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ABSTRACT In the current world pandemic situation, the contagious Novel Coronavirus Disease 2019
(COVID-19) has raised a real threat to human lives owing to infection on lung cells and human respiratory
systems. It is a daunting task for the researchers to find suitable infection patterns on lung CT images for
automated diagnosis of COVID-19. A novel integrated semi-supervised shallow neural network framework
comprising a Parallel Quantum-Inspired Self-supervised Network (PQIS-Net) for automatic segmentation
of lung CT images followed by Fully Connected (FC) layers, is proposed in this article. The proposed
PQIS-Net model is aimed at providing fully automated segmentation of lung CT slices without incorporating
pre-trained convolutional neural network based models. A parallel trinity of layered structure of quantum
bits are interconnected using an N -connected second order neighborhood-based topology in the suggested
PQIS-Net architecture for segmentation of lung CT slices with wide variations of local intensities. A random
patch-based classification on PQIS-Net segmented slices is incorporated at the classification layers of the
suggested semi-supervised shallow neural network framework. Intensive experiments have been conducted
using three publicly available data sets, one for purely segmentation task and the other two for classification
(COVID-19 diagnosis). The experimental outcome on segmentation of CT slices using self-supervised
PQIS-Net and the diagnosis efficiency (Accuracy, Precision and AUC) of the integrated semi-supervised
shallow framework is found to be promising. The proposed model is also found to be superior than the
best state-of-the-art techniques and pre-trained convolutional neural network-based models, specially in
COVID-19 and Mycoplasma Pneumonia (MP) screening.

INDEX TERMS COVID-19, QIS-Net, lung CT image segmentation, 3D-UNet and ResNet50.

I. INTRODUCTION
The world has suffered a lot in the recent pandemic due to
the 2019 novel coronavirus disease (COVID-19) since its
rapid outbreak from Wuhan, China. There have been sharp
rises in infected and suspected cases in almost all the coun-
tries in the world from the beginning of January 2020 as
reported by World Health Organization [1]. The severe effect
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of coronavirus disease has inflicted a SARS-CoV-2 acute
respiratory syndrome and has resulted in a new febrile respi-
ratory tract illness. Despite imposition of various strict mea-
sures and physical isolation guidelines, the number of positive
test cases is rising rapidly and as of today (02/02/2021),
the total number of confirmed cases reported in the entire
world is over 102.1 million [2]. There are mainly three stan-
dard widely used diagnosis procedures viz. Reverse Tran-
scription Polymerase Chain Reaction (RT-PCR) test from
swab samples, Chest X-ray and Lung CT scan images for
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COVID-19 detection [3]. However, the real-time RT-PRT test
using detection of nucleotide has reported low sensitivity in
China and hence it is not an effective tool for coronavirus
infection detection [4] owing to lack of stability, quality and
viral materials in specimens. In addition, lack of testing capa-
bilities in the underdeveloped countries owing to insufficient
test kits has spurred the demand for alternative COVID-19
diagnosis. The potential alternatives to RT-PRT test based
COVID-19 detection include methods used on Lung CT scan
image and Chest X-ray image segmentation. The captured
lung CT scans of COVID-19 infected patients often show
a bilateral patchy shadow. Moreover, Chest CT scan is a
noninvasive and a fast diagnosis procedure and reported high
sensitivity for pre-screening of COVID-19 infections [4].
However, with rise in the number of infections and sus-
pected cases, it is a paramount and laborious task for the
health experts to manually annotate the infected lesions and
manually contour them in the current world-wide pandemic
situation. In these circumstances, in order to maximize the
diagnosis of the infected patients and to improve the treatment
access, it is always preferred to have an automatic and robust
segmentation technique followed by assessment of coron-
avirus infections.

A. RELATED WORKS
Recent years have witnessed the progress of deep learning
technologies in the field of medical image segmentation
which have become popular diagnostic tools due to key fea-
ture representation [5]–[10]. In this year, a plethora of deep
learning networks have been employed for automatic detec-
tion of COVID-19 pneumonia lung CT volumes and have
reported promising accuracy [11]–[15]. A multi-objective
differential evolution assisted convolutional neural network
(CNN) [12] is suggested for COVID-19 lung CT image clas-
sification by leveraging the hyper-parameters of the CNN.
Wang et al. [16] proposed a weakly supervised deep learning
model with the pre-trained U-Net for COVID-19 infection
detection using lung CT volumes and reported high accu-
racy, sensitivity and specificity. Yan et al. [17] introduced a
convolutional neural network introducing Progressive Atrous
Spatial Pyramid Pooling to address the sophisticated infected
lesions with overlapping and with wide variations of shape
and orientation of lung CT volumes. However, owing to
lack of sufficient annotated lung CT images and lack of
image specific adaptability for unforeseen lung CT image
classes (the infections on lung CT images vary with regions),
the pre-trained CNN models fail to achieve desired accu-
racy. In addition to this, requirement of high computational
resources to train the aforementioned deeply supervised net-
works is seldom a cost effective solution for COVID-19
diagnosis. To avoid the over-fitting during training of CNN
based models with small data sets, a latent representation
learning exploring multiple features prevalent to lung CT
volumes, is suggested by Kang et al. [15]. In addition to
this, a simple neural network model incorporating two cou-
pled 3D Res-Nets with prior attention learning is proposed

by Wang et al. [18]. An attention-based deep 3D multiple
instance learning with weak labels of chest CT images is
proposed for COVID-19 screening [19]. In spite of being
relatively less complex models for COVID-19 infected lung
CT image segmentation, these approaches rely on extensive
feature learning during training.

In this article, we have proposed an integrated semi-
supervised shallow learning network model comprising a
Parallel Quantum-Inspired Self-Supervised Neural Network
(PQIS-Net) followed by fully connected classification layers
for COVID-19 diagnosis. Of late, the authors have proposed
quantum-inspired self-supervised networks referred to as
QIS-Net [20] and QIBDS Net [21] for automatic brain lesion
segmentation. Authors have also developed the optimized
version of QIBDS Net referred to as Opti-QIBDS Net [22]
which is found suitable for brain tumor segmentation. These
self-supervised network architectures which are tailored and
tested on brain MR images and efficient in brain MR image
segmentation, serve as the inspiration behind the current
work. In this manuscript, we aim to further investigate the
parallel version of QIS-Net [20] on COVID-19 infected lung
CT images without any sort of supervision or training for seg-
mentation followed by classification using fully connected
layers for feasibility analysis on COVID-19 diagnosis.

B. CONTRIBUTIONS
Eventually, in the current pandemic situation in the world,
it is an uphill task for the health care professionals to acquire
large volumes of lung CT images with annotations for deep
supervision. Hence, the primary focus of the paper is to offer
a potential alternative to deeply supervised networks using a
semi-supervised shallow neural network model composed of
a fully parallel self-supervised network (PQIS-Net) for appro-
priate segmentation for tiny COVID-19 infected lesions, and
fully connected (FC) layers at the end for enabling training on
weak data labels for suitable assessment of COVID-19 infec-
tions. The significant four-fold contributions of the article are
highlighted as follows:

1) The convergence of the QIS-Net architecture is rel-
atively slower than the Fully Connected (FC) layers
and hence, there is an imbalance in the processing
of segmentation using QIS-Net and classification at
the FC layers. To obviate the problem, we have pro-
posed a parallel version of the QIS-Net architecture
referred to as PQIS-Net, which is found suitable for
the segmentation of lung CT volumes with COVID-19
infections without any sort of supervision or training.
PQIS-Net takes the CT volume (equal to batch size B)
as inputs under parallel architecture, whereas QIS-Net
takes brain MR image slices one at a time.

2) An N -connected neighborhood topology-based seg-
mentation using PQIS-Net for taking into cognizance
the wide variations of local intensities of lung CT
images, is the key contribution of the proposed work.

3) We have also modified the loss or error function incor-
porated in QIS-Net which is based on the summation of
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FIGURE 1. A Parallel Quantum-Inspired Self-Supervised Network (PQIS-Net) assisted semi-supervised shallow learning framework for COVID-19
diagnosis (only three inter-layer connections are shown for clarity and gray-scale segmented slices are color mapped for better visibility).

the differences of the interconnection weights between
two successive iterations. Moreover, the inputs and
weights of the PQIS-Netmodel are represented in terms
of frequencies (cos and sine components) or spectral
components in quantum formalism, thereby enabling
faster convergence than QIS-Net which relies fully on
quantum weights.

4) In addition, selections of p-random 2D patches from
the PQIS-Net segmented images are allowed to aug-
ment the limited training data sets with high rep-
resentation features to be fed to the constituent
FC layers for processing training) thereby obviating
over-fitting.

Rigorous experiments have been carried out considering
three different publicly available data sets of COVID-19
lung CT images, one purely for segmentation task and the
other two for segmentation followed by classification to
facilitate an accurate diagnosis. The extensive experimental
results validate our proposed semi-supervised shallow neu-
ral network model which outperforms the state of the art
pre-trained CNN models with weak annotations, thus pro-
moting auto-diagnosis with self-supervised neural network
models.

The remaining portion of the manuscript is organized
as follows: The proposed semi-supervised shallow neural
network model comprising PQIS-Net architecture and its
operation with the fully connected layers are discussed in
Section II. Experimental results and discussions including
the data set details, experimental setup are provided in

Section III. The limitations of the self-supervised PQIS-Net
for lung CT image segmentation with the advantages of the
proposed semi-supervised framework for COVID-19 diag-
nosis are highlighted in Section IV. Finally, the concluding
remarks are confabulated in Section V.

II. PROPOSED SEMI-SUPERVISED SHALLOW NEURAL
NETWORK MODEL
The Parallel Quantum-Inspired Self-Supervised Neural Net-
work (PQIS-Net) architecture is the core of the proposed
semi-supervised shallow neural learningmodel which is com-
bined with fully connected layers at the end for classifica-
tion and diagnosis of COVID-19 disease. The PQIS-Net is
employed to segment lung CT image slices which are infected
by COVID-19 or pneumonia in parallel fashion thereby
reducing processing time. The PQIS-Net segmented images
form highly representative features for classification. An inte-
grated semi-supervised shallow learning model incorporating
the self-supervised PQIS-Net with Fully Connected (FC) lay-
ers at the end is targeted to be developed which is appropriate
for training at the FC layers with limited training data sets
and can offer accurate diagnosis. The classification outcome
is obtained using a majority voting scheme. A schematic
outline of the proposed integrated self-supervised shal-
low neural network model with the fully connected layers
is illustrated in Figure 1. The following subsection II-A
sheds light on the detailed description of our previously
developed quantum-inspired fully self-supervised neural
networks [20], [21]. A short description about the FC layers
is also provided in subsection II-C.
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A. PARALLEL QUANTUM-INSPIRED SELF-SUPERVISED
NEURAL NETWORK (PQIS-NET) FOR SEGMENTATION
The Parallel Quantum-Inspired Self-Supervised Neural Net-
work architecture is the extended parallel version of our
previous network architectures [20], [21]. Each one of
the constituent network architectures in PQIS-Net com-
prises a trinity of layers of quantum neurons (repre-
sented as quantum bits or qubits). The incorporation of
quantum-inspired computing in the suggested PQIS-Net
stems from the fact that the classical self-supervised networks
suffer from convergence problems [23]–[25]. The incorpora-
tion of quantum-inspired computing in the suggested parallel
quantum-inspired self-supervised neural networks enables
faster convergence by reducing the number of epochs with
forceful termination and hence yields better accuracy in seg-
mentation tasks [20]–[22], [26]–[28]. The network dynamics
of PQIS-Net replicate the basic operation of the QIS-Net
model [20] in parallel. The basis computation unit for the
PQIS-Net is a quantum bit or a qubit designated by a quan-
tum neuron in all the trinity of layers in the architecture in
matrix notation. One such layer matrix comprising qubits is
shown out of the identical parallel layers in the PQIS-Net as
follows.

|φl11〉 |φl12〉 |φl13〉 . . . |φl1m〉

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

|φln1〉 |φln2〉 |φln3〉 . . . |φlnm〉


Here, each qubit is designated as φlij at the l

th layer of the
network architecture. The network layers are inter-connected
through 8-connected spatial neighborhood neuron subsets
and serve as the significant characteristic of the network
architecture. In each layer of the PQIS-Net architecture,
quantum neurons are also intra-linked among themselves
with intra-connection strengths π

2 (quantum 1 logic). The
N -connected neighborhood information of each candidate
pixel is propagated to the subsequent layers for further
computation in forward (input to hidden and hidden to
output layer) and in counter-propagation fashions. The
counter-propagation obviates the quantum back-propagation
procedure thereby enabling faster convergence and reduced
time complexity.

The principle of operation of the network is as follows.
Each neuron of the network layers is designated as a qubit or a
quantum bit and the inter-linked weights and its correspond-
ing activation are mapped using rotation gates operating on
the qubits. The classical input image pixels (x li ) at layer l are
converted to quantum bits as

|φli 〉 =

 cos(
π

2
x li )

sin(
π

2
x li )

 i = 1, . . .m× n (1)

The rotation gates are employed to update the qubitwith rota-
tion angle for inter-connection strength and activation as ωl

and γ l (say) at layer l, respectively. The angle of rotation of an

interconnection strength, ωli,j is decided by the adaptive and
relative difference of fuzzy membership measures between
the candidate pixel (i) and its corresponding neighborhood
(j) located at its N -connected region in quantum formalism.
The inspiration behind the adaptive and relative fuzzy mem-
bership measures in the evaluation of the rotation angle is to
distinguish between the foreground and background image
pixels. The angle of rotation is evaluated as

ωli,j = 1− (µli − µ
l
i,j); i ∈ m× n, j ∈ {1, 2, . . .N } (2)

Here, the fuzzy graded input at the ith candidate neuron
and its corresponding spatially N -connected second-order
neighborhood neuron at layer l are µli and µ

l
i,j, respectively.

It clearly describes the relative difference in the fuzzy mem-
bership measures between the foreground (µli) and the back-
ground regions (µli,j). Eg., if µ

l
i = 1 and µli,j = 0 then, ωli,j

= 1− (µli − µ
l
i,j) = 0 suggests that there is no change in the

rotation angle (activation remains same) and in this case, it is
already segmented. On contrary, if µli = 1 and µli,j = 1, then
ωli,j = 1− (µli − µ

l
i,j) = 1 suggests that there is a significant

change in the rotation angle (activation is high). A single
qubit is updated using a rotation gate with an angle ωl

as [
φl0′

φl1′

]
=

 cos(
π

2
ωl) − sin(

π

2
ωl)

sin(
π

2
ωl) cos(

π

2
ωl)

× [φl0
φl1

]
(3)

The fuzzy context sensitive activation in quantum formalism
enables the bi-directional propagation (forward propagation
and counter propagation). It is denoted at a layer l of a
candidate neuron (pixel) i by ξ li as

|ξ li 〉 =

[
cos γ li
sin γ li

]
(4)

where, the angle of rotation for activation ξ li is γ
l
i measured as

the contribution of itsN -connected neighborhood neurons as

γ li = 2π × (
∑
j

µli,j) (5)

The network input-output dynamics of a basic quantum
neuron (i) in the self-supervised PQIS-Net is defined at the
layer l as

|yli〉 = σPQIS−Net (
8∑
j

f (yl−1i )〈ϕlj |ξ
l
j 〉) (6)

i.e.,

|yli〉 = f (
π

2
δl−1i − arg{

8∑
j

f (ωl−1j,i )f (yl−1i )− f (ξ l−1i )})

= σPQIS−Net (
8∑
j

f (yl−1i ){cos((ωl−1j,i )− γ l−1i )

+ τ sin((ωl−1j,i )− γ l−1i ))} (7)

Hence, the output at the ith quantum neuron is depicted as
yli and the phase transformation parameters are denoted as
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δl−1i (τ is an imaginary number).

|yli〉 = σPQIS−Net (
8∑
j

f (
π

2
ylj)〈ϕ

l
ji|ξ

l
j 〉)

= σPQIS−Net (
8∑
j

f (
π

2
× σPQIS−Net (

8∑
l

f (
π

2
ylj)

×〈ϕlkj|ξ
l
k 〉)〈ϕ

l
ji|ξ

l
j 〉) (8)

Here, ϕlji and ϕ
l
kj are the interconnection weights between

input to intermediate and intermediate to output layers,
respectively.

|yli〉

= σPQIS−Net (
8∑
j

f (
π

2
×σPQIS−Net (

8∑
k

f (
π

2
ylj) cos(ω

l
kj−γ

l
k )

× s cos(ωlji − γ
l
j )+ τ sin(ω

l
kj − γ

l
k ) sin(ω

l
ji − γ

l
j )))) (9)

The σPQIS−Net activation function [QuantumMulti-level Sig-
moidal (QMSig)] employed in the above Equation is defined
as [20], [21]

σPQIS−Net (z; λθ ,Sθ , γ ) =
L∑
θ=1

1

λθ + e−ν(z−(θ−1)Sθ−1−γ )

(10)

where,

λθ =
Ns

Sθ − Sθ−1
(11)

Hence, the outcome of two adjacent classes viz., θ and θ − 1
are Sθ and Sθ−1, respectively and the sum of the contribution
of theN -connected neighborhood pixels is designated asNs.
ν denotes the steepness factor of the function and L is the
number of gray levels in the segmented image.

A coherent network error cum loss function is introduced
in PQIS-Net and is evaluated as [20] where, ϕ(ωι,ki,j , γ

ι,k
i )

is the weighted inter-connection of the k th parallel layer
at a particular epoch ι, which is linearly dependent on ω
and γ . B is the batch size of the constituent PQIS-Net
and the semi-supervised model. The convergence analy-
sis of the proposed PQIS-Net is demonstrated in Appendix
section.

B. OPTIMIZATION PROCEDURE OF PQIS-NET
The activation parameter γ used in the QMSig activa-
tion function (σ ) is appropriate for the uniform distribu-
tion of intensity and hence, gray-level segmentation accu-
racy degrades for lung CT slices due to wide variations of
gray-scales having heterogeneous responses exhibited over
the N -connected regions. In order to tackle this problem,
we have entrusted on adaptive and optimal thresholding
schemes using Quantum-inspired Differential Evolution [29]
with Otsu’s [30] multi-level thresholding as fitness function.
There are four distinct adaptive activation schemes used for
the activation parameter γ in the proposed QMSig activation
function as provided below [20], [25].

(1) Activation based on β-distributed intensity of
N -connected neighborhood image pixels (γβ ).

(2) Activation based on skewness (γχ ).
(3) Activation based on fuzzy graded pixel heterogeneous

intensity of 8-connected neighborhood (γξ ).
(4) Activation based on fuzzy cardinality estimation of

8-connected neighborhood (γν).
The optimized multi-class level, (Lθ ) for fixed number of

boundaries or class L is defined in a closed set Fλω as [20]

FλθL = {{λθL},L = 4, 5, 6, 7, 8} (12)

In order to obtain a number of optimal thresholds
{θ1, θ2, · · · , θCl−1}, Otsu’s multi-level image threshold-
ing [30] is incorporated to maximize the spread of the classes,
and is defined as [30]

O = fn{θ1, θ2, · · · , θCl−1} =
Cl∑
k=1

wk (rk − r) (13)

where, Cl represents the number of defined classes in C =
{C1,C2, . . . ,CCl } and

wk =
∑
i∈Ck

pi, rk =
∑
i∈Ck

ipi/wk (14)

where, pi designates the ith pixel and wk represents the proba-
bility of class Ck with the mean value given by µk . The mean
of the class C is given by m. In this work, for each multi-class
level L = {4, 6, 8} four sets FλθL = {S1, S2, S3, S4} of
class boundary are computed using Otsu’s method [30] as
fitness values in quantum formalism and are optimized using
quantum-inspired differential evolution (QDE).

C. FULLY-CONNECTED (FC) LAYERS FOR PATCH-BASED
CLASSIFICATION
The segmented lung CT images by PQIS-Net are targeted for
classification using Fully Connected (FC) layers to enable the
diagnosis of COVID-19 or pneumonia (Non-Covid). How-
ever, to avoid over-fitting in the FC layers due to the large size
of segmented image features, patch-based classification [31],
[32] is preferred incorporating p-number of random patches
with relatively small fixed size window of s× s. The patches
extracted from the segmented lung CT images are augmented
with the limited training data and hence avoids overfitting.
In addition, patch-based training at the FC layers relatively
reduces the network complexity. The center pixel xp of an
image patch Rp is randomly chosen from the segmented
lung region (the lung and the background pixels significantly
differ in their intensities) to obviate the empty region of the
segmented image without using any lung mask. The value of
p is chosen judiciously such that each pixel of the segmented
lung CT image is considered at least once. Each patch as a
vector of s2 pixels is concatenated along a fixed lexicographic
ordering [33]. It may be noted that each image pixel from the
infected lung region of the p-random patches may be consid-
ered as the highest representative feature for classification.
Some patches contain white and black pixels without any
significant feature (infection region) or small section of an
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infected lesion for classification. In what follows, each image
patch as vector is fed to the FC layers for classification with a
Softmax function and out of p-outcomes the final decision is
made by a majority voting scheme [34]. For simplicity, in the
experimental setup, maximum of 100 patches for classifica-
tion are allowed with patch size of 32 × 32. Here, we have
employed cross entropy loss for COVID-19 diagnosis. The
loss (L(2)) is computed by leveraging the hyper-parameters
2 of the semi-supervised neural network model. It is defined
as

argmin
2

L(2) =

C∑
i

[ti log y(αi)+ (1− ti) log{1− y(αi)}]

(15)

where, y(αi) is the predicted outcome of the FC layers on
input αi with respect to the network hyper-parameter set 2.
ti is the target output.

III. RESULTS AND DISCUSSIONS
A. DATA SET
Publicly available lung CT images are collected from three
data sources [35]–[37] and experiments are performed using
the proposed semi-supervised neural network model on both
the data sets. One of the data sets [35] contains total 2482 lung
CT images with variable sizes and out of these, 1252 lung CT
images are infected by COVID-19 and 1230 CT slices are
not infected by COVID-19. It may be noted that non-COVID
CT slices include few healthy slices which lack signifi-
cant distinguishable features for diagnosis. We have aug-
mented the COVID-19 infected and non-COVID lung slices
using rotation, scaling, shearing, and flipping operations. The
image slices are randomly rotated by an angle in the range
[−5◦, +5◦], randomly scaled with a scale factor in the range
[0.5, 1.5], randomly sheared about X and Y in the slant
angle in the range [−0.15,+0.15], and vertical and horizontal
flipping. The training-validation and testing splits of the ran-
domly chosen images are provided in Table 1. The Brazilian
data set [35] is acquired from the real patients of Sao Paulo,
City hospitals, Brazil. Few samples (COVID-19 infected and
non-COVID infected) from the Brazil data set [35] are pro-
vided in the Supplementary Materials. Another data set [36]
comprises only 20 labelled COVID-19 lung CT volumes
of fixed size of 512 × 512 which include infection masks,
lung masks (left and right) and lung-infection pair masks.
These labelled CT volumes are manually segmented and
verified by radiologist experts. The data set [36] comprising
the labelled CT volume masks is used in the experiment
for the segmentation task. On the contrary, the other data
sets [35], [37] are used for segmentation followed by classi-
fication tasks. The third data set employed in this experiment
is the IEEE CCAP data set [37] collected from IEEE Data
port which comprises five different sets of lung CT images
(COVID-19, Viral Pneumonia (VP), Bacterial Pneumonia
(BP), Mycoplasma Pneumonia (MP) and Normal lung).
Details of the data sets used for diagnosis are provided in
Table 1.

TABLE 1. Details of the data sets (training-validation and test data set)
used for classification (number of patients).

B. EXPERIMENTAL SETUP
In this current work, extensive experiments have been carried
out on lung CT images of variable sizes using a high perfor-
mance DL GPU (Nvidia RTX2070) System with MATLAB
2020a and Python 3.6.2 (Pytorch). However, the proposed
semi-supervised shallow network framework is implemented
without using any sort of GPU support. The Brazilian data
set [35] and the IEEE CCAP data set [37] are divided into
7 : 3 ratio for training, validation and testing, respectively for
segmentation followed by classification. In addition, exper-
iments are carried out using 5-fold cross validation. The
results for these three different scenario (data sets) are inves-
tigated by leveraging the set of hyper-parameters of the pro-
posed semi-supervised shallow neural network.

The parallel quantum-inspired self-supervised network
(PQIS-Net) is experimented with the pre-processed normal-
ized gray-level CT scan images. Pre-processing of the input
lung CT images from all three data sets [35]–[37] are per-
formed using normalization of images. The PQIS-Net seg-
mented CT volumes are processed though the 2D binary
masks [20], [38] available in the labelled CT volumes in
the data set [36] to obtain the infected lesion on lung CT
scans in the suggested semi-supervised model. Lung masks
are used to segment only the lung region from the segmented
CT slices, whereas infectionmasks are considered in the eval-
uation. The predicted label of each pixel is evaluated based
on the infection region labelled in the infection masks. Each
PQIS-Net segmented image is binarized using Otsu’s bi-level
thresholding [30] and compared with the binary infection
masks. The segmented output images resemble in size with
the dimensions of the binary mask and a outcome 1 is con-
sidered as infected region and 0 as background (lung region)
in diagnosis. Pixel by pixel comparison with the manually
segmented regions of interest or lesion masks allows eval-
uating the dice similarity (DS) [39] which is considered as
a standard evaluation procedure in automatic medical image
segmentation. The evaluation process using the data set [36]
involves the manually segmented lesion (infection regions)
mask as ground truth and each 2D pixel is predicted as
either True Positive (TRP) or True Negative (TRN ) or False
Positive (TRN ) or False Negative (FLN ). The PQIS-Net is
experimented with gray-level CT scan images using with
distinct classes L = 4, 5, 6, 7 and 8 in optimized fash-
ion [22]. In this experiment, the steepness (ν) in the σPQIS−Net
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TABLE 2. Average dice similarity for the data set [36] using the proposed
PQIS-Net, 3D-UNet [10] and ResNet50 [9] [One sided non-parametric two
sample KS test [40] with α = 0.05 significance level has been conducted
and marked underlined].

activation function, is varied in the range 0.230 to 0.240 with
a step size 0.001. It has been observed that in majority of
cases, ν = 0.239 yields the optimal segmentation. In addition
to this, the hyper-parameter N is chosen intuitively in the
current experimental setup and it has been seen that the
N = 8-connected second order neighborhood pattern
yields optimal segmentation using PQIS-Net. It captures the
local intensity variations over the 8-connected neighborhood
regions.

In addition to this segmentation, experiments are also set
up for classification using the proposed semi-supervised shal-
low network model, ResNet50 [9], and 3D-UNet [10] model
by replacing the last layer of 3D-UNet [10], ResNet50 [9]
architectures with two fully connected layers and patch-based
classification without segmentation using PQIS-Net (Pathc-
FC). The FC layers in the proposed semi-supervised shallow
neural networkmodel, and the Patch-FCmodel are rigorously
trained using the stochastic gradient descent algorithm with
momentum (SGDM) with an initial learning rate of 0.01,
momentum of 0.8, minimum batch size of 8 and weight decay
of 0.0001, allowing maximum 10 epochs. The convergence
of accuracy and loss during training using the proposed
semi-supervised shallow neural network with 5-fold cross
validation is shown in Figure 2. The convergence curves of
the suggested self-supervised PQIS-Net are shown in the
Appendix. Moreover, experiments have been performed on
two recently developed CNN architectures suitable for med-
ical image segmentation viz., convolutional 3D-UNet [10]
and Residual U-Net (ResNet50) [9] available in GitHub. The
ResNet50 [9] and 3D-UNet [10] are rigorously trained using
the adam optimizer with an initial learning rate of 0.01,
gradient decay factor of 0.9 and a minimum batch size of 8,
allowing maximum 50 epochs to converge. The convergence
of accuracy and loss during training using ResNet50 [9] with
5-fold cross validation is also demonstrated in Figure 3. The
other state-of-the-art techniques include Kang et al. [15],
Wang et al. [18], and Han et al. [19] for COVID-19 detection
on the Brazilian data set [35] and the IEEE CCAP data
set [37]. It may be noted that the PQIS-Net segmented slices
from the IEEE CCAP data set [37] are further prepossessed
before classification to remove the cavity regions from the
slices in order to obtain lung regionwith uniform background.

C. EXPERIMENTAL RESULTS
Extensive experiments have been performed in the current
setup and experimental outcomes are reported with the
demonstration of numerical and statistical analysis on three

FIGURE 2. Convergence of the proposed semi-supervised shallow neural
learning model allowing maximum 10 epochs during training with an
initial learning rate = 0.01 using the IEEE CCAP data set [37].

FIGURE 3. Convergence of the ResNet50 [9] model allowing maximum
50 epochs during training with an initial learning rate = 0.01 and
minimum batch size = 8.

different data sets [35]–[37]. Segmentation using the pro-
posed semi-supervised shallow neural network, pre-trained
ResNet50 [9] and 3D-UNet [10] models have been performed
using all the three data sets and segmentation performance is
measured on data set [36] using Dice Similarity (DS) [39].
The human expert (radiologist) segmented lung and infection
masks lung CT image slices of size 512 × 512 are provided
in Figure 4 with the input and the PQIS-Net segmented slice.
A randomly selected input lung CT image slice#001-171 [36]
is shown in Figure 5 using Lung Window (W/L: 4017/987)
for better clarity. Table 2 reports the segmentation results of
the proposed PQIS-Net with ResNet50 [9] and 3D-UNet [10]
models for three different tasks (infection, lung, infection and
lung). Table 3 presents the numerical results obtained using
the proposed semi-supervised shallow neural network model,
Han et al. [19], ResNet50 [9], 3D-UNet [10],Wang et al. [18],
Kang et al. [15] and Patch-FC for COVID-19 detection
on the Brazilian data set [35]. In addition, experimental
results obtained using the IEEE CCAP data set [37] with the
proposed semi-supervised shallow network, Han et al. [19],
3D-UNet [10], ResNet50 [9], Wang et al. [18] and Patch-FC
are provided in Table 4. The standard evaluation metrics
used in Tables 3 and 4 to measure the COVID-19 detection
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TABLE 3. Performance analysis of the proposed semi-supervised model, ResNet50 [9], 3D-UNet [10], Han et al. [19], Wang et al. [18], Kang et al. [15] and
Patch-FC for COVID-19 detection on the Brazilian data set [35] [One sided non-parametric two sample KS test [40] with α = 0.05 significance level has
been conducted and marked underlined].

TABLE 4. Performance analysis of the proposed semi-supervised model, Han et al. [19], 3D-UNet [10], ResNet50 [9], Wang et al. [18] and Patch-FC for
COVID-19 detection on the IEEE CCAP data set [37] [One sided non-parametric two sample KS test [40] with α = 0.05 significance level has been
conducted and marked underlined].

efficiency are accuracy, precision, recall, F1-score and AUC
(Area under ROC curve) [39]. From Table 3, it is observed
that after rigorous tuning of the hyper-parameters, the pro-
posed semi-supervised shallow neural network model out-
performs patch-based classification using fully connected
layers (Patch-FC), Kang et al. [15] and Wang et al. [18]
concerning evaluation metrics used in COVID-19 diag-
nosis on the Brazilian data set [35]. However, the pro-
posed semi-supervised model has reported similar accuracy
as ResNet50 [9] and Han et al. [19], and precision as
3D-UNet [10] while outperforming in terms of other eval-
uation metrics concerning the outcome of the statistical
significance KS-test. It is noteworthy that the pro-
posed semi-supervised model using PQIS-Net outperforms
3D-UNet [10] in terms of accuracy, recall, F1-score and
AUC in COVID-19 diagnosis on the Brazilian data set [35].
Similarly, the results reported in Table 4 show that the
proposed model outperforms Patch-FC, Wang et al. [18]
and 3D-UNet [10] in terms of the evaluation metrics and
reports similar accuracy as ResNet50 [9] and Han et al. in
COVID-19 diagnosis on the IEEE CCAP data set [37].
In addition to this, the suggested shallow framework also
outperforms Han et al. [19] and ResNet50 [9] in terms of
precision and AUC. It may be noted from the results reported
in Tables 3 and 4 that PQIS-Net followed by patch-based clas-
sification using fully-connected (FC) layers is superior than
only patch-based classification using fully-connected layers
(Patch-FC) without prior segmentation. It is also interesting
to note from the results reported in Tables 3 and 4 that with
an increase in the training samples in the data set [37] the
improvement of accuracy is phenomenal for all the methods
especially 3D-UNet [10] and ResNet50 [9]. Thus, despite
being a semi-supervised shallow learning framework, the
suggested semi-supervised model has attained better stability
on the outcome as is evident from the higher values of
precision and AUC while compared with the state-of-the-art
methods in COVID-19 screening.

FIGURE 4. PQIS-Net segmented lung CT slice#171 [36] with the three
different masks.

In addition, the ROC curves and Confusion matrices
are reported for quantitative representations of accuracy in
COVID-19 detection using the Brazilian data set [35] and the
IEEE CCAP data set [37] as shown in Figures 6, 7, 8, and 9,
respectively. The confusion matrices for ResNet50 [9],
3D-UNet [10], Han et al. [19], and Wang et al. [18] in
COVID-19 diagnosis on the IEEE CCAP data set [37] are
also provided in the Supplementary Materials. For a good
classifier, higher the number of predicted correct samples,
the larger will be the values in the diagonal of the confu-
sion matrix. Considering the confusion matrices, it is evi-
dent that the suggested shallow framework is superior to
the models ResNet50 [9], 3D-UNet [10], Han et al. [19],
Wang et al. [18] and Patch-FC in classifying COVID-19
andMycoplasma Pneumonia (MP) categories. The suggested
semi-supervised shallow framework predicts 520 and 237
correctly out of 520 COVID-19 and 240 MP target samples,
respectively, whereas ResNet50 [9] has predicted 517 and
235, 3D-UNet [10] has predicted 518 and 235, Han et al. [19]

VOLUME 9, 2021 28723



D. Konar et al.: Auto-Diagnosis of COVID-19 Using Lung CT Images

FIGURE 5. Randomly chosen input lung CT image slice#001− 171 [36] is
shown in Lung Window (W/L: 4017/987) and infections are shown red
arrow.

FIGURE 6. ROC Curves for the COVID-19 detection rate vs. false positives
using the proposed semi-supervised shallow neural network model,
3D-UNet [10], ResNet50 [9], Han et al. [19], Kang et al. [15], and
Wang et al. [18] on Brazilian data set [35].

has predicted 519 and 236, Wang et al. [18] predicted
499 and 231, and Patch-FC has predicted 476 and 193.
It further demonstrates that the random patch-based classifi-
cation incorporated in the suggested semi-supervised frame-
work significantly enhances the performance of COVID-
19 screening as the severely infected features present in
the COVID-19 slices are captured by these randomly cho-
sen patches from the lung regions. However, the proposed
semi-supervised model has maximum miss-classification in
Viral Pneumonia (VP) class (4.8%) due to the fact that the
majority of BP slices looks like Normal CT slices. Despite
the remarkable success achieved in COVID-19 screening,
ResNet50 [9] and 3D-UNet [10] architectures still suffer from
some inherent challenges owing to deeper and complex net-
work architectures. ResNet50 [9] and 3D-UNet [10] face slow
convergence problems for COVID-19 diagnosis tasks during
training. In addition, higher computational (GPU) and mem-
ory resources required for ResNet50 [9] and 3D-UNet [10]
architectures pose a potential concern in COVID-19 auto-
mated diagnosis. On contrary, the proposed semi-supervised
model is implemented without any support of Graphics Pro-
cessing Unit and its convergence is also stabilized at epoch
10 as shown in Figure 2, whereas ResNet50 [9] requires
50 epochs to converge as shown in Figure 3. Hence, it can
be concluded, that the performance of the semis-supervised
model on lung CT image classifications is statistically sig-
nificant and offers a potential alternative to the solution
of deep learning networks and other time-intensive feature
based learning paradigms in future.

FIGURE 7. Confusion matrix for the accuracy of prediction of COVID-19
using the proposed semi-supervised shallow neural network model on
Brazilian data set [35].

FIGURE 8. ROC Curves for detection rate (in case of Bacterial Pneumonia
(BP), COVID-19, Mycoplasma Pneumonia (MP), Normal lung, and Viral
Pneumonia (VP)) vs false positive using the proposed semi-supervised
shallow neural network model, ResNet50 [9], 3D-UNet [10],
Kang et al. [19], and Wang et al. [18] on IEEE CCAP data set [37].

FIGURE 9. Confusion matrix for the accuracy of prediction of Bacterial
Pneumonia (BP), COVID-19, Mycoplasma Pneumonia (MP), Normal lung,
and Viral Pneumonia (VP) using the proposed semi-supervised shallow
neural network model on IEEE CCAP data set [37].

IV. LIMITATIONS OF THE STUDY
It may be noted from the experimental studies that ResNet50
and 3D-UNet marginally outperform the proposed PQIS-Net
in lung CT image segmentation tasks in terms of dice
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FIGURE 10. Convergence of the proposed PQIS-Net for four different activation with four distinct class boundaries and using the data set [37].

similarity. This is due to the fact that the proposed PQIS-Net
is a fully self-supervised neural networkmodel based on pixel
intensity based features. However, the performance of the
proposed semi-supervised model is very close to ResNet50
and Han et al. (statistically similar) and outperforms all the
best published works in terms of Precision and AUC for
COVID-19 diagnosis. In addition to this, the lower computa-
tional complexity and lesser resources required to implement
the proposed semi-supervised framework make it a notable
significant contribution in the field of semi-supervised or
weakly supervised learning paradigm. Thus, the proposed
parallel semi-supervised shallow learning model serves as
an inspiration for promoting a potential alternative to the
deep supervised learning frameworks for lung CT image
segmentation for automatic COVID-19 diagnosis as well as
for automatic medical image segmentation in various appli-
cations with limited labelled data sets.

V. CONCLUSION
In this work, a novel attempt has been made using an
integrated semi-supervised shallow neural network encom-
passing the parallel self-supervised neural network model
(PQIS-Net) for fully automatic segmentation of lung
CT images followed by fully connected (FL) layers for
patch-based classification with majority voting. The pro-
posed integrated framework is semi-supervised in the sense
that the PQIS-Net is a fully self-supervised network for
segmentation followed by fully connected layers for ran-
dom patch-based classification of COVID-19 disease. The
PQIS-Net model incorporates the frequency components
of the weights and inputs in quantum formalism thereby
enabling faster convergence of the network states owing
to reduction in computation. This intrinsic property of
the PQIS-Net model yields precise and time efficient seg-
mentation in real-time, which is evident from the results
demonstrated in the experimental section. In spite being a
semi-supervised model, the suggested semi-supervised shal-
low neural network has attained better stability on the out-
come as it is evident from the higher values of precision
and AUC compared with the state-of-the-art methods spe-
cially in COVID-19 and Mycoplasma Pneumonia screening.
Moreover, our light-weight semi-supervised model can be
employed in any application setting (eg. medical IoT devices)
right away where, the deep learning models face serious

obstacles. However, it remains to investigate the performance
of lung CT segmentation using the optimized version of
PQIS-Net followed by classification with adaptive patch
sizes. The authors are currently engaged in this direction.

APPENDIX
CONVERGENCE ANALYSIS OF THE PQIS-NET MODEL
The convergence of the network states in PQIS-Net is guided
by the error or loss function and the segmented output is
obtained once the network stabilizes. The coherent network
error cum loss function is introduced in the PQIS-Net, is eval-
uated as follows.

ζ (ω, γ )

=
1
2

B∑
k

m×n∑
i

N∑
j

[ϕι+1,k (ωι+1,ki,j , γ
ι+1,k
i )− ϕι,k (ωι,ki,j , γ

ι,k
i )]2

(16)

where, ϕι,k (ωι,ki,j , γ
ι,k
i ) is the weighted inter-connection at a

particular epoch ι and is linearly dependent on ω and γ . B is
the batch size of the constituent PQIS-Net. The loss function
ζ (ω, γ ) is guided by the phase or angles ω and γ . Each
entry in the weighted inter-connection matrix in between the
successive constituent layers in the PQIS-Net architecture,
is updated using rotation gate as follows.

|ϕl+1,k 〉 =

(
cos4ωι,k − sin4ωι,k

sin4ωι,k cos4ωι,k

)
|ϕl,k 〉 (17)

|ξ l+1,k 〉 =

(
cos4γ l,k − sin4γ l,k

sin4γ l,k cos4γ l,k

)
|ξ l,k 〉 (18)

where,

ωl+1,k = ωι,k +4ωι,k (19)

and

γ l+1,k = γ l,k +4γ l,k (20)

Hence, Equations 19 and 20 measure the change in phase or
angles 4ωι,k and 4γ l,k , respectively for the k th constituent
parallel network in PQIS-Net at epoch ι. Consider

W ι,k
= ωι,k − ωι,k (21)

Aι,k
= γ ι,k − γ ι,k (22)

and

V ι,k = ωι+1,k − ωι,k =W ι+1,k
−W ι,k (23)

Mι,k
= γ ι+1,k − γ ι,k = Aι+1,k

−Aι,k (24)
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Hence, the optimal phase or angles for weighted inter-
connection and the corresponding activation areωι,k and γ ι,k ,
respectively. Differentiation of the loss function ζ (ω, γ ) with
respect to ωι,kij , γ

ι,k
i gives

∂ζ (ω, γ )

∂ω
ι,k
ij

=
2
mn

B∑
k=1

m×n∑
i=1

N∑
j=1

4ϕ
ι,k
ij (ωι,kij , γ

ι,k
i )

×

[
∂ϕ

ι+1,k
ij (ωι+1,kij , γ

ι+1,k
i )

∂ω
ι,k
ij

−
∂ϕ

ι,k
ij (ωι,kij , γ

ι,k
i )

∂ω
ι,k
ij

]
(25)

∂ζ (ω, γ )

∂γ
ι,k
i

=
2
mn

B∑
k=1

m×n∑
i=1

N∑
j=1

4ϕ
ι,k
ij (ωι,kij , γ

ι,k
i )

×

[
∂ϕ

ι+1,k
ij (ωι+1,kij , γ

ι+1,k
i )

∂γ
ι,k
i

−
∂ϕ

ι,k
ij (ωι,kij , γ

ι,k
i )

∂γ
ι,k
i

]
(26)

where,

4ϕ
ι,k
ij (ωι,kij , γ

ι,k
i )=|ϕι+1,kij (ωι+1,kij , γ

ι+1,k
i )−ϕι,kij (ωι,kij , γ

ι,k
i )|

(27)

The changes in phase or angles are designated as 4ωι,kij
and 4γ ι,kij for the rotation gate involved in updating the
weighted matrix and its corresponding activation are given
by

4ω
ι,k
ij = −X

ι,k
ij {

∂ζ (ω, γ )

∂ω
ι,k
ij

ζ (ω, γ )}
1
ι (28)

4γ
ι,k
i = −κ

ι,k
i {

∂ζ (ω, γ )

∂γ
ι,k
i

ζ (ω, γ )}
1
ι (29)

Here, X ι,k
ij and κ ι,ki correspond to the learning rates in updat-

ing the angles of rotation in inter-connection matrix and its
activation in the k th parallel network in PQIS-Net at epoch ι.
These are measured as follows.

X ι,k
ij = µ

ι,k
i − µ

ι,k
ij ∀j = 1, 2 . . .N (30)

and

κ
ι,k
i = (

∑
j

µ
ι,k
i,j ) ∀j = 1, 2N (31)

To show the super-linearly convergence of PQIS-Net, the fol-
lowing conditions on the sequences {ωι,k} and {γ ι,k} should
be imposed [41].

lim
ι→∞

||ωι+1,k − ωι,k ||

||ωι,k − ωι,k ||
≤ 1 (32)

and

||W ι+1,k
|| = O||V ι,k || (33)

Also,

lim
ι→∞

||γ ι+1,k − γ ι,k ||

||γ ι,k − γ ι,k ||
≤ 1 (34)

and

||Aι+1,k
|| = O||Mι,k

|| (35)

TABLE 5. Description of the symbols used in the manuscript.

Now, according to Thaler formula

ζ (ωι+1,k , γ ι+1,k )− ζ (ωι,k , γ ι,k ) (36)
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=

[
4ω

ι,k
ij 4γ

ι,k
i

]
∂ζ (ωι,k , γ ι,k )

∂ω
ι,k
ij

∂ζ (ωι,k , γ ι,k )

∂γ
ι,k
i


+O

[
||4ω

ι,k
ij 4γ

ι,k
i ||

]
(37)

≈

[
{−Xij

∂ζ (ωι,k , γ ι,k )

∂ω
ι,k
ij

}
2
+ {−κi

∂ζ (ωι,k , γ ι,k )

∂γ
ι,k
ij

}
2

]
×{ζ (ωι,k , γ ι,k )}

1
ι,k (38)

Here, it is evident that (ζ (ωι+1,k , γ ι+1,k ) − ζ (ωι,k , γ ι,k )) ≤
0 and the monotonically decreasing behaviors of the given
sequences {ωι,k} and {γ ι,k} are given by

lim
l→∞

ζ (ωι,k , γ ι,k ) = (ωι,k , γ ι,k ) (39)

and

lim
l→∞

||ζ (ωι+1,k , γ ι+1,k )− (ωι,k , γ ι,k )||

||ζ (ωι,k , γ ι,k )− (ωι,k , γ ι,k )||
≤ 1 (40)

The loss curve of the suggested PQIS-Net is provided in
Figure 10.
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