimension
q in advance. The value of q can be empirically determined
by the cumulative percent variance (CPV), which is defined
as

CPV =

 q∑
i=1

λi

/
m∑
j=1

λj

× 100%→ 90%, (24)

where q represents the number of important feature informa-
tion extracted [45]. In all experiments, we chose the value of
q corresponding to CPV→ 90% by considering the number
of PCs. Moreover, to avoid the contingency of the experi-
mental results, the experimental process of each database was
repeated 10 times.

A. EXPERIMENTS USING THE FDT-UT DATABASE
In the FDT-UT database, there are more than 28500 images
from 991 fish under multiple perspectives; from these,
we selected 400 side-view grayscales of 40 fish as experimen-
tal data. Each fish was captured in 10 images with different
poses. In the experiments, each image was resized to 50
× 30 pixels. We randomly selected 3 images for each fish
and added occlusion in the form of black and white dots.
The occlusion was randomly distributed, occupying 2% to
15% of the image region. Some clean images and occluded
images of five fish are shown in Fig. 2. We randomly selected
TN = (2, 3, . . . , 8) images per fish as the training data, and
the rest (10 − TN) of the images were used as testing data.
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FIGURE 1. Real collection area of underwater image samples. (the length
and width of the pool are 10 m and 5 m, respectively; additionally,
the depth ranges from 2.5 m to 5 m).

FIGURE 2. Some sample data with or without occlusion based on the
FDT-UT database.

FIGURE 3. Recognition accuracy of LIRPCA versus parameters ξ and σ

using the FDT-UT database.

It is worth noting that the number of occluded pictures should
be controlled within 60% of the training data and that it is
also not possible to involve merely clean images; otherwise,
the experimental conditions will not be established, and we
will need to reselect the training data. Our method and the
seven aforementioned methods were used for image recogni-
tion.

Fig. 3 describes the influence of two different parameters
ξ and σ on the recognition accuracy of LIRPCA in FDT-UT
database. As seen in Fig. 3, when the values of ξ and σ are
moderate, the performance of LIRPCA is excellent. However,
when the values of ξ and σ tend to the extreme, the recogni-
tion ability of LIRPCA is relatively poor. The main reason is
that if the values of ξ and σ are too small, the effect of the cost
function will be more prominent in (5), which weakens the
consideration of the regular term, leading to the destruction

FIGURE 4. Average recognition accuracy using the FDT-UT database.

the manifold geometry of the data. Moreover, LIRPCA is
prone to over-fitting. In contrast, if the values of ξ and σ
are too large, the proposed model cannot effectively protect
the global geometry of the data, and it is easy to cause the
situation of under-fitting. Therefore, reasonable parameter
selection is very important for the experimental results. The
average result of each method is shown in Table 1 and plotted
in Fig. 4. Fig. 4 and Table 1 illustrate that the performance
for each algorithm is improved when the number of training
samples increases, which is likely because each method can
learn more feature information as the number of training
samples increases, which is likely because each method can
learn more feature information as the number of training
samples increases. The accuracies of the proposed algorithm,
Angle PCA, l2,p-PCA (p = 0.5) and PgLPCA are better than
other methods in comparative experiments, likely because the
distance metric based on good robustness can effectively sup-
press outliers and reveals the manifold geometric information
that is possibly embedded between image pixels. Notably,
in the experiments, LIRPCA obtains the best recognition
accuracy, likely because the low-dimensional representations
of our proposed model are rotationally invariant and consider
the intrinsic geometry which may be hidden between the
sample data. Fig. 5 illustrates the average reconstruction error
of these eight methods when TN=8. As shown in Fig. 5, the
proposed model displays the minimum overall reconstruction
error and is remarkably better than the other comparative
models. The result is obtained because the other methods do
not fully consider the relationship between the reconstruction
error of each projected data and the input data, which is
important for image analysis. Additionally, the solution of the
proposed algorithm consists of the PCs of a weighted covari-
ance matrix, which further reduces the deviation from the
expected projection direction. To observe the reconstruction
performance of the model more intuitively, we select three
representative models from all the comparison methods, and
complete the image reconstruction experiment under differ-
ent TN (see Fig. 6). The experimental results show that the
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FIGURE 5. A verage reconstruction error for the eight methods based on
TN = 8 using the FDT-UT database.

FIGURE 6. Some reconstructed sample data based on PCA (upper),
PgLPCA (middle) and LIRPCA (lower) under different TN. The first clean
sample data in Fig. 2 is the original data of the reconstructed image.

FIGURE 7. Some sample data with or without Gaussian noise based on
the JEDI-UT database.

proposed model has the best reconstruction effect. In other
words, compared with other contrast models, LIRPCA can
extract the important feature information of the original
image more accurately. The reconstruction performance of
the model is more intuitively. Therefore, LIRPCA obtains the
optimal recognition result in the FDT-UT database.

B. EXPERIMENTS USING THE JEDI-UT DATABASE
This database contains more than 250 underwater species
videos. We selected 30 video data samples whose back-
ground was changed; then 42 images of each video were ran-
domly selected for experimental analysis. In the images, the
body poses varied. The resolution per image was cropped to

FIGURE 8. Recognition accuracy of LIRPCA versus parameters ξ and σ

using the JEDI-UT database.

FIGURE 9. Average recognition accuracy using the JEDI-UT database.

50 × 30 pixels, and then 11 images per species were ran-
domly selected to add Gaussian noise. We required ran-
domly distributed noise in any area of the underwater image,
and the fluctuation range of its intensity was set between
0.005 and 0.050. Some noise-free images and noised images
of three species are shown in Fig. 7. We randomly selected
TN = (5, 10, . . . , 35) images per species as the training
data, and the selection scheme was similar to that used with
the FDT-UT database. The rest (42 − TN) of the images of
each species were used as the testing data. PCA, PCA-L1
greedy, R1-PCA, Angle PCA, l2,p-PCA (p = 0.5), PgLPCA
and the proposed method were used for underwater image
recognition.

Fig. 8 shows the influence of model parameters ξ and σ on
the recognition result of LIRPCA in JEDI-UT database. The
conclusion is consistent with the FDT-UT database, i.e., mod-
erate parameter selection can better protect the geometric
structure of the model and improve the overall performance.
The recognition precision is listed in Table 2 and plotted in
Fig. 9. Table 2 and Fig. 9 illustrate that when TN increases
from 5 to 35, the recognition results of LIRPCA, Angle PCA,
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TABLE 1. Average Recognition accuracy (Standard Deviation) (%) and corresponding TN using the FDT-UT database.

TABLE 2. Average recognition accuracy (Standard Deviation) (%) and corresponding TN using the JEDI-UT database.

TABLE 3. Average recognition accuracy (Standard Deviation) (%) and corresponding TN using the EPIDHEU-UT database.

l2,p-PCA (p = 0.5) and PgLPCA are obviously better than
other image recognition models. Notably, this result shows
that the PCA technology with high robustness is not signifi-
cantly affected by noise and outliers. Moreover, Table 2 and
Fig. 9 illustrate that LIRPCAmaintains an overall recognition
advantage for the changing training data. This may have
occurred because LIRPCA preserves the global geometric
information and intrinsic geometric information of the data
well, is highly robust, and therefore is ideal for recognition
and representation. Fig. 10 plots the average reconstruction
error for each method when TN=35. As shown in Fig. 10,

LIRPCA performs reconstruction more accurately for clean
images than other feature extraction methods in the experi-
ments. The primary reason is that LIRPCA is characterized
by rotational invariance and explicitly considers the recon-
struction error, which is the fundamental purpose of PCA.
Moreover, LIRPCA employs a robust metric scheme called
the l2-norm and reasonably associates the reconstruction error
of each projected data with the input image to enhance the
robustness of the algorithm, which can suppress underwater
noise. Finally, LIRPCA effectively reflects the geometric
information of the data space based onmanifold learning, and
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FIGURE 10. A verage reconstruction error for the eight methods based on
TN = 35 using the JEDI-UT database.

FIGURE 11. Some sample data with or without Salt-and-pepper noise
based on the EPIDHUE-UT database.

FIGURE 12. Recognition accuracy of LIRPCA versus parameters ξ and σ

using the EPIDHEU-UT database.

this method is important for an accurate data representation.
Overall, LIRPCA provides the optimal underwater recogni-
tion capability. These conclusions are in accordance with the
FDT-UT database.

C. EXPERIMENTS USING THE EPIDHEU-UT DATABASE
The EPIDHEU-UT database is built from 300 pictures
of 15 underwater targets. Each target includes 20 pictures
under different views which are resized to 44 × 36 pixels.
From this database, we randomly selected 5 pictures based
on each target and add salt-and-pepper noise. We stipulate
that the noise intensity and distribution range rules are similar
to the previous two databases. Fig. 11 shows some noise-
free images of underwater targets and relevant noised pic-

FIGURE 13. Average recognition accuracy using the EPIDHEU-UT
database.

TABLE 4. Average running time (Standard Deviation) (%) and
corresponding TN using the three databases.

FIGURE 14. A verage reconstruction error for the eight methods based on
TN = 16 using the EPIDHEU-UT database.

tures. Based on this database, we arbitrarily selected TN =
(4, 6, . . . , 16) pictures per target as the training sample, and
the remaining (20 − TN) pictures per individual were used
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FIGURE 15. Convergence curves of the proposed method over FDT-UT,
JEDI-UT and EPIDHEU-UT databases.

as the testing sample. The acquisition criteria for the train-
ing data were consistent with the standards applied in the
Fig. 12 shows the recognition performance of the model
when the values of parameters ξ and σ change in EPIDHEU-
UT database, which is the same as the conclusion from
the previous two underwater image databases. Table 3 lists
the average recognition results per method in this group of
experiments, which are depicted in Fig. 13. The accuracy of
the LIRPCA improved from 66.33% with TN=4 to 87.83%
with TN=16. Moreover, the performance of PCA, PCA-
L1 greedy, R1-PCA, Angle PCA, l2,p-PCA (p = 0.5) and
PgLPCA improved from 63.37%, 64.92%, 65.17%, 65.58%,
65.83% and 66.08% with 4 training samples to 83.67%,
85.67%, 86.17%, 86.67%, 87.17% and 87.33% with 16 train-
ing samples, respectively. Table 3 and Fig. 13 illustrate that
LIRPCA has the best underwater image recognition ability,
possibly because of the high robustness strategy and the
idea of preserving the original geometry information, which
can effectively suppress the underwater noise. In addition,
the recognition result of LIRPCA is better than that of all
other methods. This superior performance is mainly achieved
because the proposed method not only chooses the l2-norm
to measure in the relation between the reconstruction error
of each projected data and input sample data in the cost
function but also introduces the graph-Laplacian term with
robust characteristics in the regular function to protect the
manifold geometry of the data. Fig. 14 shows the average
reconstruction error for each method when TN=16. The data
reconstruction error for LIRPCA is remarkably smaller than
that of other methods in comparative experiments, likely
because LIRPCA has the desirable property of PCA repeat-
edly mentioned in the context. Moreover, the optimal solution
of LIRPCA is closely related to the weighted covariance
matrix. The reconstruction error is affected by weighted
coefficients. Thus, LIRPCA shows the optimal performance
for underwater images. This finding is consistent with the
results of the previous two databases. As shown in Table 4,

the running time of the proposed method is similar to those
of R1-PCA, Angle PCA and l2,p-PCA (p = 0.5). Addi-
tionally, the computational efficiency of LIRPCA is better
than that of other matrix-based subspace learning algorithms
with iterative properties, which illustrates that our proposed
algorithm is fast and efficient. Thus, combinedwith the exper-
imental results of recognition accuracy, our method is the
most advantageous. The convergence curves of LIRPCA on
the FDT-UT (TN=8), JEDI-UT (TN=35) and EPIDHEU-UT
(TN=16) databases are given in Fig. 15, which illustrates
that the proposed algorithm becomesmore accurate with each
iteration and quickly converges to a stationary point of (5).
This result is in accordance with our convergence analysis in
Section III.

V. CONCLUSION
We propose a new robust unsupervised recognition technique
for the underwater images with small sample characteristics,
namely, LIRPCA. This method selects a robust norm metric
mode, called the l2-norm, to improve the overall robust-
ness of the optimization function and explicitly takes into
account the correlation between the reconstruction error of
each projection data and the input image in the cost function.
Moreover, LIRPCA not only has a strong ability to protect
the global geometric structure but also adequately reveals the
intrinsic geometric information. Thus, LIRPCA is robust to
outliers and reveals the geometric relationship of the data
well, which is important for underwater image recognition.
Finally, an efficient iterative algorithm is designed to solve
the expectation value of LIRPCA, and a closed-form solution
can be achieved in each iteration. The experimental results
illustrate the effectiveness and feasibility of the proposed
method based on several underwater databases.
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