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ABSTRACT In this paper, the problem of fault-tolerant control is investigated for turbofan engines with
actuator faults. The controller involvement has repressed the effects of actuator faults on the controlled
outputs of turbofan engines, making fault-tolerant control difficult. To solve this problem, the internal
gas-path data of turbofan engines is introduced to provide conducive fault information. Besides, the useful
property of the convolution neural network (CNN) is explored and utilized in fault-tolerant control. Based on
the analysis of actuator faults, by using the Lyapunov stability and L,-gain like theorems, a novel CNN-based
intelligent fault-tolerant control system for turbofan engines is proposed, including a CNN-based fault diag-
nosis module and a nonlinear fault-tolerant control with corresponding reconfiguration unit. The CNN-based
intelligent fault-tolerant control system has the advantages of reducing the accuracy requirements of the
mathematical description of turbofan engines. Furthermore, the proposed system can diagnose actuator faults
and reduce the adverse effects of actuator faults on turbofan engines. Finally, simulation results are presented
to demonstrate the efficiency of the designed method.

INDEX TERMS CNN-based intelligent fault-tolerant control, actuator faults, gas-path data, fault diagnosis,

nonlinear fault-tolerant controller, turbofan engines.

I. INTRODUCTION

In the event of actuator faults, the controlled outputs of tur-
bofan engines are with small changes for a short time due
to controller engagement [1]. The unappealing phenomenon
may lead to the so-called effect of actuator faults, which
has serious consequences and even produces catastrophic
accidents [2]-[5]. Fault-tolerant control plays a critical role
in enhancing the safety and reliability of turbofan engines.
The existing fault-tolerant control techniques of turbofan
engines are categorized into two classes: passive approach
and active approach [6], [7]. The parameters of the passive
fault-tolerant control are selected overly conservatively such
that the turbofan engines may have a loss of performance in
the nominal case [8]. On the contrary, the active fault-tolerant
controller can be reconfigured flexibly according to the faults
information provided by the diagnosis module to reduce the
conservation. Therefore, the research on active fault-tolerant
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control (AFTC) for turbofan engines has received some
attention.

The fault diagnosis of AFTC is to provide all possible
information regarding the abnormal functioning of systems.
As one of the most important technologies of fault diagno-
sis, redundancy is to monitor, isolate and estimate system
faults by obtaining multiple signals of the same variable.
Redundancy is mainly divided into hardware redundancy and
analytical redundancy [9]. In hardware redundancy, multiple
backup sensors or actuators are used to perform the same
task thereby preventing the failure of the system [10], such
as dual redundancy [11], triple modular redundancy [12],
and modified triple redundancy [13]. Owing to increasing the
cost, weight, and physical size, hardware redundancy is often
not an option for turbofan engines. In analytical redundancy,
filters [12], adaptive observers [14], linear regression-based
observers [15] are designed to estimate the operation of
components, which are mainly used in the case of sensor
faults. To estimate actuator faults, many other fault diagnosis
approaches have been proposed for turbofan engines, such
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as Kalman filter [16]-[21], observer [22], [23], and other
related methods [16], [24]-[28]. These approaches detect
actuator faults only based on the behaviour of the controlled
outputs. However, due to controller engagement, the small
change of the controlled outputs makes fault detection dif-
ficult. Besides, some of these fault diagnosis approaches are
developed as a diagnostic or monitoring tool, rather than an
integral part of the fault-tolerant control system for turbofan
engines.

The fault-tolerant controller of AFTC is to adjust the sys-
tem against faults for the stable operation according to the
fault information. Some interesting work has been reported
on the design of fault-tolerant controllers, such as robust con-
trol [29], sliding mode control [30], and other methods [31].
For instance, considering time-varying delay, actuator sat-
uration, and actuator faults, R. Sakthivel er al. proposed
a nonlinear fault-tolerant controller method to guarantee
the finite-time stability of the closed-loop system [31]. For
power systems with actuator failures, time-varying delays,
and admissible parameter uncertainties, B. Kaviarasan et al.
designed a fault-tolerant state feedback controller by linear
matrix inequality based optimization algorithm to guarantee
the robust stochastic stability of the whole system [32]. These
controllers require accurate fault information during the
design process. Nevertheless, most of the above fault-tolerant
controllers assume that a perfect fault diagnosis scheme is
available. Without proper consideration of the fault diagnosis
parts, combined AFTC systems with these controllers may do
not work as expected.

Each part of the integrated AFTC is taken into account
in the design to ensure the coordinated operation [33].
Much research in recent years has focused on the inte-
grated AFTC for turbofan engines [34]-[36]. In the work
of X.Liuetal [34], a jointly state/fault estimator and a
corresponding output feedback controller were constructed
to guarantee the input-to-state stability and mitigate fault
effects. In the presence of the sensor and actuator faults,
Xiao et al. [35] designed an adaptive observer and a sliding
mode fault-tolerant controller to stabilize aircraft engine sys-
tems. Chang et al. [36] applied a second-order sliding mode
observer to estimate the engine states and sensor faults and
then designed an estimated-state feedback controller against
the faults for aircraft engines. One feature of the works men-
tioned above is that the integrated AFTC needs not only the
precise mathematical description of turbofan engines but also
the reliable observer-based fault-detection residual. However,
the accuracy of the mathematical description cannot be guar-
anteed due to the complex structure of turbofan engines.
The residual can magnify or suppress the fault information
and not always be effective [1]. Besides, the lack of the
self-organizing and self-learning abilities of these methods is
rooted in the fact.

Motivated by the above discussion, except for controlled
outputs, other operational information of turbofan engines
needs to be introduced into fault diagnosis to improve the
reliability of AFTC. The design of the AFTC method should
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also reduce the dependence of the mathematical description
of turbofan engines. Furthermore, the AFTC method of tur-
bofan engines is expected to operate in coordination and
intelligence with full consideration to each part. To solve
the above problems, a CNN-based intelligent fault-tolerant
control (CIFTC) method is proposed for turbofan engines
against actuator faults. Firstly, besides the controlled outputs,
the internal operation data of turbofan engines is used to
enrich fault information. Secondly, a CNN-based diagnosis
module is designed to detect actuator faults to avoid the
adverse effects of the imprecise mathematical description of
turbofan engines. Thirdly, we develop an integrated CIFTC
system for turbofan engines. The Lyapunov function and
L»-gain like theorems are used for the stability proof of the
CIFTC system. Simulation results show that the proposed
method is an effective tool for handling fault-tolerant control
issues for turbofan engines.

The main contributions of the paper can be summarized as
follows.

1) The measurable gas-path data of turbofan engines is
introduced into the CIFTC system. Compared with
[17]-[23], [34]-[36], more operational data is uti-
lized in fault diagnosis to solve the problem of
limited fault information provided by the controlled
outputs.

2) The CNN-based diagnosis module is proposed for tur-
bofan engines. The characteristics of CNN is developed
for the proposed diagnosis module. The data-based
diagnosis method can relax the accuracy requirements
of the mathematical description of turbofan engines for
the CIFTC system.

3) An integrated CIFTC system is designed for turbofan
engines against actuator faults. The system consists of
the CNN-based diagnosis module, a nonlinear fault-
tolerant controller, and the corresponding reconfigura-
tion unit. Each part of CIFTC is unified in the frame-
work of the nonlinear Hy, control theory, which can
ensure the stability and control performance of the
closed-loop system for turbofan engines.

The rest of the paper is organized as follows. In Section II,
the modeling of turbofan engines with actuator faults is given.
Besides, the objective of CIFTC is formulated. In Section III,
the structure of the proposed CIFTC system is presented.
In Section IV, the CNN-based fault diagnosis module is
developed. In Section V, the design method, theory, and solu-
tion of the nonlinear fault-tolerant controllers for turbofan
engines are given. Case studies are presented in Section VI.
Finally, Section VII draws the conclusion.

Notations: In this paper, R, R”, and R"*" denote the
real numbers, the real n-vectors and the real nxm matrices,
respectively. If x denotes a given vector or matrix, then
xT indicates its transpose. The variables with A represents
the deviation of engine variables from their steady-state
values for the specified operation condition. We denote by
diag(ay, ..., a,) a block diagonal matrix with ay, ..., a, as
the diagonal elements. Let O,%; and O, represent the zero
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TABLE 1. Classifications and modes of actuator faults for turbofan engines.

Actuator Fault example Fault type Label Fault mode qﬁ‘}’i or ¢;”’i g‘;’i or g}”’i
Lo wf,a,l ¢a,1 = ¢a,1,1 Qa,l c |:7a,1,1 a,1,1:|
iti f f f e Q
Zero-drift of sensors Additive f f
t ,1,2 1
Lo e gleg el g
Awf 1 1,1 1
Lo wf,m,1 P =l ot e {7771,1,1 m,1,1:|
f f f o Q
Degradation of sensitive 4 =
Multiplicative ml_ m,1,2 m,1 1o 1o
Lo wf,m,2 P = ¢} of € {Q;n , g}”’ ,
elements
)1 1,3 )1
Ls wf,m3 oy =9 of € {5?71,3 g}n,m}
Lo vsv,a,l p¥? = 22! 0%? e [41,2,1 a,2,1}
iti ” f f f e Q
Valve deviation Additive ! =f
a,2 _ ,a,2,2 a,2 _a,2,2 2,2
Avsv L vsv,a2 P57 =95 ey € {9? o} }
Lo vsv,m,1 qﬁ}”’Q = ¢;”72v1 g}"ﬂ c |:Em,2,1 gm,2,1:|
Daming stagnation Multiplicative f =f
Ls vsv,m,2 (;3';7’2 = ¢?’2*2 g}"vz c |:E;n,2,2 g}n,2,2:|

matrices with dimensions axb and axa. Let I,, represent an
identity matrix with dimension n.

Il. PROBLEM FORMULATION

In this section, the modeling of actuator faults is presented
firstly. Then, the polynomial state-space model of turbofan
engines is introduced. The objective of CIFTC for turbofan
engines with actuator faults is given finally.

A. MODELING OF ACTUATOR FAULTS

Multiple operating loads, long-running, and poor conditions
may cause actuator faults of turbofan engines [21], [37].
As shown in Table 1, these unavoidable fault examples of tur-
bofan engines can result in the degradation of actuators. The
actuator degradation leads to a mismatch (called fault inputs)
between actual inputs and commanded inputs. In the event of
actuator faults, the actual input Au(r) = [Awf Avsv]T e RY
is composed of commanded control inputs and fault inputs
given by

Au(t) = Auc(t)+Aug (1), (1

where the variables labeled ¢ and f denote the commanded

input and the fault input caused by actuator faults. Actuator

faults are categorized into additive and multiplicative faults.

According to their way of representation [29], [38], the fault

input Auy(t) = [Awff AVSVf]T € RY is described by
Aul(t) = DU+, .
Au'(t) = OF ) Aug' (H)+0 (1),

where the variables with superscripts a and m represent the
case of actuators with additive faults and multiplicative faults.
Aul’(t) and Aul(t) that appears later are the commanded
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inputs of turbofan engines with multiplicative faults and addi-
tive faults, and the vector ®f () = [d:;f’](t) ¢;’2(t)]T c RY
and the matrix ®'(1) = diag(%?”l(t), ¢;”~2(r)) € Ro
reprgsent the fault parameters, where the scalars ¢]‘f J(t) and
¢;" Y(t)forj e 1, ..., qtake values between -1 and 0, making
it possible to represent partial actuator faults. The mixed

T
error vectors of (1) = I:Q}l’l(l) Q;"2(t)] € R?and of'(1) =

[Q}” N0 Q}"’z(t)]T € RY account for diagnosis errors, model
nadequacy, and so on.

Remark I: Note that the fault input in the fault-free case
can also be represented as (2) with ¢;’ J#) = 0 and
¢ (1) =0.

Remark 2: Experience has shown that faults are likely to
occur alone [1]. Due to the presence of the first faulty actuator
in the system, other faults may be triggered sequentially.
We always have to consider which fault occurs first. There-
fore, the single fault situation is considered in the design of
the fault-tolerant system in practical applications.

B. POLYNOMIAL STATE-SPACE MODEL OF TURBOFAN
ENGINES WITH ACTUATOR FAULTS

Consider the polynomial state-space model describing turbo-
fan engines given by

p
Ax(t) = ZAiAx{i}(t)+BzAu(t)+Bld(t), (3)

i=1

where Ax(t) = [Anl Anh]T € R" denotes the low-pressure
and high-pressure shaft speeds as the state vector, Ax!} (1) =
[Anli Anh[]r e R*fori=1,2,...,p, where p is the order
of the state polynomial, Au(t) = [Awf Avsv]T € R?is
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fuel flow and variable stator vanes as the actual input vector,
d(r) = [di(t) dz(t)]T € R is the various uncertain term due
to model simplification, disturbances, and so on. The matrices
have appropriate dimensions with B; € R and A; € R"™*"
forie1,2,...,p. B € R"9is full column rank and define
its left inverse as Bzzl. In this paper,n =k = g = 2.

In the case of actuators with additive faults and multiplica-
tive faults, according to (1) and (2), the actual inputs Au(t)
can be represented by Au?(¢) and Au™(¢t) in (4), respectively.

Au’(t) = Aul(t)+P (t)—i-Q]?(t)
Au"(1) = (I, q+c1>;"(t))Au;"(t)+g;"(t),
where the commanded inputs Auf(z), Aul’(t), the fault

parameters @;(t), <I>}”(t), and the mixed error vectors Q]‘f (0,
of'(r) are in (2).

“

C. THE OBJECTIVE OF THE CIFTC SYSTEM

This paper is expected to design an integrated CIFTC sys-
tem for turbofan engines to improve the performance of
turbofan engines with actuator faults. To indicate the per-
formance, a fictitious performance vector «¢(¢) is given and
will be described later. Before proposing the specific objec-
tive, we define the following L, gain-like and nonlinear H,
fault-tolerant control performance specifications.

Definition 1 (L Gain-Like): For turbofan engines with
actuator faults (3) (4), d(¢), or(?) (represented by Q}‘(t) and
Q}”(t)), kr(t) are the uncertain term, the mixed error vec-
tor, and the fictitious performance vector, respectively. The
closed-loop system is said to satisfy the L, gain-like perfor-
mance, if there exist positive constants y and é such that

T T
/O i} (OKp(Ddt < fo (y2d" ()d()y+8%0f (t)op(1))dt. ()

where y and § represent the limitations from the uncertain
term and the mixed error vector to the fictitious performance,
respectively.

Definition 2 (Nonlinear Hy, Fault-Tolerant Control Per-
formance Specifications): Nonlinear H, fault-tolerant con-
trol performance specifications (NHFTCPS) require that the
closed-loop system can make turbofan engines asymptoti-
cally track reference signals for d(¢) = 0 and or(¢) = 0, and
satisfy the L, gain-like performance with y > Oand § > 0
for d(t) # 0 and or(t) # 0.

The objective of this paper is to design a CNN-based
intelligent fault-tolerant control system for turbofan engines
to ensure that NHFTCPS are achieved for given y > 0 and
6> 0.

Remark 3: The main difference between Definition 1 and
L, gain is that a more general condition is defined here. The
closed-loop fault-tolerant control system of turbofan engines
has L, gain-like, which is represented as a multiple-input
single-output map, from the inputs of d(¢) and gf(¢) to the
defined penalty variable «¢(z). The closed-loop fault-tolerant
control system satisfies the L, gain-like performance, which
guarantees that the effects of d(¢) and gf(¢) on turbofan
engines is finite and the upper bounds can be calculated.
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FIGURE 1. Schematic of the dual spool high bypass turbofan engine JT9D
in T-MATS.
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TABLE 2. Ten measurable gas-path variables of turbofan engines.

Symbol Description

nl low-pressure shaft speed

nh high-pressure shaft speed

Py pressure before Bypass Nozzle
Ti7 temperature before Bypass Nozzle
Pr pressure after Fan

To1 temperature after Fan

Ps pressure before Burner

T3 temperature before Burner
Pys pressure after HPT

Tys temperature after HPT

Remark 4: The notion of Lj-like gain in Definition 1 is
to guarantee the robust performance of the closed-loop con-
trol system. Robustness is one of the basic functions of the
designed control system for turbofan engines.

IIl. STRUCTURE OF CIFTC FOR TURBOFAN ENGINES

With the development of communication technologies,
the operation data of turbofan engines can be acquired from
the Quick Access Recorder (QAR) for safety analysis. This
operation data includes specific gas-path data of turbofan
engines, which can provide effective support for the safety
and reliability analysis of the engine system [21], [39], [40].
The CIFTC system is developed according to the operation
data from QAR of turbofan engines in the paper.

Figure 1 shows the schematic of the main components
of the JT9D engine in T-MATS (the Toolbox for the Mod-
eling and Analysis of Thermodynamic Systems), such as
Fan, high-pressure compressor (HPC), Burner, high-pressure
turbine (HPT), Bypass Nozzle, and so on. Furthermore, loca-
tions along the flow path are indicated by the station num-
bers, which can be used to analyze the overall operation of
turbofan engines [37]. The gas-path data of turbofan engines
contains useful operational information and has been used in
component fault diagnosis [37], remaining useful life esti-
mation [41], health monitoring [42], and so on. To provide
the operation information of actuator faults, the difference
between actual and normal sensor signals of the key engine
stations is called gas-path total measurable fault information
(GToMFI). The GToMFI is introduced into the design of the
CIFTC system (see Table 2).
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FIGURE 2. General scheme of the CIFTC for turbofan engines with actuator faults. - -» indicates the offline design process and — indicates the

real-time online operation in the figure.

Stack Decision Temporary CNN Diagnosis : Turbofan
— G | . <t
Model diagnosis result Model - : RFonE Engine
CNN-Based Fault Diagnosis Model training,
test, and download
Control input
. < Data save
AFlnaI ' GToMFI Shaft speeds
diagnosis
Database
result
Con?roller. Controller design parameters := Controller
Reconfiguration and fault parameters

FIGURE 3. Working process of the CIFTC system for turbofan engine.

Figure 2 shows that the general scheme of the CIFTC
system for turbofan engines. Similar to other fault-tolerant
control systems, the proposed CIFTC system in the paper
contains a turbofan engine, a CNN-based diagnosis module,
a nonlinear fault-tolerant controller, and the corresponding
reconfiguration unit. Based on the database of GToMFI,
the CNN-based fault diagnosis module is to provide diagnosis
results for the controller reconfiguration unit. According to
the diagnosis results, the controller reconfiguration unit is
to choose suitable controller parameters and reconfigure the
existing nonlinear controller effectively. The reconfigured
controller is to reduce the impacts of actuator faults on tur-
bofan engines. These four parts need to work in harmony
to complete fault-tolerant control tasks for turbofan engines
under both normal and fault conditions.
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The fault-tolerant control of the proposed system is imple-
mented in three steps. The first step is the fault diagnosis
process, in which the temporary diagnosis result is provided
by the CNN diagnosis model and the final diagnosis result
is provided by the stack decision model. In the second step,
the fault parameters and controller design parameters are
given by the controller reconfiguration unit according to
the final diagnosis result. With these suitable parameters,
the fault-tolerant controller provides the control input to the
turbofan engine. In the third step, under the reconfigured
fault-tolerant controller, the turbofan engine can provide new
data to the GToMFI database for training, verifying, and
saving the CNN diagnosis model. The completed working
process of the CIFTC system for turbofan engine is illustrated
in Fig. 3.
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IV. CNN-BASED FAULT DIAGNOSIS

In this section, the CNN-based fault diagnosis module is
developed in the CIFTC system for turbofan engines. In this
module, the CNN diagnosis model and the stack decision
model are designed in detail.

A. CNN DIAGNOSIS MODEL

As an effective deep learning method, CNN has been suc-
cessfully utilized in various applications involving time series
data, especially in control systems [37], [43]-[46]. Based on
the GToMFI database, the CNN diagnosis model is designed
including data processing, cross-entropy calculation, key
neural layers such as convolutional layer, pooling layer, and
fully connected layer, etc.

1) DATA PROCESSING
To normalize the GToMFI data, the min-max normalization
method adopted from [47] is given by

x* = X — Xmin 6)

Xmax— Xmin

where Xuin and X denote the minimum and the maximum
of the GToMFI data (represented by yx) of turbofan engines,
and x* denotes the normalized value of y.

Figure 4 shows that the GToMFI data is re-scaled within
the range [0, 1] after normalization. The normalized GToMFI
data is divided into several short segments with equal
length by sliding-window sampling for feature extraction.
To improve the correlation between adjacent segments,
the sampling length of the segments is much large than the
sliding step.

|—Dnl Drp Pri7 —Dpyy Dry Dppy —Dry —Dpy Drs Dpss
1= 10 == ==

T T T
Sliding step Sample lengthe_*

Slldlng-wmdow sampling

Sliding-window sampling

T

I

1

1
0.5F 1 B

1

1.

R

Ol== L == L !

0 50 100 150 200 "7 250

g - = —
==

\7

¥f
e = = =

i3

FIGURE 4. Segmentation of the GToMFI data by sliding-window sampling.

Through the above data processing, more and standard
data samples are obtained for training and testing the CNN
diagnosis model.

2) CONVOLUTIONAL LAYER

The convolutional layer contains a series of learnable kernels
and parameters. The convolutional operation involves the
application of dot products between the raw input data and
the convolution kernels. The convolution process [47] with a
nonlinear activation is described by

R
b b b
& = ReLUCY  a@x() | +B), )

r=1
where g(lb) is the output of the b th kernel in the Ath convolu-
tional layer, x((;)_l) is the r th output of the previous network
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layer, ® represents the convolutional operator, oz;lb) and ,B;Sb)
denotes the weight and bias of the b th kernel of the % th
convolutional layer, ReLU is the activation function Rectified
Linear Unit.

3) POOLING LAYER
To avoid over-fitting, a pooling layer is often appended to a
convolutional layer. The max-pooling operator is applied to
each feature map separately by fusing nearby feature values
into one value [48]. The max-pooling is given by

g}(fgl - (v—l?\laj;fvw [{,Eb)(y)], ®)
where g(,b) (v) represents the y th value in the b th feature map
of the 4 th layer, E}(lﬁr)l is the outcome in the b th feature map
of the h+1 th pooling layer, w is the height of the pooling
window.

4) FULLY-CONNECTED LAYER

After alternately stacking multiple convolutional layers and
pooling layers, a flatten layer is followed to transform the
extracted feature map into a one-dimensional array [49]. The
softmax activation function is used in the output layer for
normalizing the result of the fully-connected layer to meet
probability distribution [50]. The output of the softmax func-
tion is defined by

P =1)7" e’
R
Pi=|PLi=g| =— evs |, )
. 3 eV
P(L =2) g=1 eV

where v, is the input of the softmax function for g =
1,2,---,z, P = LPEI) ng) P;Z)lis the output value
of the / th sample after normalization by the softmax function,
P(L; = g) is the probability value of the / th sample belonging
to label g. The label corresponding to the maximum value of
each row in P; is the CNN diagnosis result.

5) CROSS-ENTROPY LOSS CALCULATION
By comparing the normalized diagnosis result with the actual
label of the corresponding sample, the loss error of the CNN
diagnosis model can be calculated. To represent the loss error,
the cross-entropy loss function [51] is defined as follows
1 s Z _
J ==X Y Fili = gllog(PLi = 5)).  (10)

=1 g=1

where [ represents the / th training sample (the total number
of training sample is s), g represents the g th label (the total
number of labels is z), and F{L; = g} is a logical indication
function, returning 1 if the statement is true, and O if the
statement is false.

In this paper, the Adam optimization algorithm is used for
minimizing the cross-entropy loss function J according to
the rule of error back-propagation, where the learning rate
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can automatically adjust its step length according to the local
error surface of the mini-batch sample [52]. The learnable
parameters of the CNN diagnosis model are updated in the
training process.

Figure 5 shows the flow chart of the CNN diagnosis model
used for monitoring the operation of actuators. In addition to
the important layers mentioned above, a BatchNormalization
layer is added after the convolutional layer to make the data
in the current training batch follow a normal distribution.
The BatchNormalization was introduced back in 2014 in
the second version of GoogLeNet by Szegedy er al. [53].
The introduction of the BatchNormalization layer not only
accelerates the convergence speed in training but also allows
for higher learning rates. Hence. the CNN diagnosis model
can prevent overfitting and improve generalization capability.
The designed CNN diagnosis model can provide real-time
monitoring for the engine operation.

[ GToMFI Database ]
v
| Normalization and Sliding- window segmentation l

v v
| Test data

‘ Training data ‘

|

|
k4

Input layer
v
Convolution layer 1
L2

Pooling layer 1

‘ % l Load diagnosis
‘ Convolution layer 2 l model

3
BatchNormalization
v
Pooling layer 2

Feature extraction layer

I
n 4

Parameters update

Flatten layer

T

v
Dense layer l Fault diagnosis

v
Softmax output layer ‘

I

2
Cross-entropy loss

Fully-connected
layer

calculation
No i i
Convergence? Diagnosis results
and
v Yes

model accuracy

[ Save diagnosis model

FIGURE 5. The flow chart of the CNN diagnosis model.

B. STACK DECISION MODEL

According to the monitoring results provided by the CNN
diagnosis model, a stack decision model is developed to give
the final fault determination. The specific expression of the
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stack decision model is given by

. L.
ix=1%
Lg_q,

if Ly k = Lx*Egf an

others,

where Lk is the monitoring result provided by the CNN
diagnosis model at the Kth sampling time, Ly x =
[Li—sf+1 LE—sf42 - . LK]T e RY is the stack decision
vector composed of the monitoring results of the sampling
time from K—sf+1 to K, sf > 1 represents the stack length
of the stack decision model, Eg is a sf-dimensional column
vector with all elements of 1, LK and LK 1 are the final
fault determinations at the K th sampling time and previous
moment, respectively.

The stack diagnosis model and the CNN diagnosis model
constitute the CNN-based diagnosis module of the CIFTC
system. The module can provide the final fault determinations
for the nonlinear fault-tolerant controller in the CIFTC system
for turbofan engines.

Remark 5: The expression of the stack decision model
in (11) means that the previous fault determination is changed
only if sf consecutive temporary diagnosis results are con-
sistent. The selection of the stack length needs to consider
the acceptable fault-tolerance time of the control system for
turbofan engines.

Remark 6: The CNN-based diagnosis model is to extract
the information of actuator faults from the gas-path data,
which helps relax the accuracy requirements of the math-
ematical description of turbofan engines for the whole
fault-tolerant control system. Meanwhile, in addition to the
controlled shaft speeds, other gas-path data is also used to
provide the fault information of turbofan engines, which can
improve the reliability and security of the CIFTC system.

V. NONLINEAR FAULT-TOLERANT CONTROL

In this section, the nonlinear fault-tolerant controller of the
CIFTC system is designed to achieve NHFTCPS. To tackle
the nonlinearity of turbofan engines, a solvable Hamilton-
Jacobi-Issacs (HJI) inequality is constructed by a Lyapunov
function to obtain the nonlinear robust fault-tolerant con-
troller. Firstly, the tracking error dynamic model of the
closed-loop fault-tolerant control system is established.
Based on the tracking error dynamics, the nonlinear fault-
tolerant control problem of turbofan engines is converted into
the stability and robustness analysis with establishing corre-
sponding criteria. Then, we propose a suboptimal nonlinear
Hyo control problem in Theorem 1, and then construct an
analytical solution and a sufficient condition to the subop-
timal nonlinear Hy, control problem in Theorem 2. Finally,
the solution of the nonlinear fault-tolerant controller is given
in terms of linear matrix inequalities.

A. NONLINEAR ROBUST FAULT-TOLERANT CONTROL
DESIGN

According to the final fault determination provided by the
CNN-based fault diagnosis module, the fault parameters can
be obtained. In the case of the additive and multiplicative
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faults, the matrix and vector of the fault parameters can be
expressed as

~ ~ ~ T
i) = |30 ¢ e, (12)

(1) = diag(¢f" (1), B H(1) e R (13)

The corresponding mixed error vectors are presented by 0% oy (1)
and 97" oy (1), respectively.

Based on (4), a uniform model of the actual inputs of
turbofan engines is formulated by

Au(t) = B (1) ABy (1) +0y (1), (14)

where @f(t) = ®f(t) = I, Aws(1) = Aaj‘f(t) = Aul(t)+
®{(r), and g/(1) = 0f 041 = Qf(t)-i-(cba(l) CDf(t)) in the
add1t1ve fault case, ®f(t) = (t) = Iq—l—d> ), Aa)f(t) =
AGPE) = A, and oy(0) = GPO) = GErH(OP0)—
CD'"(t)) Aul(t) in the multiplicative fault case.
Substltute Au(t) in (14) into the polynomial state-space
model of turbofan engines in (3) yields

P
Ax(t) =Y A Ax(0)+By (O (1) ADy ()+05 (1))
i=1

+B1d(1) (15)

where Ax(¢) and d(¢) are the state vector and the various

uncertain term, A;, By, and Bj are the system matrices in (3).
Given that Ar(tr) € R" is the bounded reference signal,

the tracking error Ae(t) of turbofan engines is defined as

Ae(t) £ Ax(t)—Ar (), (16)

To eliminate the steady-state error, the integral action of the
tracking error Ao (¢) of turbofan engines is introduced into the
closed-loop control system by

t
Ac(t) & / Ae(t)dT. (17)
0

The derivatives of the tracking error and its integral with
respect to ¢ are given by

Ad (1) = Ae(t), (18)
P

Aé(t) = Y Aine ()+By AT ()+B1d (1), (19)
i=1

where A’ﬁ’;(r) in (20) is the inputs of the error dynamics of
turbofan engines.

P P
AT(t) = —Bo; ! ( ZAiAx{i}(t)—ZA,-Ae{i}(t)—Ai(t))
=1 i=1
+O7 (N AGy (1) 40r (1) (20)

Refer to (18) and (19) together as the error dynamical
model of the closed-loop system for turbofan engines,

AL1(t) = TAL(O+FEAT, (1)+Qd(1), 1)
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where AZ1(1) = [Ac()T Ae(t)T]T e R* is the state
vector, AZ() = [An@ ... AGOT ... AL €
R is the polynomial state vector, where A¢g;(f) =
[Acl(@) Ae@)]" € R™ fori = 1,2,...,p, d(t) =
[di1(D) dz(t)]T € R* is the uncertain term due to model

simplification, disturbance, and so on. A’u\é(t) is the input
vector rewritten as

AT(1) = O (1) AGL(1)+or (1), (22)
where @f(t) and of(t) are in (14), and
AD (1)
-~ d . p .
_ f—l(z)Bzgl(ZAiAx{’}(t)—ZAiAe{”(r)—Af(r))
i=1 i=1
+AG(1).

The system matrices of (21) are given by

Q= [O”Xk:| e Rk B = [Onxq] € R¥*4,

B B;
T=[Ti...Yi... 1] e RZP,
where
_ 0n In 2nx2n L 0 0 2nx2n
Tl_[onAl:|e]R , Y= 0, A; e R ,
i=2,3,...,p

To indicate the control performance of the closed-loop
system for turbofan engines, the fictitious performance vector
k¢ (t) in (5) is defined by

s [H(A0)
G0 2 [ e (t)] @3)

where 6 is a positive coefficient and H (Ag“] ) is a cost function
of the state of the error dynamical model.
Assumption 1: The cost function H(A{l) in (23) satisfies

HT (AG)H(AL) < AcT(TAL @), 24)

where IT € R¥P*2" is a symmetric positive definite matrix.

Remark 7: In Assumption 1, HT(Af))H(AG) is less
than or equal to a polynomial of a certain degree. This is a
necessary condition for Theorem 1 in this paper.

Remark 8: As shown in (14), the commanded inputs
Aul(r) and Au’(¢) are included in Ay (¢). According to (22),
Aa)f(t) is a part of Awf(t) These mean that once Awf(t) is
given, the fault-tolerant controllers of the CIFTC system for
turbofan engines can be designed.

To satisfy the NHFTCPS of the closed-loop system of
turbofan engines, firstly, we propose

AGL (1) = —O;ETT(, pAYAL(L).  (25)

Then, in case of actuators with additive faults and mul-
tiplicative faults, we design nonlinear robust fault-tolerant
controllers Auf(t) and Aul'(¢) in (26) and (27) for the CIFTC
system, respectively,

Aul(t) = n()—E"T(1, P AW AL ()= Dy(t),  (26)
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AUM(t) = —(In+ D) ETT(1, pp AV AL (1)
(Lt ®,(0) (o), 27)

where
n()
:—32;1(ZAiAx{l}(z)—ZA,-Ae{’}(t)—Af(z)), (28)

i=1 i=1

A 02 x2n(p—1)

the A =
O02n(p—1)x2n N>
ric positive definite matrix, A, A, are 2nx2n and 2n(p—1)x

2n(p—1) symmetric positive definite matrices. ¥ € R>"P*2
is a square matrix. The conditions that the matrices A and W
need to satisfy will be given in Theorem 2 later. I'(1, p) =
[12n 02n><2n(p—1)] € R2nx2np, a;a(t) and a;m(t) are the matrix
and vector of fault parameters provided by the CNN-based
fault diagnosis module.

€ R?P*2m i5 a symmet-

o Fault Parameter
| @ in(12)

| Fault.
¢ in(13)

CNN-based
Fault Diagnosis

I GromFi
|

Fault-tolerant controller |
A u’(t) in(26)

Ar(t) Ac(t)

FIGURE 6. Block diagram of the fault-tolerant controllers of the CIFTC
system for turbofan engines.

* Turbofan

engine

Fault-tolerant controller
Au(t)in(27)

Au(t)

Finally, the block diagram of the fault-tolerant controllers
of the CIFTC system are shown in Fig. 6. The nonlinear fault-
tolerant controllers are reconfigured flexibly according to the
fault parameters provided by the CNN-based fault diagnosis
module.

Remark 9: The proposed nonlinear fault-tolerant con-
troller is a typical active fault-tolerant controller. Based on
the CNN-based diagnosis module, the proposed fault-tolerant
controller is designed as a part of an integrated fault-tolerant
control system. The actuator faults of the value within a
certain range belong to the same fault mode. The design
method of the proposed controller can relax the accuracy
requirement of the diagnosis module and avoid reconfiguring
the controller of turbofan engines frequently in the case of
minor changes of the fault value.

B. STABILITY AND CONTROL PERFORMANCE

Theorem 1: For the error dynamics of the closed-loop sys-
tem for turbofan engines with actuator faults in (21), d(¢),
or(t) in (22), kr(¢) in (23) are the uncertain term, the mixed
error vector, and the fictitious performance vector, respec-
tively. For given positive coefficients 6, y, and &, if there is
a continuously differentiable positive definite function V'(¢)
with V(0) = 0 for A¢1(0) = 0 such that (29) holds,

1"V _ _r 3V@©)
4829A0(H) A1)

+HT (AL H(AL)
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BTV(t) AL+ aTv(r)

3A§1(t) INL(2)
T

L ' V() aql V(1)

4y2 JAL1(1) IAL(F)

+62A0, (DADL(H) <0 (29)

B0 (1) AL (1)

+icf ()ier (1)

then the NHFTCPS in Definition 2 can be satisfied by the
proposed CIFTC system for turbofan engines.
Proof: A scalar function G(t) is given by

g()
2 AV

dt

Considering V(t) is a function of A¢y(¢), (30) can be
written as

G()
AaTv(e)

= Sac 0 (1A 0dO+E @ AT @ o))

+icf (D (—y?d” (1)d(1)—8%0f (gr (1)

‘ T
=YD 50 Aﬁé(f)*aA;]((r))

IALI(1)
aTv() -
+3A;()Qd(’)+H (A1) H(AL)
ATV (1)
N0
—y2d" (1)d(1)—-8%0f (or (1), 31)

+if (i (—y2d" (H)d(0)—8%f (Her (1) (30)

TAL()

o ()+02AB, (HABL (1)

which is a quadratic function of d(¢) and of(¢). Therefore,
equation (31) has the maximum value at d*(¢) and Q}‘(t) (for
a fixed V(1)).

L of oV (1)
22 AL
1 =7 V(1)
2827 3 Aci(t)’

Taking d*(¢) and Q*(t) into (31) yields

d*(r) =

(32)

of(1) = (33)

1 aTV(t)HHT V@) T
90 = 2 aanm " sagm T AR(A)
ATV () aTv(@)

Toanm 5500
T AV (1)

+L aTv()
4y2 dAL1(1) dAL1(1)
+02A0L () AGL (1)

<o0. (34)

B0 (1) ADL(1)

+icf ()er (1)

Integrating (34) yields

T T
/ k! (Okp(t)dt—y? / dT (t)d(r)dt
0 0

T
+V(T)—V(0)—8> /0 of (Dor(dr < 0. (35)
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According to V(T) > 0 and V(0) = 0 for A1 (0) = 0,
rearranging terms yields

T
/0 i (t)icr (1)
T
= / (y2d" (1)d(1)+8%0f (t)ar(1)dt—V (T)
0

T
< /0 (v2d" (O (160 (0y (1) . 36)

Thus, the closed-loop control system of turbofan engines
satisfies the L, gain-like performance with y > O and é§ > 0
for nonzero d(t) and o7 (¢) with y > O and 6 > 0.

Moreover, if d(¢) = 0 and g (¢) = 0, equation (34) can be
rewritten as

V(eyt+if (O (—y?d" (1)d(1)—8%f (1)gr (1)
= VO+HT (A0 H(AG)+62 A5, (AT, (@)
<0 (37)

Because of Assumption 1, V(1) < 0 expect at
AZ1(0) = 0. Hence, the error dynamics of the closed-loop
system of turbofan engines with actuator faults is locally
asymptotically stable for d(t) = 0 and gf(t) = 0, which
means that the controlled outputs of turbofan engines by the
CIFTC system can asymptotically track reference signals for
d(t) =0and g(t) = 0.

The proof is completed.

Theorem 2: For given positive constants 6, y, and §,
if there exists a symmetric positive definite matrix A =
|: A 020 2n(p—1)

O2n(p—1)x2n A>
W e R2>21 that satisfy

€ R¥PX2" and a square matrix

ATT(1, p)Y=ATT (1, p)EOFNHETT (1, p) AW
+17T(1, pA—WT AT (1, p)EOHNHE'T(1, p)A
+202WT ATT (1, p)EOF(1)ET T (1, p) AW2IT

1 T T
+— AT (1, pQQ T, p)A
2y

1
+2—62AFT(1,p)EETF(1,p)A <0, (38)

then the NHFTCPS in Definition 2 can be satisfied by the
proposed CIFTC system for turbofan engines.
Proof: Consider the Lyapunov function candidate

1
V(t) = EMIT (HA1AL (1), (39)

where A € R?™2" is a symmetric positive definite matrix.
The partial derivative of V(¢) with respect to A¢(¢) is given
by
av(r)
dAL(1)

=T, p)AAL(), (40)

where A — A O2nx2n(p—1)
O2n(p—1)x2n Ar

] is a symmetric posi-
tive definite matrix.
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Taking 8V(t)/8A§1(t) in (40), Aﬁ;(t) in (25), and

Assumption 1 in (24) into (29) yields
LBTV(I),:TT V()
4529851 AAG(D)
ATV () aTv (@)

mTA((z)—l—m B0/ (1) AW (1)
1 3Tv(@)

L r V()

4y2 AAE1(1) 0AL()
+0208L () Ad. (1)

< ezAgT(z)qﬂArT(l,p)E@}(;)ETF(l,p)A\yA;(z)

+AcTOATT (1, Y AL(O+ALT (OTTAL (1)
—AT (AT (1, pEOFNE T (L, p)AV AL (1)

+HT (A H(AL)

+

e (k7 (1)

1 T T T
—l—mA; OATT (1, p)QQTT, p)AAL()

1
52
= lAf:T(o(AFT(l Y

: :

+—ATOATT (1, p)EETT U, pAAL (D)

—ATT(1, p)EOFHE"T (1, p AW
+Y" 01, p) A=W ATT (1, p)EOF()E T (1, p)A
+202WT AT (1, p)EOF(NET T (1, p) AW2IT

1

ATT (1, p)Q T (1, p)A
2y2

+

+555 AT (L P)EETT (L p)A) AL ()
<0. (41)

Therefore, ¥ and A satisfying (38) can guarantee that the
V(t) in (39) is a solution to (29). Hence, the NHFTCPS in
Definition 2 can be satisfied by the proposed CIFTC system
for turbofan engines.

The proof is completed.

Remark 10: To obtain the key matrices A and W of the
nonlinear robust fault-tolerant controllers in (27) and (28),
we define a symmetric positive definite symmetric matrix
A=Alanda square matrix U = AWA~!. The inequal-
ity (38) is multiplied by A both the sides, which can be written
as

Ax(38)x A
=T"(1, pYA-TT(1, p)EOF(OE T, p)¥
+Z\TTF(1,p)—\izTrT(l,p)E@}(z)ETr(l,p)
+20297T7 (1, p)EOFE T (1, p) ¥

1 S
+2—2FT(1,p)QQTF(1,p)+2Al'IA
1
1
—rTa,pze’rq,
to5 (1, p) (1, p)
<0. (42)

According to Schur complement lemma, (42) can take the
form of (43), as shown at the bottom of the next page.
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TABLE 3. The detail hyper-parameters of the CNN diagnosis model.

Layer type Parameters setting Output Shape Parameter amount
Input layer [batch, 75, 10] [batch, 75, 10 0
Convolution layer 1 Filter = [6, 32], padding = "same’, strides = 1, activation = 'ReLU’ [batch, 75, 32 1952

Max-Pooling layer 1 Pooling size = 4, padding = "valid’, strides = 1
Convolution layer 2
BatchNormalization
Max-Pooling layer 2 Pooling size = 4, padding = "valid’, strides = 1
Flatten layer to 1-D shape
Dense layer

Softmax output layer Softmax activation function

Filter = [4, 64], padding = "same’, strides = 1, activation = 'ReLU’
Axis = -1, epsilon = 106, momentum = 0.9, training = "True’

128 hidden layer neuron nodes, activation = "ReLU’

]
]
[batch, 18, 32] 0
]
]

[batch, 18, 64 8256
[batch, 18, 64 256
[batch, 4, 64] 0
[batch, 256] 0
[batch, 128] 32896
[batch, 6] 774

where
O1(A, W) =TT (1, p)YA+AY'T(1, p)
—UTrT(1, p)EG;()E"T(1, p)
-’71, p)E6;(HET(, p)¥,
01 =TT, paal (1, p),
0s = /T7(1, PEETT(, )
04 = V211,

and (*) denotes the symmetric term.

VI. SIMULATION RESULTS

In this section, the effectiveness of the proposed CIFTC sys-
tem is verified for turbofan engines. The diagnosed and con-
trolled object is the component level model of the dynamic
dual spool high bypass engine JTOD in T-MATS provided by
NASA Glenn Research Center. The operation condition of
the engine model JTOD is set as follows: gas path flow W =
639.89 pps, enthalpy ht = 130 BTM/Ibm, total temperature
Tt = 448.46 degR, total pressure Pt = 5.528 psia and ambi-
ent pressure Pamb = 3.626 psia. To monitoring the engine
operation, the GToMFI database is employed for training and
verifying the CNN diagnosis model. The total number of the
GToMFI data samples is 95375, among which 16625 samples
are corresponding to the label Ly, 15750 samples are corre-
sponding to the label Ly, 17500 samples are corresponding
to the label L,, 10500 samples are corresponding to the
label L3, 17500 samples are corresponding to the label L4, and
17500 samples corresponding to the label Ls. 70% of these
samples (66762 samples) are randomly selected as training
samples, and the remaining samples (28613 samples) are used
as test samples. The nature of solving the system is to use

TABLE 4. The accuracy, loss and training time of the MLP, BLSTM, and
CNN diagnosis models.

Method Training Training Testing Testing Training
accuracy loss accuracy loss time
MLP 67.39% 0.7546 66.78% 0.7615 14103 s
BLSTM 86.11% 0.3582 85.97% 0.3900 246318 s
CNN 95.21% 0.1127 93.77% 0.1560 13828 s

CNN to approximate the characteristics between the GToMFI
data and the actuators in all fault modes, so as to realize the
fault diagnosis of the turbofan engines with actuator faults.
The detailed hyper-parameters of the CNN diagnosis model
are shown in Table 3. The simulation platform is Python
installed on a personal computer with a 64-bit Windows
10 system of Intel(R)Core(TM) i5-7400 CPU@ 3.00 GHz
with 8 GB RAM.

For comparison purposes, two other diagnosis approaches,
multi-layer perceptron neural network (MLP) [54] and bidi-
rectional long short-term memory networks (BLSTM) [55]
have been given. The MLP neural network adopts the struc-
ture of two hidden layers, with the learning rate 0.0001,
the optimization function Adam, and the hidden layer neuron
numbers 128 and 32. The BLSTM network with the learning
rate of 0.0005 has three hidden layers with 16 and 16 hidden
neurons in the first two hidden layers, and 128 hidden neurons
in the dense layer of the third layer. The comparison of the
accuracy and loss of the three methods are shown in Fig. 7.
Table 4 shows the accuracy, loss, and training time of the three
diagnosis models. The results of the comparison show that
the accuracy of the CNN diagnosis model tends to be stable
after about 100 training epochs. Although there are still some
small fluctuations in the later stage, the training accuracy is

O1(A, V) (%)
0, _2y2]2np
03 02np
00;OETT, PV Ogxanp
04]\ 02p
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TABLE 5. Relevant parameters of the nonlinear fault-tolerant controllers.

Actuator fault Au s Label dA);J or $}n3 1 0 2 52 Aue
Lwfg e (—0.5,0] Lo $pt=0 0.159112 0.005 0.01 0 AayLo
Auw f €[—0.95,—0.5] Ly $pt=-05 0.0041;5 0.002 0.01 0.01 Ault
Avsvd € (—0.5,0] Lo ¢4 =0 0.1591;5 0.005 0.01 0 Aulko
Avsv} € (—1,-0.5] Lo ¢?;’2:70.5 (2.512 x 10~ 4) 15 2.873 x 10~4 0.01 0.01 Muk?
D fi, € (—0.2,0) x Aw 7 Lo PPt =0 0.159112 0.005 0.01 0 Auko
Awfir e (=0.5,—0.2] x Mw fd Ls Zs}"*l:—oa (2.512 x 1073)I12 1.616 x 10~° 0.01 0.01 Auls
Lwfrr e (—1,-0.5] x Aw 1 Ly Pt==05 0.999115 0.091 0.01 0.01 Akt
AvsvlT€ (0.5, 0] x Avsvlf Lo P2 =0 0.159112 0.0051 0.01 0 Auko
Avsvll € (=1, —0.5] X Avsvly Ls P2 =-05 (2.512 x 1075) 12 2.610 x 10~° 0.01 0.01 Auls
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FIGURE 7. Results the accuracy and loss of MLP, BLSTM, and CNN.

7(a) Responses of the accuracy of the MLP model; 7(b) Responses of the
loss of the MLP model; 7(c) Responses of the accuracy of the BLSTM
model; 7(d) Responses of the loss of the BLSTM model; 7(e) Responses of
the accuracy of the CNN model; 7(f) Responses of the loss of the CNN
model.

95.21% and the test accuracy approaches 93.77%. In contrast,
the MLP network has the poorest diagnosis performance,
and its test accuracy is as low as 66.78%. The accuracy of
the BLSTM network is higher than the MLP network, but
its convergence speed is slowest, and the required training
epochs for convergence is much larger than CNN. In addition,
the training time required for CNN is 13828 seconds, which
is the shortest in the three diagnosis models. Apparently,
the CNN model shows the best diagnosis performance.
Based on the CNN diagnosis model, the stack diagno-
sis model with sf = 4 gives the final fault determina-
tion (the sampling period is 0.04 seconds). In the study,
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FIGURE 8. Results of the closed-loop system in fault-free case in Test 1.
8(a) Responses of the CNN-based diagnosis module; 8(b) Responses of
Anl of the JT9D engine by EFTC, NRC, and CIFTC; 8(c) Responses of Anh of
the JTID engine by EFTC, NRC, and CIFTC. Note that the same controller

Au‘c"’ (t) is adopted by NRC and CIFTC in fault-free case.

the CNN-based fault diagnosis module is implemented on
Python supported by TensorFlow. By using the command
"nlgreyest’ of the System Identification Toolbox in MAT-
LAB, we can obtain the normalized polynomial state-space
model in (44) of the JT9D engine. Based on the engine model,
the vector n(t) = [m () nz(t)]T can be obtained in (45)
by (28) without difficulty. The system matrices of the error
dynamical model of the closed-loop control in (22) are given.
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FIGURE 9. Results of the closed-loop system with Awff = 0.85 in Test 2.
9(a) Responses of the CNN-based diagnosis module; S{b) Responses of
Anl of the JT9D engine by EFTC, NRC, and CIFTC; 9(c) Responses of Anh of
the JT9D engine by EFTC, NRC, and CIFTC.

Hence, the nonlinear fault-tolerant controller for the JT9D
engine with actuator faults are designed in (26) and (27).
Choosing the relevant design parameters for actuator faults
in Table 5 gives the key matrices A and W of the nonlinear
robust fault-tolerant controllers. Therefore, we can obtain the
nonlinear robust fault-tolerant controllers A14£‘0(t)-Au];5 (1)
in (46)—(51). For comparison purposes, the nonlinear robust
controller Aufo (t) in (46) (called NRC) and the fault-tolerant
controller with an estimator [56] in (52), (53), and (54) (called
EFTC) are given, where Ae = [Aéy AE,,;,]T in (52) and
Ay = [Aitf,wf At]f,vw]T in (53) are the estimation of
the tracking errors and actuator faults of EFTC, Augrrc =
[AwaFTC AvstpTc]T in (54) is the control input for the
turbofan engine by EFTC.

To check the control performance for the turbofan engine,
simulation is set as follows: The actuator fault event occurs
at 2.04 seconds; The CNN-based fault diagnosis module
monitors the operation of the turbofan engine in real-time
and the corresponding nonlinear fault-tolerant controller is
scheduled according to the diagnosis results and works lasted
until 40 seconds; A step command is given at 17 seconds;
And the pressure disturbances from Inlet and Burner (d;(¢)
and d,(t)) are shown as follows, which helps to verify the
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TABLE 6. Six tests and results with specific actuator faults.

Test Actuator fault Result
1 Auy =0 Fig. 8
2 Awf‘fl =0.85 Fig. 9
3 Avsvjé =0.85 Fig. 10
(L — m 1
4 Awff = 0.4Awf] Fig. 11
m m 3
5 Awff = 0.85Aw f Fig. 12
6 Avsv}' = 0.85Avsvg” Fig. 13
L
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FIGURE 10. Results of the closed-loop system with Avsv{ = 0.85 in
Test 3. 10(a) Responses of the CNN-based diagnosis moc(ule; 10(b)
Responses of Anl of the JTID engine by EFTC, NRC, and CIFTC; 10(c)
Responses of Anh of the JT9D engine by EFTC, NRC, and CIFTC.

disturbance rejection of the CIFTC system for turbofan
engines after fault occurrence.

0.05(sin(6.280)+R(0, 1))+0.5, 27 <1 <29

di(t) =

1) 0, others,
(e — 0.01(sin(62.80)+R(0, 1))+5, 27 <1 <29
2= 0, others,

where R(0, 1) denotes a random noise with zero mean and
unity variance.

Six tests for the turbofan engine with some specific actua-
tor faults are carried out as shown in Table 6. The simulation
results are shown in Figs. 8—13. Moreover, the comparison
of the control performance of the JT9D engine after actuator
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FIGURE 11. Results of the closed-loop system with Awf{™ = 0.4Awf{" in
Test 4. 11(a) Responses of the CNN-based diagnosis module; 11(b)
Responses of Anl of the JT9D engine by EFTC, NRC, and CIFTC; 11(c)
Responses of Anh of the JTID engine by EFTC, NRC, and CIFTC.

faults is shown in Fig. 14, including rise time 7, (seconds),
settling time #; (seconds), overshoot € (%), the maximum
value xd,;,4 (rpm) and variance xd, (rpmz) of the fluctuation
of the shaft speeds affected by disturbances.

According to Figs. 8—14, four observations can be gener-
alized as follows.

1) In the case of fault-free, the states of the JT9D engine
can track the reference signal by the NRC and CIFTC
strategies with the same controller Auﬁo (t). As shown
in Fig. 8, both EFTC and CIFTC (NRC) can guaran-
tee the stable operation of the turbofan engine in the
case of fault-free in Test 1. Furthermore, compared with
EFTC, the proposed CIFTC strategy can help the JT9D
engine complete the tracking task faster and make it less
affected by disturbances.

2) Over the time interval (0, 17) of Figs. 9—13 shows that in
the event of actuator faults, the states of the JTOD engine
deviated from the ideal operating state instantaneously.
In the occurrence of the faults, the influence of additive
faults on the shaft speeds of the JTI9D engine is more
obvious than multiplicative faults as shown in Fig. 9 and
Fig. 12. In the aspect of fault tolerance, the three control
methods can all maintain the stability of the closed-loop
systems even actuator faults occur. In the CIFTC system,
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FIGURE 12. Results of the closed-loop system with Awf{™ = 0.85Awf{"
in Test 5. 12(a) Responses of the CNN-based diagnosis module; 12(b)
Responses of Anl of the JTI9D engine by EFTC, NRC, and CIFTC; 12(c)
Responses of Anh of the JTID engine by EFTC, NRC, and CIFTC.

the CNN-based fault diagnosis module can provide a
reliable final diagnosis result within 0.2 seconds after the
fault occurs, as shown in Figs. 9(a)—13(a). In addition,
the subfigures (b) and (c) of Figs. 9—13 show that in
the event of actuator faults, the shaft speeds of the JT9D
engine by CIFTC can recover to the ideal state more
rapidly than EFTC. Compared with NRC, the CIFTC
system significantly can reduce the amplitude of
fluctuation of the controlled outputs caused by the actua-
tor faults. Thus, the proposed CIFTC system can weaken
the influences of actuator faults on the JT9D engine.

3) Over the time interval (17, 27) of Figs. 9—13 shows the
effects of the actuator faults on the transient performance
of the JTI9D engine after faults occur. The transient
performance of the JT9D engine is more affected by
multiplicative faults of actuators than by additive faults,
as shown in Figs. 9 and 12. As shown in Figs 11—13,
the CIFTC system can effectively improve the transient
performance of the JTOD engine after the multiplicative
faults occur. The rise time, settling time, and overshoot
are important indexes to reflect the transient perfor-
mance of the closed-loop system. Fig. 14 shows that the
CIFTC system can improve the transient performance
of the JT9D engine in the six tests. Moreover, compared
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FIGURE 13. Results of the closed-loop system with Avsv{" = 0.85Avsv"
in Test 6. 13(a) Responses of the CNN-based diagnosis module;

13(b) Responses of Anl of the JTID engine by EFTC, NRC, and CIFTC;
13(c) Responses of Anh of the JT9D engine by EFTC, NRC, and CIFTC.

with EFTC, the total rise time of the CIFTC system in the
six tests can be shortened by 5.87 seconds and 3.82 sec-
onds, and the total settling time by 12.86 seconds and
13.08 seconds. Compared with NRC, the total overshoot
of the speed of the high-pressure shaft by CIFTC can
be reduced by 15.73%, which is beneficial to reduce the
requirement of high-temperature materials and prolong
the service life of turbofan engines. Hence, the CIFTC
system can guarantee the transient performance of the
JT9D engine after actuator faults.

4) Over the time interval (27, 40) of Figs. 9—13 shows
the influence of actuator faults on the JT9D engine in
terms of disturbance rejection after faults occur. Com-
pared with NRC and EFTC, the CIFTC system can sup-
press the influence of external disturbances on the JT9D
engine. In Fig. 12, the disturbance rejection of CIFTC is
superior to EFTC and NRC significantly. The maximum
value and variance value of the fluctuation caused by
interference are used to reflect the ability of disturbance
rejection of the closed-loop control systems. Further-
more, in Fig. 14, compared with the other two systems,
the CIFTC system can keep the maximum value of the
fluctuations of the controlled outputs as 8.72 rpm and
8.78 rpm, which are 84.2% and 89.0% lower than EFTC,
respectively. The states controlled by CIFTC is with the
smallest variance values of the fluctuation in the three
closed-loop control systems, which means the proposed
CIFTC can quickly restore the states at the ideal level
after disturbance. Accordingly, the CIFTC system can
improve the control performance of disturbance rejec-
tion for the JTID engine after actuator faults occurrence.

VII. CONCLUSION

This paper dealt with the fault-tolerant control problem of
turbofan engines with actuator faults. Aiming at actuator
faults, we designed a CIFTC system for turbofan engines
including the CNN-based fault diagnosis module and the non-
linear fault-tolerant controller. The CNN-based fault diagno-
sis module is to extract the fault information from the valuable
gas-path data, which can provide fault parameters for the
design of the fault-tolerant controller. According to the fault
parameters, the nonlinear robust fault-tolerant controller is
adjusted to ensure the stability and satisfy the L, gain-like
performance of the closed-loop control system for turbofan
engines. Simulation results are presented to illustrate the
effectiveness of the proposed CIFTC strategy. Similar to other
work [57], [58], the dimensionality considered in the paper is
reasonable for the design of the fault-tolerant control system
for turbofan engines. In future work, the proposed method
will be applied for turbofan engines with higher dimensional-
ity. Meanwhile, when the actuator fault is more complex, for
example, with saturation and time-varying delay, the design
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FIGURE 14. Comparison of the control performance of the JTID engine after actuator faults occurrence by EFTC,

NRC, and CITFC in Tests 1-6.
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of fault-tolerant control is more challenging and the problem
deserves further study. In addition, the engineering applica-
tions of the control scheme presented in this paper will form

part of our further research.

APPENDIX
The polynomial state-space model of the turbofan engine is
given by (44).
dAnl
dt” = —2.522Ani+1.094Ank+0.326 Ani>

—0.045Anh*+0.393 Ani3+0.094 Ank?
+0.851 Awf+0.286 Avsv—0.0784,
—0.005d,

dAnh 2
= 1.570Anl—4.410Anh—0.596 Anl

+0.035Anh?40.124 Anl?—0.063 Ank®
+2.074Awf —0.741 Avsv—0.202d,
+0.241d,

(44)

The vector n(t) = [m(t) nz(t)]T of nonlinear robust fault-

tolerant controllers is given by (45).

n(t) = —1.160Anl—0.368 Anh-+0.337 Ani?
—0.019Anh*>40.267 Anl*+0.042 Anh?
+1.160Ae,+0.368 Ae,—0.337Ae?,
+0.019A¢2,—0.267Ae’,—0.042 ¢,
—0.606 A —0.233 A,

m(t) = —5.366 Anl+4.921 Anh-+0.138 Anl?
—0.101 Anh?4-0.580Anl*+0.203 Anh?
+5.366Aen—4.921 Ae,—0.138 A2,
+0.101A¢2,-0.580A¢3,—0.203A¢3,

—1.695 A7 +0.695 Aty

(45)

The nonlinear robust fault-tolerant controllers of CIFTC

for the JT9D engine are given by (46)~(51).

AwfH (1) = =27.551A0,1—9.795 Ac—n1 (t)
—16.640A¢,,—5.817Aeyy—0.058 Ae?,
+0.019A¢2,—0.267Ae’,—0.043A¢3,

AvsvE(£) = —73.332A0,+33.848 Ac—na(t)
—42.193 Aey+17.055Ae,,—0.967Ae?,
+0.100A¢2,—0.580A¢2,—0.204Ae?,

AwfH (1) = —28.333 A0, —16.962 Aa,n—n1 (1)
—17.118 A€y —9.712Ae,,—0.060A €2,
+0.019A¢€2,—0.269A¢3,—0.043Ae,
+0.5

AvsvE (1) = —63.855 A0, +31.012 A0, —n2(f)
—37.181Aey+15.477Aey—0.974A¢2,
+0.101Ae2,—0.585A¢2,—0.205A¢;,
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(40)

(47)

AwfP (1) = —33.264A0,—13.980 Aoy —n1 (1)
—19.636A¢,,—7.991 Ae,,—0.058 Ae?,
+0.019A¢2,—0.267Ae’,—0.043A¢3,

AvsvE2 (1) = —86.155A0,+39.192A0—na(t)  (48)
—49.071Aen+19.750Ae,—0.967Aé?,
+0.100A¢2,—0.580A¢’,—0.204Ae?,
+0.5

AwfP (1) = —49.173 A0, —17.360 A, —1.257: (1)
—28.591Ae,—10.109A¢,;,—0.073A¢?,
+0.024Ae?,—0.333Ae3,—0.053Ae,

AvsvE (1) = —107.282A0,+47.882 Ao —1a (1)
—60.165Aey+24.372 A, —0.966 A,
+0.100A¢2,-0.579A¢3,—0.204Ae,

(49)

AwEH (1) = —107.421 Aoy —16.386 Aoy —2n1 (1)
—77.601Aey,—30.362Aey—14.779 A2,
+2.698 Ae?,—29.485A¢3,—5.807 Ac3,

AvsvE (1) = —25.322 A0, +16.342 Aay—n (1)
—16.435Ae,+7.024 Ae—4.113 A€,
+0.689A¢2,—7.104Ae3,—1.472 A€,

(50)

AWED (1) = —42.181 Aoy —15.784 Aoyn—n1 (1)
—24.559 Ae,—9.045Ae,—0.058 Ae?,
+0.019A¢2,-0.267Ae’,—0.043Ae?,

AvsvE () = —226.099 A0y+100.769 Ao, —21(1)
—127.731Aey+51.907 Aeyy—1.932A¢2,
+0.201Ae2,—1.158 Ae3,—0.407Ae,

51)

The estimator of EFTC for the JTI9D engine is given by (52)
and (53).

Aén(t) = —2.522 A2, +1.094A2,,+0.326 A2,
—0.045A82,+0.393A23,—0.094A23,
+0.851 Awfgrrc (£)+0.286 AvsvErTc ()
+0.851 Aty £ (1)+0.286 Altygy £ (1)
+6.478(Aep—Aep ) +1.094( Aeuy—Aeny)

Aéu(t) = 1.570A8,—4.410A2,,—0.596 AZ,
+0.035A2%,40.124A&>,—0.063AZ,
+2~074AWfEFTC (1)—0.741 Avsvgrrc (1)
+2.074 Altyg £ (£)—0.741 Aliygy £ (1)
+1.570(Aep— A& )+10.590(Aepp—Aéyp)

Aty £ (1) = TA.817(Aen—Aey)
+12.636(Aenp—An)

Aitysy (1) = 18.134(Aeny—Aéy)
+122.312(Aepn—Apy)

(52)

(53)
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The nonlinear fault-tolerant controller of EFTC for the JTOD
engine is given by (52).

Awfeprc(t) = 0.569A&,+0.998 AZ,;,—0.058 A&2,
+0.019A82, —0.267 A3, +0.043A23,
—0.606 Aty £ (1)—0.234 Aitygy £ (1)
AvsvEprC(t) = 5.372A8,—2.482A%,,—0.966AZ2,
+0.100A&2,—0.579A&},—0.204AZ,
—1.694 Aityyr £ (1)40.695 Altygy £ (1)

(54)
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