
SPECIAL SECTION ON RELIABILITY IN SENSOR-CLOUD SYSTEMS AND APPLICATIONS (SCSA)

Received December 31, 2020, accepted January 27, 2021, date of publication February 11, 2021, date of current version March 9, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3058769

A Novel Predictive-Collaborative-Replacement
(PCR) Intelligent Caching Scheme for
Multi-Access Edge Computing
EMEKA E. UGWUANYI, (Member, IEEE), MUDDESAR IQBAL ,
AND TASOS DAGIUKLAS , (Member, IEEE)
Division of Computer Science and Informatics, London South Bank University, London SE1 0AA, U.K.

Corresponding author: Emeka E. Ugwuanyi (ugwuanye@lsbu.ac.uk)

This work was supported by the H2020-MSCA-RISE-2016 European Framework Program.

ABSTRACT Multi-Access Mobile Edge Computing (MEC) is proclaimed as a key technology for reducing
service processing delays in 5G networks. One of the use cases in MEC is content caching as a way of
bringing resources closer to the end-users. Consequently, both latency and QoE are reduced. However, MEC
has a limited storage space compared to the cloud. Therefore, there is a need to effectively manage the
cache storage. This article proposes and evaluates a novel scheme (PCR) that combines proactive prediction,
collaboration amongMECs and replacement algorithm tomanage content caching inMEC. Results show that
the proposed replacement scheme outperforms conventional baseline content caching algorithms LFU, LRU,
MQ, FBR, LFRU. This has been validated with experimental results using a real dataset (MovieLens20M
dataset) and comparison with contemporary Long Short Term Memory (LSTM) based caching algorithm.

INDEX TERMS Edge intelligence, intelligent caching, MEC, predictive caching, LSTM.

I. INTRODUCTION
Ultra-Reliable Low-Latency Communications (URLLC) [1]
is likely the most talked-about 5G use case mainly because
of the huge services it can support. URLLC aims to deliver
a vastly reliable mobile wireless network with extremely low
latency requirements. Low latency is tremendously important
to support 5G applications [2]. This is exceptionally chal-
lenging as Cisco predicted the overall mobile data traffic is
expected to grow to 77 exabytes per month by 2022 [3].
This growth is attributed to the rise of IoT and Machine to
Machine (M2M) communication, use of social media and
video streaming platforms, and the adoption of Augmented
Reality /Virtual Reality (AR/VR) applications and 360 video
streaming.

One of the ways to reduce the latency is by bringing
the resources closer to the user through caching. Hence the
need for Multi-Access Edge Computing (MEC) is crucial
to reduce delay. MEC is defined by Taleb et al. [4] as
an ecosystem which aims at combining telecommunication
and IT services and reducing latency by providing a cloud

The associate editor coordinating the review of this manuscript and

approving it for publication was Md Zakirul Alam Bhuiyan .

computing platform at the edge of the radio access network.
Therefore, caching on the edge is a promising solution.

Employing an appropriate caching algorithm is pivotal to
increase the overall Quality of Experience (QoE) in content
distribution systems as 1% increase in hit ratio can have a pos-
itive impact [5]. The conventional caching algorithms such as
First In First Out (FIFO) [6], Least Recently Used (LRU) [7],
Least Frequently Used (LFU) [8], Least Frequently Recently
Used (LFRU) [9] and their variants [8], [10]–[12], follow
vastly specific rules. Therefore, these algorithms alone cannot
adapt and adjust to the ever-changing user request patterns.
Following the increasing popularity of machine learning and
data analytics, there has been progress made on the pre-
diction based caching algorithms [13]–[16]. Most of these
caching schemes use Recurrent Neural Network (RNN) algo-
rithms like Long Short-Term Memory (LSTM) [17] which
involves data preparation, feature extraction, model train-
ing and finally cache replacement using the trained model.
The model training is usually overly time consuming and
therefore is mostly done offline. However, once the model is
trained with appropriate hyperparameters [18] and adequate
feature engineering, it can achieve extremely high hit ratio.
One major drawback is that the model created is immensely

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 37103

https://orcid.org/0000-0002-8438-6726
https://orcid.org/0000-0002-8101-1208
https://orcid.org/0000-0002-9513-9990

E. E. Ugwuanyi et al.: Novel PCR Intelligent Caching Scheme for Multi-Access Edge Computing

dependent on the data used on training and hence it is not
hugely adaptive.

Podlipnig et al. [19] have stated that a good caching algo-
rithm must consider 4 factors. This includes the frequency
of the cache object, the recency, the size of the cache object
and the cost of retrieving the cache object. This is of no
surprise as prior to this, Zhou et al. [8] also listed 3 fac-
tors a good cache algorithm. Two among them (frequency
and recency) have already been mentioned. The third fac-
tor is the temporal frequency. This is to solve the problem
of cache objects that were frequently accessed in the past,
obtains an excessively high frequency. As a result, such
objects are never replaced even if they are no longer popular.
Addressing this problem has been another motivation for this
research.

In this article, the aforementioned concerns of the caching
algorithms have been addressed by proposing a three-fold
algorithm solution to improve the cache hit ratio and access
delay within a MEC environment. This includes a novel
delay aware replacement caching algorithm that can find a
victim in O(1), a proactive online association-based caching
strategy that prefetches cache objects based on anticipated
user behaviour and finally aMEC collaborative caching algo-
rithm. Experimental results show that the proposed scheme
outperforms conventional algorithms with regards to hit ratio.
Additionally, it outperforms an offline caching algorithm
with a pre-trained model.

The remainder of the article is structured as follows. The
review of related relevant work is presented in section II.
Section III explains the system architecture and system
model. Section IV details the proposed algorithms. Section V
presents the experimental results and evaluates the perfor-
mance of the algorithms. Finally, the article concludes in
Section VI and possible future works have been included in
section VII.

II. LITERATURE REVIEW
Caching algorithms have been studied widely by the research
community in different research fields including MEC. This
ranges from operating systems to network caching and in-
between. In this section, a review is carried out on the caching
algorithms that are relevant to this study.

A. CONVENTIONAL REPLACEMENT ALGORITHMS
In this section, the popular conventional algorithms that are
still commonly used have been reviewed. The vast aim of
these algorithms is to increase the hit ratio.

1) FIRST IN FIRST OUT (FIFO)
This is one of the simplest replacement policies in terms of
time complexity and implementation. In a FIFO queue, cache
objects are placed in the tail of the queue. If there is a need
for replacement, cache objects are removed from the head
until there is enough space for the incoming request. The time
complexity of this algorithm is O(1).

2) LEAST RECENTLY USED (LRU)
LRU [7] is still one of the commonly used algorithms. When
the cache is full, the policy replaces the cache object which
has not been referenced for the longest of time. The strat-
egy is based on the observation that blocks that have been
recently referenced are likely to be used again in the future.
LRU works well with workloads that exhibit strong temporal
locality. However, according to [20], LRU does not work
well with file server caches. The time complexity of LRU
algorithm is O(1).

3) LEAST FREQUENTLY USED (LFU)
LFU is another classic cache replacement algorithm. LFU
maintains a reference count for all cache objects. Therefore,
when the cache is full it replaces the cache object with the
lowest reference count. The rationale of the algorithm is that
some cache blocks are more frequently accessed than others.
Therefore, the frequency count is a good estimate of the
probability of a cache object to be requested. LFU has two
main drawbacks. Firstly, there may be a tie if two cache
objects have the same frequency. Secondly, a cache object
may accumulate large reference count and never replaced
even if the cache object is no longer active. There have been
many improvements proposed to address the drawback of
LFU. One of these improved versions is the aged LFU. This
policy gives different weight to recent and old references.
Aged LFU performs better than the original LFU [8]. The
time complexity of LFU is O(log(n)).

4) LEAST RECENTLY USED K(LRU-K)
This algorithm combines both LFU and LRU schemes. It was
first introduced in database disk buffering. The basic idea of
LRU-k [10] is to keep track of the times of the last K refer-
ences to popular cache objects. This information is then used
to statistically estimate the interarrival times of references
on a request by request basis. The replacement decision is
based on the reference density observed during the past K
references.WhenK is small, cold cache objects are identified
quicker as such cache objects have a wider span between
the current time and the k th-to-last reference time. The time
complexity of LRU-K is O(log(n)).

5) LEAST RECENTLY FREQUENTLY USED (LRFU)
LFRU [9] is another algorithm that combines LFU and LRU.
The strategy of this algorithm is to replace cache objects that
are least frequently used and not recently used. Each cached
object is associated with a Combined Recency and Frequency
value (CRF). The cache object with the lowest CRF value
is replaced. Each request of a cache object contributes to
its CRF. LRFU has a time complexity of between O(1) and
O(log(n)).

6) FREQUENCY BASED REPLACEMENT (FBR)
FBR [11] algorithm is a hybrid replacement scheme which
combines both LRU and LFU to capture the benefits of both

37104 VOLUME 9, 2021

E. E. Ugwuanyi et al.: Novel PCR Intelligent Caching Scheme for Multi-Access Edge Computing

algorithms. FBR has been initially proposed for managing
caches for file systems, management systems or disk control
units. FBR maintains LRU queues of cache objects with
the same frequency count. To address the problem of cache
objects accumulating large reference counts, the algorithm
maintains 3 sections. These include Fnew, Fmiddle and Fold .
These sections are used to bound the frequency count of cer-
tain cache objects and they are required algorithm parameters.
FBR also requires 2 additional parameters, Amax and Cmax .
Amax refers to the maximum average of frequency counts
to be maintained while Cmax is the maximum chain count.
More details can be found in [11]. The replacement decision
is primarily based on the frequency count. According to [20],
FBR is the best algorithm compared to LRU and LFU. The
time complexity of FBR ranges from O(1) to O(log(n)).

7) TWO QUEUE (2Q)
2Q algorithm [12] has been proposed as an improvement to
LRU-k. The motivation is to reduce the access overhead and
remove cold cache objects quickly. The 2Q uses two LRU
queues A1out and Am and an additional FIFO queue A1in.
The cache objects are initially stored in the A1in when first
accessed.When the cache is evicted fromA1in it is then added
to A1out . If a cache object in A1out is accessed, it is moved to
Am. The authors have proposed a scheme to select the efficient
sizes for both A1in and A1out . The 2Q performs better than
FBR, LRU and LFU for second-level buffer caches [8]. The
time complexity of 2Q is O(1).

8) MULTI-QUEUE (MQ)
MQ [8] has a comparable technique to 2Q. The motivation
is to create an algorithm that supports minimal lifetime for
cache objects, has a frequency-based priority and supports
temporal frequency. The MQ uses m number of LRU queues,
where m is a parameter. Cache objects in certain queues
have a longer lifetime than others depending on the queue
the object lies. MQ also uses a history FIFO queue Qout of
limited size to store recently evicted cache objects. MQ evicts
the cache object in the tail of the LRU queue with the least
frequency. MQ [8] performs better than FBR, Q2, LRU and
LFU. The time complexity is O(1).

B. NETWORK AWARE REPLACEMENT ALGORITHMS
Many factors affect the performance of the replacement algo-
rithms used in network caching. These include the requested
object size, latency, bandwidth, miss penalty, temporal local-
ity and long-term access frequency. Successful application of
these algorithms can reduce network traffic, response time,
and server load. The algorithms reviewed in this section take
at least one of these parameters in consideration during cache
replacement.

1) GREEDYDUAL (GD) ALGORITHMS
GD Algorithm has several variations, but the key objective is
to replace the cache object with the lowest cost value based on
a specified cost function. These variations have different cost

functions. The original GreedyDual [21] has been proposed
by Young. The motivation of the algorithm has been to deal
with cache objects that have the same size but incur a different
cost in bringing it to the cache-store. When a cache object
is retrieved, a value H is assigned to it. This is the cost of
bringing the cache object to the cache-store. The algorithm
replaces the cache object with the min H and then all cache
objects reduce their H value by min H . The time complexity
for this isO((n−1)× log(n)). Two other variations of GD are
listed below:

a: GD-SIZE
GD-size [22] extends the original GD by adding the size
of the cache object to the cost function. Therefore, H =
cost/size, where size refers to the cache size and cost could
vary depending on the cache priority. The cost could be set
to 1 if the goal is to maximize the hit ratio. It could be set to
the downloading latency if the goal is to minimize average
latency. Finally, it could be set to the network cost if the goal
is to minimize the total cost. The time complexity of GD-Size
O(log(n)).

b: GreedyDual-SIZE WITH FREQUENCY (GDSF)
GDSF [23] has been proposed as an extension of GD-Size.
The limitation of GD-Size is that it does not consider the
popularity of the cache objects during cache replacement.
GDSF hasH = F ∗ (cost/size)+L, where F is the frequency
count and L is a running age factor. L starts at 0 and is updated
for each replaced object if the priority key of this object is in
the priority queue.

2) LEAST UNIFIED-VALUE (LUV)
LUV [24] allocates a calculated value to each cached object.
When the cache is full, the cache object with the lowest value
is replaced. The value is calculated by weight × H , where
weight is the retrieval cost (cost/size) andH is the probability
that the object is going to be re-referenced in the future. The
time complexity of LUV is O(log(n)).

3) LOWEST-LATENCY-FIRST (LLF)
LLF ranks the cache objects based on its download latency.
When the cache is full it replaces the cache object with the
lowest latency. The motivation of this scheme is to minimize
the total latency in the system. The time complexity of the
algorithm is O(log(n)).

C. SIZE AWARE ALGORITHMS
In this section, algorithms that predominately makes cache
replacement decisions based on the requested object size are
reviewed.

1) SIZE
The Size algorithm [23] replaces the largest cache object
when the cache is full. The strategy is to increase the cache
hits by increasing the number of cache objects in the cache
queue. Therefore, to minimize the miss ratio, one large object

VOLUME 9, 2021 37105

E. E. Ugwuanyi et al.: Novel PCR Intelligent Caching Scheme for Multi-Access Edge Computing

is replaced rather than many smaller ones. The limitation of
this approach is that the smallest cache objects which are
rarely accessed are never replaced.

2) SIZE-ADJUSTED LRU
The size-adjusted LRU [23] associates a cost-to-size ratio to
each of the cached objects. The cost value is a function of
the size and access time of the cache object. The cost-to-size
ratio is 1

Size×1T . 1T is the elapsed time from last access
time to current time. The time complexity of the algorithm
is O(log(n)).

3) LEAST RECENTLY USED – SIZE ADJUSTED AND
POPULARITY AWARE (LRU-SP)
LRU-SP [25] uses two extensions of the LRU algorithm,
namely Size-adjusted LRU and segmented LRU. The cost
to size function of LRU-SP is (nref /(size × 1T)). Cache
objects are put into a limited number of groups according to
[log(size/nref)].When the cache is full, only the last 20 cache
objects is considered for replacement. Therefore, the cache
object with the lowest cache-to-ratio value is replaced. The
time complexity of the algorithm is O(1).

4) Log(Size)+LRU
Log(Size) + LRU [23] uses log(size) as a cost function.
Therefore, it evicts the cache object with the largest log(size)
and is the least recently used.

5) PITKOW/RECKER
Pitkow/Recker [23] removes the least recently used cache
object, except if all cache objects are accessed within a given
time interval, in which case the largest one is removed.

D. EDGE CACHING ALGORITHMS
There has been a considerable amount of research carried
out on MEC to enhance its cache performance. To accom-
plish this, the caching algorithm must be designed to support
cache sharing among MEC nodes, reduce latency and band-
width and increase network robustness and reliability. In this
section, such relevant algorithms have been reviewed.

Wu et al. [26] have proposed a collaborative edge caching
mechanism for ICN. The scheme advocates cache redun-
dancy by replicating cache object to the next hop whenever
a cache hit occurs. Ndikumana et al. [27] have proposed a
collaborative scheme for edge computing with a collaborative
space defined by the network administrator based on hop
count distance between edge nodes. In the proposed scheme,
the edge nodes periodically exchange resource and cache
updates. In [28], an inter and intra tier collaborative hierarchi-
cal caching mechanism over 5G edge computing have been
proposed. The scheme makes caching decisions to minimise
the number of wireless hops in obtaining a cache object
while maximizing the hit ratio. Liu et al. [29] have proposed
a collaborative online edge caching algorithm. The scheme
uses a Bayesian clustering technique to group users based on
their request preference. Popular preferences are then cached

to improve the global cache hits. Saputra et al. [30] have
proposed two proactive and cooperative caching framework
for mobile edge network. In the first approach, the edge
nodes send data to a central server, which then creates a deep
learningmodel based on the data popularity and sends it to the
edge servers. The second approach allows each edge node to
create a local model and then send it to the central server for
model aggregation. The aggregated global model is then sent
back to the edge nodes.

Chen et al. [31], have proposed a neural collaborative
filtering caching strategy for edge computing. The proposed
method incorporates a greedy algorithm, popularity predic-
tion algorithm and a content cache replacement algorithm.
Simulation results show that the proposed algorithm can
outperform baseline algorithms with regards to hit rate, trans-
mission delay and content cache space utilization

Xu et al. [32] have proposed a hybrid edge caching
scheme for tactile internet in 5G. The proposed scheme
has been aimed at energy efficiency improvement in proac-
tive in-network caching. The cache replacement policy pro-
posed assumes that the cache files follows Zipf distribution.
Simulation results have shown that the proposed method
achieves better latency compared to conventional caching
algorithms.

E. PREDICTIVE CACHING ALGORITHMS
The optimal caching algorithm is an algorithm that can accu-
rately predict the cache request pattern for t + 1, where t
is the current time and use this to make appropriate caching
decisions. For such algorithms, the prediction cost is usually
expensive, and many at-times fail to be consistently accu-
rate. Therefore, there are only a handful of such caching
algorithms. These algorithms are reviewed in the following
paragraphs.

Qi and Yang [33] have proposed a proactive caching
scheme for the wireless edge. The proposed scheme applies
federated learning for cache popularity prediction. The
authors highlighted a security vulnerability with centralised
learning as it needs to collect information from users dur-
ing the learning process which can be personal. Utilizing
the proposed approach, each user uploads a weighted sum
of preference and file popularity to the base station where
models are aggregated. Simulation results show that the pro-
posed scheme achieves a close cache-hit ratio to a centralised
learning approach.

Tan et al. [34] have proposed a reinforcement learning-
based optimal computing and caching scheme for edge
networks. The problem has been formulated as an
infinite-horizon average-cost Markov decision process
(MDP). The authors aimed at maximizing the bandwidth
utilization and decreasing the quantity of data transmit-
ted. The scheme considers long-term file popularity and
short-term temporal correlations of user requests to fully
utilize bandwidth. Simulation results show that the proposed
policy scheme can predict content popularity and user future
demands.

37106 VOLUME 9, 2021

E. E. Ugwuanyi et al.: Novel PCR Intelligent Caching Scheme for Multi-Access Edge Computing

Dutta et al. [14] have proposed a caching framework for
mobile wireless networks. The proposed technique uses a pre-
dictive scheme for both replacement and cache prefetch. The
problem has been formulated as a QoE optimization problem
and solved using Markov Predictive Control and Markov
Decision Process. Prediction is done using the FP-Growth
association rule-based algorithm. Empirical results have
shown that the proposed algorithm performs better than LFU,
LRU and FIFO in terms of hit ratio.

Chan et al. [15] have proposed a big data-driven pre-
dictive caching at the wireless edge. The framework have
applied a machine learning-based approach to anticipate user
behaviours and content patterns and then prefetch content
with expected high popularity. The framework uses a generic
Markov prediction model for prediction. The authors state
that the machine learning-based approach is useful in improv-
ing the cache performance when the popularity distribution
fails to follow Zipf distribution. The proposed algorithm per-
forms better than the LRU algorithm.

Rahman et al. [35] have proposed a deep learning pre-
dictive caching framework for edge networks. The proposed
framework uses a Long Short-TermMemory (LSTM) Recur-
rent Neural Network (RNN)model for predicting the popular-
ity of cache objects. The authors have used MovieLens 20M
[36] dataset for training the model. The authors assume there
will be little changes in the dataset and therefore they have
not consideredmodel update during runtime. Themodel error
rate has been evaluated. However, the proposed algorithm hit
rate ratio has not been analysed.

To address the problem of predictive model inaccuracy
due to changing popularity distribution of cache objects,
Song et al. [37] have proposed a dynamic content place-
ment caching framework. The novel learning framework
predicts the temporal cache distribution of future cache con-
tents. The content placement is periodically updated based
on future requests. Empirical results have shown that the
algorithm performs better than conventional online caching
algorithms.

F. CONTRIBUTIONS
The contributions of this article can be summarized as
follows:
• A novel cache replacement strategy has been designed
which selects victim based on popularity, recency and
network cost. The scheme can identify cold cache
objects through its selective caching approach. Addi-
tionally, the problem of temporary frequency has been
addressed.

• A proactive caching algorithm has been designed
that utilises association rule mining to predict cache
behavioural patterns based on historic events. Further-
more, cache objects are prefetched when necessary to
optimise cache storage and reduce network delay.

• A collaborative caching strategy has been designed for
sharing and retrieving cache among MECs while reduc-
ing cache redundancy in the cooperative space.

III. SYSTEM MODEL
MEC aims to reduce the load at the core network by bring-
ing computational and caching resources closer to the users.
Mobile operators and content providers would benefit from
caching popular content in the MEC local cache to improve
the QoE of the users. Let’s consider a typical system archi-
tecture as shown in Figure 1. Here, there is a set of MECs
in a cluster that defines a collaborative space to support
the core network. Let C = {C1,C2,C3..Cn} denote a set
of collaborative spaces. Each collaborative space contains a
set of MEC servers Ci = {M1,M2, ..Mn}. Without loss of
generality, it has been assumed that the MEC is co-located
with the base station to provide computational and caching
resources. It is assumed that the collaborative space is defined
by the network administrator based on the hop count dis-
tance between the MEC nodes [27]. This is done to reduce
the communication delay within the collaborative space and
reduce the communication overhead. The users are connected
to the MEC in the collaborative space closet to them. The
MEC maintains a disjoint one-to-many cardinality with the
UE. Here an edge node is connected to many UE, but no
UE is connected to multiple edge nodes. Lets denote Ui =
{u1, u2, ..un} as a finite non-empty set of UEs connected to an
MEC Mi. Each ui request data ri to be retrieved through the
MEC where ri ∈ R. R = {r1, r2.., rn} is a finite non-empty
set of data that can be retrieved from C or P, where P denotes
the cloud platform. Requests that cannot be retrieved from C
are sent to P through the core network.

IV. PROPOSED SCHEME (PCR)
In this section, the problem of temporal frequency has
been addressed. Additionally, a proactive predictive caching
scheme is proposed that learns user’s request pattern, antic-
ipates requests and prefetches it, is detailed. Finally, a col-
laborative algorithm is proposed for effective utilization of
the global MEC cache storage. In the following sections,
the details of the proposed schemes are outlined.

The proposed caching framework is depicted in Figure 2.
Following the numbered items in the diagram, the algorithm
is initialised with a new user request. If the requested cache
object is not in the local cache, then the MEC Collaborative
Scheme is used to retrieve the object. If it is not in the collab-
orative cache, then it is retrieved from the content server. The
Replacement Scheme handles the identification and evic-
tion of the cache victim when the cache is full. Finally,
the Cache Prediction Scheme generates cache sequential
association rules based on the received request patterns.
Therefore, when there is amatch based on the rules generated,
the cache objects are prefetched and stored in the local cache.
These three schemes are explained in detail in the following
sections.

A. REPLACEMENT SCHEME: SELECTIVE HISTORIC LEAST
FREQUENTLY USED (SHLFRU)
The rationale of the proposed content caching algorithm
is to design and develop an efficient caching algorithm

VOLUME 9, 2021 37107

E. E. Ugwuanyi et al.: Novel PCR Intelligent Caching Scheme for Multi-Access Edge Computing

FIGURE 1. System architecture for MEC collaborative content caching.

FIGURE 2. PCR caching framework.

with competitive time complexity. The basis of SHL-
FRU is in the combination of LRU and LFU algorithm,
in which the least frequent and least recent cache object is
replaced. However, two modifications have been made to this
algorithm.

1) SELECTIVE CACHING
The problem of cold cache objects, which are requested once
and not requested again for an overly long time and therefore
not useful of being the cache-store is addressed. To solve
this, a selective caching approach is used where the requested
cache object ri is only cached on either two conditions.
The first condition is based on temporal locality, thus cache
objects with a higher temporal locality have higher priority.
This has been achieved using a history queue. The second
condition prioritises cache objects with higher retrieval cost.
This is to reduce user access cost. The two conditions are
represented as in equations 1 and 2.

r (R−1)i ≤ r (R−1)j ∀ ri ∈ H (1)

rci > rcj (2)

Here, H is the history queue, r (R−1)i and r (R−1)j are the
previous recency of the new cache object ri and the least
frequently and recently used object respectively. rci is the cost
of retrieval of ri and rcj is the cost of retrieval of the rj.

rci =
size
trate

(3)

Here, size is the size of ri in bits and trate is the transmission
rate. rci is taken to be the miss penalty, which is the delay in

37108 VOLUME 9, 2021

E. E. Ugwuanyi et al.: Novel PCR Intelligent Caching Scheme for Multi-Access Edge Computing

retrieving the cache object if there is a cachemiss. The history
queue H is a FIFO queue of a finite size hsize. It keeps the
details of recently evicted blocks but not the cache data. The
selective caching decision is only activated when the MEC
cache storeM store

i is full.

|M store
i | ≥ cachesize (4)

If either equation 1 or 2 is true, then ri is removed from H
and is pushed intoM store

i .

2) TEMPORAL FREQUENCY
To address the problem of temporal frequency, a frequency
count bounding strategy is used. In this approach, the maxi-
mum distance between two consecutive cache objects rj and
ri in an LRU queue is grouped by their frequency count
that is bounded by fmax . With this approach and ri being the
lead cache object in M store

i , the increment of the frequency
count of a cache object r fi is determined by the function
FreqCount(r fi) stated in the equation below.

FreqCount(r fi) =

{
r fi + 1, r fi − r

f
j < fmax

r fi , r fi − r
f
j ≥ fmax

(5)

Additionally, to avoid the problem of overflow associated
with the practical implementation of frequency counts, a sim-
ilar technique used in FBR [11] is applied. In this approach,
the sum of all the frequency count fsum is dynamically main-
tained. Therefore, every frequency count inM store

i is reduced
whenever the following condition occurs.

fsum
|M store

i |
≥ Amax (6)

Amax is a predefined maximum value which is a param-
eter of the algorithm. Here, small Amax means high fre-
quency updates. The frequency count of the cache objects
in H and M store

i is reduced using the following equation
according to [11].⌈

r fi
2

⌉
∀ ri ∈ {M store

i ,H} (7)

Using this approach, in a steady-state, fsum would lie
between |M store

i | ×
Amax
2 and |M store

i | × Amax . Note that in
this reduction a count of one will remain at one, a count of
two would be two, a count of three would be 2, etc.

The SHLFRU algorithm uses multiple LRU queues Q to
achieve LRFU where each LRU queue Qi contains cache
objects with the same frequency count.

Q = {Q1,Q2..,Qn} s.t ∀ ri ∈ Qi, r
f
i = i (8)

The reference to the LRU queue that contains the cache
objects with the least frequency QL is dynamically main-
tained. Therefore, when a cache needs to be replaced, the vic-
tim is the cache object in the tail of QL .

3) TIME COMPLEXITY
Maintaining an LRU queue requires a tail insertion/head
taking and incurs no overhead. SinceQL is maintained, a heap
data structure is not required to keep the LFU stored. Hence,
the replacement victim can be found in constant time. If QL
changes a maximum of fmax queries are required to find the
nextQL . fmax is a constant that does not depend on the scales.
In all, the time complexity of SHLFRU is O(1). The time
complexity comparison is depicted in TABLE 1 Taking these
updates into consideration, the proposed algorithm SHLFRU
is depicted in Algorithm 1.

TABLE 1. Time Complexity Comparison

4) SIMULATION EXPERIMENTS
To evaluate the efficiency of the proposed content caching
algorithm, SHLFRU has been compared with existing algo-
rithms. These algorithms have been implemented using
Python. The simulation implementation project is available
on GitHub [38] and the online application is available [39].
The purpose of the simulation is to evaluate the hit ratio
of SHLFRU compared to existing algorithms. These algo-
rithms are evaluated with varying Zipf-popularity distribu-
tion parameter (α) and cachesize. SHLFRU, FBR and MQ
require additional parameters. The experimental parameters
are summarized in TABLE2. The parameters of FBR [11] and
MQ [8] have been explained in section II. Seven algorithms
have been evaluated including LFU, LRU, FIFO, MQ, FBR
and OPT.

5) RESULTS
The results obtained from the simulation is displayed in
Figure 3. It can be deduced that SHLFRU performs better
than the compared algorithms. Its performance is robust for
different workloads and cache sizes. It can also be seen that
MQ performs better than other algorithms except SHLRFU.
SHLRFU maintains at least a 3% (3% of 5000 requests is
1500) improvement in hit ratio compared to MQ across the
experiment. This improved performance can be attributed to
the selective caching of SHLRFU and its ability to quickly
identify cold cache objects. FBR performs almost as good as
MQ across the simulation results. LFU surprisingly performs
better than LRU across the simulation results.

B. CACHE PREDICTION SCHEME: PROACTIVE PREFETCH
CACHING ALGORITHM (PPCA)
The cache store would be efficiently managed if the users’
future request pattern is known. This is proved from the

VOLUME 9, 2021 37109

E. E. Ugwuanyi et al.: Novel PCR Intelligent Caching Scheme for Multi-Access Edge Computing

FIGURE 3. Simulation result of the comparison of algorithms with varying zipf parameter (α) and cache size.

TABLE 2. Experimental Parameters

simulation results obtained in Figure 3, as OPT performs
way better than other algorithms. The best way to predict the
future is to study the past. The motivation of this proactive
caching algorithm is to propose a novel predictive caching
strategy based on learning the association patterns between
content request in a MEC environment, where the content
popularity is time-varying and unknown. Association rule
mining techniques are leveraged to identify content requests
with close relations. In this scenario, for a given MECMi and
time tn, request history Req, from time tn−k to tn is utilized
to generate rules (Rules) that maps antecedents ruleant to
consequents rulecons. This approach is employed rather than
making predictions for tn+1. It is assumed that certain content
requests coni and conj are often requested together or sequen-
tial by users, where coni and conj are sets of variable lengths.
Therefore, the aim is to classify coni and conj as either ruleant

or rulecons such that

coni→ con(j) 6= conj→ coni (9)

Let S be the FIFO request sequence with length m which
has been received by a MECMi.

S = {r1, r2..rm} (10)

This problem is classified as an association sequential
pattern mining. Here the order of requests are maintained but
no duplicate items may appear in the sequence. To reduce the
processing time of the algorithm, two pruning techniques are
employed. First, the dimension of the request sequence to be
mined si is bounded by k .

si = {r1, r2 . . . rk} s.t si ⊆ S (11)

k is dynamically obtained from the number of unique
elements uno for a given window size wsize, such that the
sequence bounded by the window size sws is a subset of S.
Therefore, k is deduced from the following equation.

k = (uno)2 (12)

This is to have enough training data that can generate
meaningful insights. Similar approach has been used by [15].
In this regard, the training datasetD is a matrix obtained from
S with a dimension of uno×uno. Therefore, for the association
mining to be performed, the following condition must be met.

k ≤ m (13)

Secondly, the minimum support threshold supportmin is
used to reduce the number of item-sets to be evaluated as
candidates during the association mining. The support of a
given sequence set coni s.t coni ⊂ D is the number of rows
nrow in D that contain coni.

support(coni) =
nrow
|D|

(14)

37110 VOLUME 9, 2021

E. E. Ugwuanyi et al.: Novel PCR Intelligent Caching Scheme for Multi-Access Edge Computing

Algorithm 1 SHLRFU
Input cachesize,Amax , fmax , hsize
Output None
Initialization
M store
i ← ∅

H ← ∅
cachedecision← True
// Procedure to be invoked upon reference to cache object ri
1: if ri ∈ M s

i tore then
2: Qi.pop(ri)
3: else
4: D1← do eq. (1)
5: D2← do eq. (2)
6: if D1 or D2 is True then
7: Victim← QL .pop()
8: H .push(Victim)
9: if ri not in H then

10: H .push(ri)
11: cachedecision← False
12: else
13: update rrecencyi
14: cachedecision← False
15: end if
16: end if
17: end if
18: k ← FreqCount(r fi)
19: if cachedecision then
20: if Qk not in M s

i tore then
21: Qk ← ∅
22: end if
23: Qk .push(ri)
24: end if
25: if eq(6) is True then
26: do eq(7)
27: end if

Therefore, given supportmin a set Scon that contains all coni
and satisfies support(coni) ≥ supportmin is sort after.

Scon = {con1, con2..conn}∀support(coni) ≥ supportmin
(15)

Using Scon, Rulesall is generated that contains rules with
antecedents which are a subset of Scon.

Rulesall = {rule1, rule2..rulen} ∀ ruleanti ⊆ Scon (16)

The generated rules Ruleall are then ranked to evaluate
the strongest rules using the rule support (Rulesupport) and
rule confidence (Ruleconfidence) [40].Ruleconfidence of (coni→
conj) is the proportion of transactions inD including both coni
and conj.

Ruleconfidence(coni→ conj) =
Support(coni ∪ conj)

Support(coni)
(17)

Given the sorted ranked rules Ruleranked , the top p rules are
selected to be used for prefetch caching.

Ruleoutput = {rule1, rule2 . . . rulep} ∀ rulei ∈ Ruleranked
(18)

Algorithm 2 PPCA
Input:S,wsize,m, supportmin,memmax ,Ruleoutputmax , p
Output: Ruleoutput
Initialization:
Ruleoutput ← ∅
1: From sws obtain uno
2: k ← (uno)2

3: if k ≤ m then
4: si = {r1, r2 . . . rk} s.t si ⊆ S
5: obtain D from si s.t dimension = uno× uno
6: using eq.(15) obtain Scon
7: if eq.(19) is false then
8: Ruleall ← FPGrowth(D)
9: else
10: Ruleall ← Apriori(D)
11: end if
12: Ruleranked ← sort(Ruleall)
13: Ruleoutput ← slice(Ruleranked , p)
14: end if

Ruleoutput is updated every Ruletimeout to ensure that the
most relevant rules are stored. After the completion of each
user request, the rulecons of the ruleant that matches Req((t −
l) → t) is prefetched. If there is no match, no prefetch is
done. Here, t is the current position in Req and l is the number
of elements in ruleant . To ensure quick lookup, the rules in
Ruleoutput is stored in a hash table with the key being the
number of elements in ruleant . The value is also a hash table
with the key being the ruleant and the value being the rulecons.
The number of rules in theRuleoutput is bounded byRulemaxoutput .
This is the maximum number of elements in the ruleant that
can be stored in Ruleoutput . Thus, the maximum look-up done
to find matches is Rulemaxoutput .
Two major algorithms can be used for association rule

mining which are Apriori [41] and FP-Growth [42]. Apriori
generates better association with sparse dataset but it is mem-
ory intensive due to its breadth-first approach. FP-Growth is
quicker and uses a depth-first approach. However, FP-Growth
does not perform well with sparse datasets [43]. The best
of both worlds has been combined by employing both algo-
rithms and then choosing which one to use at runtime based
on the sparse density and a given memory threshold memmax .
In this approach, the default algorithm is FP-Growth. How-
ever, the average memory utilized memavg when updating
Ruleoutput is stored. Therefore, Apriori is used if the following
equation is satisfied, where Mmem

i is the current memory
utilization of the MEC and Ddensity is the sparse density of
the dataset D.

Apriori | Mmem
i < memmax ∀ Ddensity > 0.5 (19)

VOLUME 9, 2021 37111

E. E. Ugwuanyi et al.: Novel PCR Intelligent Caching Scheme for Multi-Access Edge Computing

1) TIME COMPLEXITY
The time complexity of the association mining is O(2n),
where n is the number of elements inD. The time complexity
of ranking the algorithm is O(log(n)). The total runtime is
(2n+ log(n)). Therefore, the time complexity is O(2n). How-
ever, using (11) and (12), the upper bound is deduced as k .

Algorithm 3 Collaborative Offloading Decision Algorithm
Input w
Output None
Initialization
Mnames
i ← ∅

M store
i ← ∅

Cstore
i ← ∅

TNM ← w× |Ci|
// Procedure to be invoked upon reference to cache object ri
1: if ri ∈ M store

i not True then
2: ni← Mnames

i (ri)
3: q = Cf (Cstore

i , ni)
4: if q ∈ {1} then
5: if |Mni

i | > 1 then
6: ri← Retrive(ni,Md)
7: else
8: ri← Retrive(ni,Mj)
9: end if

10: if |Mni
i | < TNM then

11: M store
i .push(ri)

12: end if
13: end if
14: else
15: use Algorithm I to fetch ri
16: Send push request to nrs with ri
17: send cache update to Ci
18: end if
19: Use Algorithm II to prefetch cache

C. MEC COLLABORATIVE SCHEME: COLLABORATIVE
GREEDY ALGORITHM
The motivation behind this scheme is to efficiently manage
the cache in the collaborative space by reducing data redun-
dancy and increasing the sharing of cache data amongMECs.
The aim here is to increase the efficiency of the global col-
laborative cache by improving the efficiency of the individual
edge node. Let’s assume content-centric networking for shar-
ing cache data within the collaborative space. Therefore, con-
tents are retrieved using a named identifier ni. Additionally,
let’s assume a name resolution server nrs is located in each
collaborative space Ci. The contents in nrs are populated by
theMECs inCi after each content retrieval. To ensure security
and integrity, the contents in the nrs is stored in a blockchain.
Mi storesMnames

i |Mnames
i ⊂ nrs locally to improve efficiency.

Mnames
i is a FIFO queue with limited size. For simplicity,

let’s assume eachMECMi has homogeneous storage capacity
and belongs to a collaborative space Ci. The total content

stored in the collaborative store is denoted by Cstore
i . Thus,

M store
i ⊂ Cstore

i . The Cstore
i is populated by event-driven

updates sent by MECs. Furthermore, a binary cache function
Cf (cachestore, ri) is defined that indicates if a cache object is
available in a cache-store.

Cf (cachestore, ni) ∈ {0, 1} (20)

From eq.(20), 1 implies that ni is cached in a given
cachestore and 0 otherwise. If a named content is not stored
in either M store

i nor Cstore
i , it is retrieved from the content

provider in the cloud P. However, if ni is in more than one
MEC in Ci then ni is retrieved from the MEC with the
least network delay. Let’s denote the network delay between
two MECs Mi and Mj as M

delay
i→j . If Mni

i denotes a set of
MECs that have ni in the cache and Md is the MEC with the
least network delay. The collaborative cache retrieve function
Retrive(ni,Md) has been defined in eq.(21).

Retrive(ni,Md)← ∀ ni ∈ M
ni
i s.t |Mni

i | > 1 (21)

To reduce cache redundancy, the number of MECs that can
store ni is capped at w percent. Therefore, the total number of
MECs TNM that can store ni is represented in eq.(22)

TNM = w× |Ci| (22)

V. EXPERIMENTATION
To evaluate the efficiency of the proposed algorithm PCR,
an emulation environment have been implemented which
consists of a varying number of MECs {6, 8, 10} and a con-
tent server. The content server has been deployed on Netlify
[44] and the MECs have been deployed on GNS3 platform.
Each MEC is a Linux Server utilizing docker as its Virtu-
alization infrastructure. Communication among the MECs
is done using a messaging broker. The proposed algorithm
has been compared with a contemporary deep learning-based
predictive edge caching algorithm [35]. The authors have
used a Recurrent Neural Network model, Long Short-Term
Memory (LSTM) to create a model that can make decisions
on what to cache on the edge based on cache popularity.
Henceforth, this algorithm has been referred to as C-LSTM.
C-LSTM has been trained using MovieLens 20M dataset.
Therefore, for fairness, the same dataset has been utilized
for this experimental comparison. From the MovieLens 20M
dataset, the focus was on the movie IDs that have been used
in [35] and movie IDs in the range of 1 to 1070. After data
preparation and filtering out movie Ids with little references,
444 models have been generated. The generated models have
been deployed on the MECs as per the author’s specification.
The algorithms have been implemented using Python and the
project is available on Github [38]. In the experimentation,
it has been assumed that the arrival time of the user requests
on the MEC server follows Poisson distribution λ = 1. The
parameters used for the experiment have been summarised in
TABLE 3.

37112 VOLUME 9, 2021

E. E. Ugwuanyi et al.: Novel PCR Intelligent Caching Scheme for Multi-Access Edge Computing

FIGURE 4. Comparison of h Ratio, access Delay, CPU and memory utilization of both PCR and C-LSTM.

TABLE 3. Experiment Setup Parameters

A. RESULTS
In this section, the results obtained from the comparison of
the two algorithms with respect to hit ratio, access delay, CPU
and memory utilization are discussed.

1) HIT RATIO
Fig. 4 shows the hit ratio comparison of PCR andC-LSTM for
varying number of MECs. It can be seen that PCR achieves a

better hit ratio than C-LSTM in all caches with at least 25%
increase. This high increase is due to the effective use of the
collaborative cache and its selective caching approach. Addi-
tionally, this is also attributed to the efficient identification
and replacement of cold cache objects and the ability to learn
and predict cache association patterns.

2) ACCESS DELAY
The comparison of access delay is depicted in Fig. 4. It can be
deduced that PCR obtains lower access delay than C-LSTM.
This is due to the increase in hit ratio as the access delay is
dependent on the hit ratio. There is less access delay incurred
if the user request is served from the local cache or MEC
cache compared to obtaining the request from the content
server. Therefore, more hit ratio would lead to lesser access
delay. This reduction would lead to better QoE for the end
users and a step closer to achieving URLLC.

3) CPU UTILIZATION
The CPU utilization comparison is shown in Fig. 4. C-LSTM
uses considerably lower CPU utilization than PCR. This is
because C-LSTM is an offline algorithm. Hence, the model
has already been trained with the dataset offline and the
trained model is then used for caching decisions. There-
fore, not much CPU utilization is required for prediction.
However, PCR is an online algorithm, therefore, the associ-
ation prediction is done during runtime and hence obtains a
higher CPU utilization. The CPU utilization obtained is stable
and predictable. Therefore can be accounted for during live
deployment.

VOLUME 9, 2021 37113

E. E. Ugwuanyi et al.: Novel PCR Intelligent Caching Scheme for Multi-Access Edge Computing

4) MEMORY UTILIZATION
The memory utilization for both C-LSTM and PCR can also
be seen in Fig. 4. C-LSTM obtains a higher memory utiliza-
tion than PCR. However, it is a low percentage compared to
the overall memory. The highermemory utilization is because
C-LSTMmust load each trained model into memory which is
then used for prediction. Although PCRwill have to store a lot
of the parameters in memory, these parameters are capped to
prevent overflow and hence achieves lower memory utiliza-
tion. Low memory utilization is essential in real MEC envi-
ronments due to the limited computation resources of MEC
nodes. The memory utilization obtained during the experi-
ment proofs that the proposed framework can be deployed in
real MEC environment.

VI. CONCLUSION
In this article, a comprehensive study has been done in
caching onMEC. Thereafter, PCR scheme has been proposed
which is a three-fold caching solution to increase the collab-
orative hit ratio in the MEC platform and reduce the access
delay incurred with obtaining request data. To optimise the hit
ratio, access delay and identify cold cache objects, a novel
replacement algorithm than can select a victim in constant
time has been proposed. Additionally, to dynamically adjust
to the ever-changing user request pattern, a proactive pre-
dictive caching algorithm to learn cache associations and
prefetch cache objects when a user request is anticipated has
been presented. Finally, to increase the total hit ratio in the
MEC platform, a collaborative caching algorithm for MECs
has been described. The proposed PCR scheme has been com-
paredwith an existing offline caching algorithmC-LSTMand
an extensive experimentation has shown that PCR is better
than C-LSTMand other conventional algorithmswith regards
to hit ratio and reduction of access delay.

FUTURE WORK
The proposed novel scheme PCR, is a proactive distributed
caching framework that shares its cache details among col-
laborative MECs. However, it employs a centralised learning
approach where each MEC maintains its predictive model.
A complete predictive model of the popular cache objects for
each collaborative space can be obtained if a distributed learn-
ing scheme is utilized such as Federated Learning. Hence,
further research can be done to determine how the proposed
predictive algorithm can be decentralised using federated
learning.

Additionally, ICN is advocated to shift the communication
focus from data location to the data itself by making the
named data the priority in the network. Therefore, data can
be sourced from the internet using the named data and not
the data location or IP address. Exploration analysis can be
done to determine if the proposed caching algorithms can be
adapted in the context of ICN. In this context, the routers
would be used instead of MEC for caching. Therefore,
an analysis should be done on where to carry out model

training for predictions to optimise latency and avoid over-
loading of the router’s computational resources.

ACKNOWLEDGMENT
The present work was undertaken in the context of the
‘‘Self-OrganizatioN towards reduced cost and eNergy per
bit for future Emerging radio Technologies’’ with contract
number 734545.

REFERENCES
[1] P. Popovski, J. J. Nielsen, C. Stefanovic, E. D. Carvalho, E. Strom,

K. F. Trillingsgaard, A.-S. Bana, D. M. Kim, R. Kotaba, J. Park, and
R. B. Sorensen, ‘‘Wireless access for ultra-reliable low-latency commu-
nication: Principles and building blocks,’’ IEEE Netw., vol. 32, no. 2,
pp. 16–23, Mar. 2018.

[2] Y. Liu, Z. Zeng, X. Liu, X. Zhu, and M. Z. A. Bhuiyan, ‘‘A novel load
balancing and low response delay framework for edge-cloud network based
on SDN,’’ IEEE Internet Things J., vol. 7, no. 7, pp. 5922–5933, Jul. 2020.

[3] G. Forecast, ‘‘Cisco visual networking index: Global mobile data traffic
forecast update, 2017–2022,’’ Update, vol. 2017, p. 2022, Feb. 2019.

[4] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
‘‘On multi-access edge computing: A survey of the emerging 5G network
edge cloud architecture and orchestration,’’ IEEE Commun. Surveys Tuts.,
vol. 19, no. 3, pp. 1657–1681, 3rd Quart., 2017.

[5] A. Mehrabi, M. Siekkinen, and A. Yla-Jaaski, ‘‘QoE-traffic optimization
through collaborative edge caching in adaptive mobile video streaming,’’
IEEE Access, vol. 6, pp. 52261–52276, 2018.

[6] C. Zhang, H. Pang, J. Liu, S. Tang, R. Zhang, D. Wang, and L. Sun,
‘‘Toward edge-assisted video content intelligent caching with long short-
term memory learning,’’ IEEE Access, vol. 7, pp. 152832–152846, 2019.

[7] A. Silberschatz, P. Galvin, and G. Gagne, Operating System Concepts,
9th ed. Hoboken, NJ, USA:Wiley, 2012. [Online]. Available: https://books.
google.co.uk/books?id=9VMcAAAAQBAJ

[8] Y. Zhou, J. Philbin, and K. Li, ‘‘The multi-queue replacement algorithm
for second level buffer caches,’’ in Proc. USENIX Annu. Tech. Conf., Gen.
Track, 2001, pp. 91–104.

[9] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. Lyul Min, Y. Cho, and C. S. Kim,
‘‘LRFU: A spectrum of policies that subsumes the least recently used and
least frequently used policies,’’ IEEE Trans. Comput., vol. 50, no. 12,
pp. 1352–1361, Dec. 2001.

[10] E. J. O’Neil, P. E. O’Neil, and G.Weikum, ‘‘The LRU-K page replacement
algorithm for database disk buffering,’’ ACM SIGMOD Rec., vol. 22, no. 2,
pp. 297–306, Jun. 1993.

[11] J. T. Robinson and M. V. Devarakonda, ‘‘Data cache management using
frequency-based replacement,’’ in Proc. ACM SIGMETRICS Conf. Meas.
Modeling Comput. Syst., 1990, pp. 134–142.

[12] T. Johnson and D. Shasha, ‘‘2Q: A low overhead high performance buffer
management replacement algorithm,’’ in Proc. 20th Int. Conf. Very Large
Data Bases, 1994, pp. 439–450.

[13] J. Liang, D. Zhu, H. Liu, H. Ping, T. Li, H. Zhang, L. Geng, and
Y. Liu, ‘‘Multi-head attention based popularity prediction caching in social
content-centric networking with mobile edge computing,’’ IEEE Commun.
Lett., early access, Oct. 12, 2020, doi: 10.1109/LCOMM.2020.3030329.

[14] S. Dutta, D. Krishnaswamy, A. Narang, S. Bhattacherjee, and A. S. Das,
‘‘Predictive caching framework for mobile wireless networks,’’ in
Proc. 16th IEEE Int. Conf. Mobile Data Manage., vol. 1, Jun. 2015,
pp. 179–184.

[15] C. A. Chan, M. Yan, A. F. Gygax, W. Li, L. Li, I. Chih-Lin, J. Yan, and
C. Leckie, ‘‘Big data driven predictive caching at the wireless edge,’’ in
Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), May 2019,
pp. 1–6.

[16] E. E. Ugwuanyi, S. Ghosh, M. Iqbal, T. Dagiuklas, S. Mumtaz, and
A. Al-Dulaimi, ‘‘Co-operative and hybrid replacement caching for multi-
access mobile edge computing,’’ in Proc. Eur. Conf. Netw. Commun.
(EuCNC), Jun. 2019, pp. 394–399.

[17] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi: 10.1162/neco.
1997.9.8.1735.

[18] J. N. van Rijn and F. Hutter, ‘‘Hyperparameter importance across datasets,’’
in Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Jul. 2018, pp. 2367–2376.

37114 VOLUME 9, 2021

http://dx.doi.org/10.1109/LCOMM.2020.3030329
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735

E. E. Ugwuanyi et al.: Novel PCR Intelligent Caching Scheme for Multi-Access Edge Computing

[19] S. Podlipnig and L. Böszörmenyi, ‘‘A survey of Web cache replacement
strategies,’’ ACM Comput. Surv., vol. 35, no. 4, pp. 374–398, Dec. 2003.

[20] D. L. Willick, D. L. Eager, and R. B. Bunt, ‘‘Disk cache replacement
policies for network fileservers,’’ in Proc. 13th Int. Conf. Distrib. Comput.
Syst., May 1993, pp. 2–11.

[21] N. Young, ‘‘Thek-server dual and loose competitiveness for paging,’’
Algorithmica, vol. 11, no. 6, pp. 525–541, Jun. 1994.

[22] P. Cao and S. Irani, ‘‘Cost-aware www proxy caching algorithms,’’ in Proc.
USENIX Symp. Internet Technol. Syst., 1997, vol. 12, no. 97, pp. 193–206.

[23] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin, ‘‘Evaluating
content management techniques for Web proxy caches,’’ ACM SIGMET-
RICS Perform. Eval. Rev., vol. 27, no. 4, pp. 3–11, Mar. 2000.

[24] H. Bahn, S. H. Noh, S. L. Min, and K. Koh, ‘‘Using full reference history
for efficient document replacement in Web caches,’’ in Proc. USENIX
Symp. Internet Technol. Syst., 1999, pp. 187–196.

[25] K. Cheng and Y. Kambayashi, ‘‘LRU-SP: A size-adjusted and popularity-
aware LRU replacement algorithm for Web caching,’’ in Proc. 24th Annu.
Int. Comput. Softw. Appl. Conf. (COMPSAC), Oct. 2000, pp. 48–53.

[26] H. Wu, J. Li, J. Zhi, Y. Ren, and L. Li, ‘‘Edge-oriented collaborative
caching in information-centric networking,’’ in Proc. IEEE Symp. Comput.
Commun. (ISCC), Jun. 2019, pp. 1–6.

[27] A. Ndikumana, S. Ullah, T. LeAnh, N. H. Tran, and C. S. Hong, ‘‘Collabo-
rative cache allocation and computation offloading in mobile edge comput-
ing,’’ in Proc. 19th Asia–Pacific Netw. Oper. Manage. Symp. (APNOMS),
Sep. 2017, pp. 366–369.

[28] X. Zhang and Q. Zhu, ‘‘Collaborative hierarchical caching over 5G edge
computing mobile wireless networks,’’ in Proc. IEEE Int. Conf. Commun.
(ICC), May 2018, pp. 1–6.

[29] J. Liu, D. Li, and Y. Xu, ‘‘Collaborative online edge caching with Bayesian
clustering in wireless networks,’’ IEEE Internet Things J., vol. 7, no. 2,
pp. 1548–1560, Feb. 2020.

[30] Y. M. Saputra, D. T. Hoang, D. N. Nguyen, E. Dutkiewicz, D. Niyato, and
D. I. Kim, ‘‘Distributed deep learning at the edge: A novel proactive and
cooperative caching framework for mobile edge networks,’’ IEEEWireless
Commun. Lett., vol. 8, no. 4, pp. 1220–1223, Aug. 2019.

[31] Y. Chen, Y. Liu, J. Zhao, and Q. Zhu, ‘‘Mobile edge cache strategy based
on neural collaborative filtering,’’ IEEE Access, vol. 8, pp. 18475–18482,
2020.

[32] J. Xu, K. Ota, andM. Dong, ‘‘Energy efficient hybrid edge caching scheme
for tactile Internet in 5G,’’ IEEE Trans. Green Commun. Netw., vol. 3, no. 2,
pp. 483–493, Jun. 2019.

[33] K. Qi and C. Yang, ‘‘Popularity prediction with federated learning for
proactive caching at wireless edge,’’ in Proc. IEEE Wireless Commun.
Netw. Conf. (WCNC), May 2020, pp. 1–6.

[34] Y. Qian, R. Wang, J. Wu, B. Tan, and H. Ren, ‘‘Reinforcement learning-
based optimal computing and caching in mobile edge network,’’ IEEE
J. Sel. Areas Commun., vol. 38, no. 10, pp. 2343–2355, Oct. 2020.

[35] S. Rahman, M. G. R. Alam, and M. M. Rahman, ‘‘Deep learning-based
predictive caching in the edge of a network,’’ in Proc. Int. Conf. Inf. Netw.
(ICOIN), Jan. 2020, pp. 797–801.

[36] (Sep. 2015). MovieLens 20M Dataset. [Online]. Available: https://
grouplens.org/datasets/movielens/20m/

[37] H.-G. Song, S. H. Chae, W.-Y. Shin, and S.-W. Jeon, ‘‘Predictive caching
via learning temporal distribution of content requests,’’ IEEE Commun.
Lett., vol. 23, no. 12, pp. 2335–2339, Dec. 2019.

[38] E. E. Ugwuanyi. (Jul. 2020). Emylincon/Caching. Accessed: Jun. 2020.
[Online]. Available: https://github.com/emylincon/caching

[39] U. Emeka. CacheTest. Accessed: Dec. 31, 2020. [Online]. Available:
https://cachetrace.herokuapp.com/

[40] N. Zhou, M. Qiao, and J. Zhou, ‘‘BI_Apriori algorithm: Research and
application based on battery production data,’’ in Proc. IEEE 9th Int. Conf.
Electron. Inf. Emergency Commun. (ICEIEC), Jul. 2019, pp. 1–5.

[41] R. Agrawal and R. Srikant, ‘‘Fast algorithms for mining association rules,’’
in Proc. 20th Int. Conf. Very Large Data Bases, San Francisco, CA, USA,
1994, pp. 487–499.

[42] J. Han, J. Pei, Y. Yin, and R. Mao, ‘‘Mining frequent patterns without
candidate generation: A frequent-pattern tree approach,’’ Data Mining
Knowl. Discovery, vol. 8, no. 1, pp. 53–87, Jan. 2004.

[43] B. Wu, D. Zhang, Q. Lan, and J. Zheng, ‘‘An efficient frequent patterns
mining algorithm based on apriori algorithm and the FP-tree structure,’’
in Proc. 3rd Int. Conf. Converg. Hybrid Inf. Technol., vol. 1, Nov. 2008,
pp. 1099–1102.

[44] Netlify: All-in-One Platform for Automating Modern Web Projects.
Accessed: Dec. 31, 2020. [Online]. Available: https://www.netlify.com/

EMEKA E. UGWUANYI (Member, IEEE)
received the B.Sc. degree in computing from the
London School of Commerce in partnership with
Cardiff Metropolitan University, U.K., in 2014,
and the M.Sc. degree in Internet and database
systems from London South Bank University,
U.K., in 2016, where he is currently pursuing the
Ph.D. degree in computer science. His current
research interests include resource management
in multi-access mobile edge computing (MEC),

network automation, and network intelligence.

MUDDESAR IQBAL received the Ph.D. degree
from Kingston University, in 2010, with a dis-
sertation titled ‘‘Design, development, and imple-
mentation of a high-performance wireless mesh
network for application in emergency and disaster
recovery.’’ He has been a principal investigator,
a co-investigator, a project manager, a coordinator,
and a focal person of more than ten internation-
ally teamed research and development, capacity
building, and training projects. He is an estab-

lished researcher and expert in the fields of: mobile cloud computing and
open-based networking for applications in education, disaster management,
and healthcare; community networks; and smart cities. He is currently a
Senior Lecturer in mobile computing with the Division of Computer Science
and Informatics, School of Engineering, London South Bank University. His
research interests include 5G networking technologies, multimedia cloud
computing, mobile edge computing, fog computing, Internet of Things,
software-defined networking, network function virtualization, quality of
experience, and cloud infrastructures and services. He was a recipient of the
EPSRC Doctoral Training Award, in 2007.

TASOS DAGIUKLAS (Member, IEEE) received
the Engineering degree from the University of
Patras, Greece, in 1989, the M.Sc. degree from
The University of Manchester, U.K., in 1991, and
the Ph.D. degree from the University of Essex,
U.K., in 1995, all in electrical engineering. He is
a leading researcher and an expert in the fields
of Internet and multimedia technologies for smart
cities, ambient assisted living, healthcare, and
smart agriculture. He has been a principle inves-

tigator, a co-investigator, a project and technical manager, a coordinator,
and a focal person of more than 20 internationally R&D and capacity
training projects with total funding of approximately č5.0m from different
international organizations. He is currently the Leader of the SuITEResearch
Group, London South Bank University, where he also acts as the Head of the
Division in Computer Science. His research interests include smart internet
technologies, media optimization across heterogeneous networks, QoE,
virtual reality, augmented reality, and cloud infrastructures and services.

VOLUME 9, 2021 37115

