
Received January 20, 2021, accepted January 30, 2021, date of publication February 10, 2021, date of current version April 1, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3058328

Very Large-Scale Neighborhood Search for Steel
Hot Rolling Scheduling Problem With Slab
Stack Shuffling Considerations
YARONG SHI AND SHIXIN LIU , (Member, IEEE)
The State Key Laboratory of Synthetical Automation for Process Industries, College of Information Science and Engineering, Northeastern University, Shenyang
110819, China

Corresponding author: Shixin Liu (sxliu@mail.neu.edu.cn)

This work was supported in part by the National Key R&D Program of China under Grant 2017YFB0304201.

ABSTRACT We study a steel hot rolling scheduling (HRS) problem considering slab stack shuffling (SSS),
which is a kind of key issues in the steel strip production. The HRS problem is to select suitable slabs
for a predefined sequence of hot rolling slots, from their respective candidate slab sets so that the number of
shuffling operations of slabs is minimized. Different from the most researches, we consider a situation where
there are intersections among candidate slab sets and shuffled slabs will not return original stacks. Basing on
a special index method of slabs, we present an integer linear programming (ILP) to compute approximation
solutions of the problem. In order to improve the solutions obtained by the ILP model, we propose a
very large-scale neighborhood (VLSN) search algorithm. In the VLSN search process, the solutions of
HRS problems are improved by an iteration procedure that partial solutions are interactively destroyed and
repaired. In each iteration, partitioned hot rolling slots correspond to a sub-problem. In the repair operations,
we propose an efficient branch-and-bound algorithm for solving sub-problem. The computational results on
a number of different scale simulated instances show that the VLSN search algorithm is efficient for solving
this kind of HRS problems.

INDEX TERMS Branch-and-bound algorithm, local search, steel hot rolling schedule, slab stack shuffling,
very large-scale neighborhood search.

I. INTRODUCTION
The steel hot rolling scheduling (HRS) is one of key tasks in
operation management of steel production processes, which
has an important impact on product quality and production
efficiency of hot rolling processes. The HRS problem is a
complex combinatorial optimization problem. It rises from
an industrial problem where many practical constraints must
be considered and thus hard to solve. Therefore, it has been
studied extensively.

In early studies, the HRS problem was mainly con-
verted into a kind of traveling salesman problems (TSP)
or vehicle routing problems (VRP) to solve. The travel
cost between nodes in the TSP/VRP corresponds to the
penalty value on changes for the product width, thickness
and hardness between pieces continuously rolled in the

The associate editor coordinating the review of this manuscript and

approving it for publication was Hisao Ishibuchi .

hot rolling plan [1]–[3]. Pan et al. [4] considered multi-
objective hot-rolling scheduling problems contain minimiz-
ing virtual sheet-strips and change times of the thickness
at same time maximal changes in thickness between adja-
cent sheet-strips. Pan and Yang [5] took into account order
delivery time, production capacity besides penalty values
and proposed a variant of column generation algorithm to
solve the problem. Witt and Voß [6] established a nonlinear
optimization model for the HRS problem with minimizing
makespan as optimization objective, and designed a paral-
lel genetic algorithm to solve the problem. Lyu et al. [7]
studied continuous casting and HRS problems, established
a mixed integer programming model and proposed a heuris-
tic algorithm to solve it. Zhao et al. [8]–[10] consider hot
rolling scheduling problems for wire rod and bar products
and propose two-stage decomposition method [8], iterated
greedy algorithms [9] and memetic algorithms [10] to handle
them. Zhang et al. [11] and Chen et al. [12] both studied hot

47856 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-6440-8342
https://orcid.org/0000-0002-3404-9297
https://orcid.org/0000-0001-9186-6472

Y. Shi, S. Liu: Very Large-Scale Neighborhood Search for Steel Hot Rolling Scheduling Problem

rolling batch scheduling problems. Zhang et al. determine a
sequence of the sheet strips with the objective of minimiz-
ing average thickness change and proposed a hybrid vari-
able neighborhood search algorithm to solved the problem.
Chen et al. decomposed the problem into a two-stage prob-
lem to solve. In the above researches, shuffling cost of slabs
is not taken into account when slabs are charged into the
furnace.

The operation efficiency of slab yard has a great impact
on the production cost of hot rolling process. It is neces-
sary to optimize the operation management that through hot
rolling scheduling to reduce shuffling cost of slabs. In recent
researches, some scholars begin to study HRS optimization
considering slab stack shuffling (SSS). Tang et al. [13] estab-
lished a nonlinear integer programming model for an HRS
problem considering SSS and proposed a genetic algorithm.
They assumed an ideal case that there is no intersection
among candidate slab sets. Sing et al. [14] put forward an
improved parallel genetic algorithm on the same problem.
Wang et al. [15] proposed a two-stage heuristic for an HRS
problem with SSS. Ren and Tang [16] established a nonlinear
integer programming model for HRS problems with SSS
considering crane capacity and converted the nonlinearmodel
into a linear one. Different from existing studies, in this
paper we study HRS problems considering SSS where there
are intersections between candidate slab sets, and it is no
need to put the shuffled slab back in place. To solve the
problem, we establish an optimization model and propose a
very large-scale neighborhood (VLSN) search algorithm.

The VLSN search algorithm was first proposed by
Shaw et al. [17]. As a kind ofmetaheuristic, the VLSN search
algorithm improves a solution by interactively destroying
and repairing current feasible solutions. The VLSN search
algorithm has been successfully applied to multiple com-
binational optimization problems. Breunig et al. [18] and
Chen et al. [19] used the VLSN search algorithm to solve
VRP. Sinclair et al. [20] implemented the VLSN search
algorithm for an integrated aircraft and passenger recovery
problem. Yu et al. [21] and Yagiura et al. [22] used this algo-
rithm to solve assignment problems. Majid et al. [23] used
this algorithm to solve supply chain network design prob-
lems. Brueggemann and Hurink [24] used this algorithm to
solve a parallel machine scheduling problem. Guo et al. [25]
and Fanjul-Peyro and Ruiz [26] used this algorithm to solve
parallel machines scheduling problem. M. Zenker et al. [27]
andGuo et al. [28] applied the VLSN search algorithm to rail-
road container terminals. In this paper, we apply the VLSN
search algorithm to solve an HRS problem.

The main contributions of this paper include the following
two parts: 1) We propose a special index method of slabs.
By using it, the number of shuffles for selected slabs can be
minimized by indirectly minimizing the sum of their serial
numbers. In this way a hard procedure for calculating the
number of shuffles can be avoided. 2) Based on the above
idea, we establish a simplified integer linear programming
(ILP) model that can approximately solve an HRS problem.

This model can be optimally solved very fast by solving
its linear relaxation since its constraint matrix is a totally
unimodular matrix. 3) Taking the solution obtained by ILP
model as an initial one, we propose a VLSN search algorithm
to improve it in which a branch and bound (BAB) procedure
is applied as a repairing process. We conduct extensive exper-
iments to evaluate the proposed algorithm. The results show
that the algorithm has great performance. Its high accuracy
and fast speed imply its good potential to be used in practice.

The remaining part of this paper is organized as follows.
Section 2 provides notations and an integer linear program-
ming (ILP) model of the HRS problem. In Section 3, we pro-
pose a local search (LS) algorithm and a VLSN search
algorithm. Section 4 presents the computational experiment
results. In Section5, we summarize the research.

II. PROBLEM DESCRIPTION AND MATHEMATICAL
MODEL
A. PROBLEM DESCRIPTION
In a practical production process, there are four linkage
modes between steelmaking-continuous casting process and
hot rolling process, which are continuous casting - cold
charge rolling (CC-CCR) mode, continuous casting - hot
charge rolling (CC-HCR) mode, continuous casting - direct
hot charge rolling (CC-DHCR) mode, and continuous casting
- hot direct rolling (CC-HDR) mode [29]. Except for CC-
CCR linkage mode, in the other three linkage modes the slabs
do not need to shuffling operation. Therefore, in this paper,
we consider CC-CCR linkage mode only, means that all slabs
in an HRS problem come from a slab yard.

An HRS problem consists of N ordered rolling slots. A slot
i (i = 1, . . . ,N) corresponds to a set Ci of candidate slabs
from which we can select one slab for slot i. Slabs at the
same rolling slot are similar in physical properties and order
delivery date. Note that Cl ∩ Ck 6= ∅, 1 ≤ ∃l, k ≤ N , l 6= k .
AnHRS problem is to select a slab for each slot i fromCi so as
tominimize the number of shuffled slabs during the execution
of hot rolling schedule. For an HRS problem including N hot

rolling slots, the number of feasible solutions is about
N∏
i=1
|Ci|,

which grows exponentially with size of problems.
Slabs pile on stacks whose locations are fixed in a slab

yard. Let s (s = 1, · · · ,S) denote a slab, j (j = 1, · · · ,P)

denote a stack, andNs be the set of slots in which slab s can be
applied. The number of slabs piled on stack j is called height
Hj of stack j. We number the slabs as following rules. The
serial numbers of the top-level slabs are from 1 to P, then the
serial numbers of the second top level slabs are from P+ 1 to
2P, and so on. The level of slabs in stackj counts from the top
to the bottom, so that the level of top slab is 1, and the level
of bottom slab is Hj. Lets = f (j, h) be slab number whose
level is h in stack j.
During execution of hot rolling schedule, selected slabs

are charged into reheating furnaces according to the rolled
order to be heated to a specific temperature. Only the top
slabs in stacks are allowed to be charged. If a target slab is

VOLUME 9, 2021 47857

Y. Shi, S. Liu: Very Large-Scale Neighborhood Search for Steel Hot Rolling Scheduling Problem

not at the top of stacks, all the blocking slabs above it must
be moved to a buffer area. Removing a slab into the buffer is
called one shuffle. Shuffling operation is unproductive and
occupy production resources. Shuffling operation not only
increases crane workloads, but also increases the time of hot
rolling processes such that is a bottleneck of the process. So,
minimizing the number of the shuffled slab is taken as the
optimization objective whenwe solve the HRS problems. The
slabs in the buffer area will not bemoved back to their original
stacks and can be directly charged into heating furnaces
without shuffles.
Example: We consider a small instance with N = 8 hot

rolling slots, P = 6 stacks, and S = 37 slabs, as shown
in Fig. 1. In Fig. 1, each box represents a slab. Grey boxes
indicate candidate slabs. White boxes indicate slabs that are
not involved in the schedule but may be shuffled. Slash
boxes indicate slabs that are not involved in the schedule
and cannot affect execution of the schedule. For example,
C1 = {1, 9, 19} is the set of candidate slabs for hot rolling
slot 1. N9 = {1, 7} is the set of slots which slab 9 can be
applied in. The height of stack 1 is H1 = 4.

FIGURE 1. An instance of an HRS problem.

Table 1 presents a feasible solution of the instance.
In Table 1, the row label ‘‘slot’’ represents hot rolling slot
number, ‘‘selected slab’’ represents the selected slab number,
and ‘‘shuffles’’ represents the number of shuffles for selected
slabs. In this solution, we select slab f (1, 1) = 1 for slot 1,
and it can be charged directly without shuffle. We select
slab f (3, 3) = 15 for slot 2. To charge slab 15, it needs to
2 shuffles that slabs 3 and 9 must be moved to the buffer
area firstly. We select slab f (3, 1) = 3 for slot 3, and it do
not need shuffle anymore since slab 3 has been moved to the
buffer area. By analogy, we calculate the number of shuffles
for the remaining selected slabs. The total number of shuffles
for executing the schedule is 2+ 4+ 5 = 11.

TABLE 1. A feasible solution X1 for the instance.

B. MATHEMATICAL MODEL
We have established a mathematical programming model
for the problem. The parameters and decision variables are
defined as follows.

1) PARAMETERS
Ds The number of slabs upon slab s in original

slab yard
ϕ(s) stack that slab s is in

2) DECISION VARIABLES

xis =

{
1, if slab s is selected for slot i
0, otherwise

3) MATHEMATICAL MODEL

min
N∑
i=1

∑
s∈Ci

Nis × xis (1)

∑
i∈Ns

xis ≤ 1, s = 1, · · · , S (2)

∑
s∈Ci

xis = 1, i = 1, · · · ,N (3)

Nis = Ds −

i−1∑
k=1∑

n∈{m |ϕ(m)=ϕ(s)}

min {1,max {Dn − Dk , 0}} xkn,

i = 1, · · · ,N, s = 1, · · · ,S (4)

xis ∈ {0, 1}, i = 1, · · · ,N, s = 1, · · · ,S (5)

Nis ∈ Z , i = 1, · · · ,N, s = 1, · · · ,S (6)

where, the objective function (1) minimizes the number of
shuffles. Constraints (2) guarantee that each slab is assigned
to at most a hot rolling slot. Constraints (3) guarantee that
each hot rolling slot selects exactly one slab from its candidate
slab set. Constraints (5) denote that if slab s is selected for the
ith hot rolling slot, the number of shuffles is dependent on the
selected slabs for the previous (i−1) hot rolling slot which is
in the same stack with slab s [13]. Constraints (4)-(6) provide
value domain of variables. The model is complex and hard to
solve.

C. THE ILP MODEL FOR APPROXIMATION OPTIMIZATION
According to the rule which we number slabs, the num-
ber for involved slabs in HRS problems satisfy that
max
1≤j≤p
{f (j, h)} < min

1≤j≤p
{f (j, h+ 1)}, h = 1, 2, . . . ,max{ (

Hj − 1
)
|1 ≤ j ≤ P

}
, as shown in Fig. 1. Basing on the

index method of slabs, it can be seen that the closer slabs are
to the top of stacks, the smaller slab numbers are, and the less
slabs shuffled will be. Therefore, the number of shuffles for
selected slabs is indirectly reduced by minimizing the sum of
serial numbers for selected slabs. Based on this observation,
we propose the following ILP model for approximatively

47858 VOLUME 9, 2021

Y. Shi, S. Liu: Very Large-Scale Neighborhood Search for Steel Hot Rolling Scheduling Problem

solving the HRS problem, which can effectively avoid the
complex shuffling constraints.

ILP : min
N∑
i=1

∑
s∈Ci

s× xis (7)

s.t.
∑
i∈Ns

xis ≤ 1, s = 1, · · · ,S (8)

∑
s∈Ci

xis = 1, i = 1, · · · ,N (9)

xis ∈ {0, 1}, i = 1, · · · ,N, s = 1, · · · ,S

(10)

where, the objective function (1) minimizes the sum of serial
numbers for selected slabs. Constraints (8)-(9) are same with
constraints (2)-(3).

The ILP model is a classic assignment problem whose
constraint matrix is a totally unimodular matrix. So, optimal
solutions of ILP model are the same as optimal solutions
for linear relaxation of ILP model. Therefore, ILP model
is easy to solve and can be used to quickly generate an
approximate optimal solution. Table 2 presents a solution X2
for the instance in Fig. 1 through solving ILP model with
CPLEX. The objective value of solution X2 is 6.

TABLE 2. Solution X2 of ILP model for the instance.

III. HEURISTIC ALGORITHMS
In this section, we propose two heuristics for the HRS prob-
lem. One is a local search (LS) algorithm, the other is a VLSN
search algorithm.

A. THE LS ALGORITHM
We use LS algorithm to solve the HRS problem, which is a
common search method in engineering. In the LS process, let
X denote a solution and X cur denote a current solution of the
HRS problem, X [i] be the selected slab number for hot rolling
slot i in X , and � (X) = {s | s = X [i] , i = 1, · · · ,N }. Let
cost (X) be the objective value of solution X . Starting from
the current solution X cur , each operation creates a neighbor
solution X by reselecting a candidate slab for hot rolling slot
i from the set Ci. Compared cost (X cur) and cost (X), if an
improving solution X is found, the current solution X cur is
replaced by X . The search traverses candidate slab sets of all
the hot rolling slots, stopping when none of the neighbors can
improve the current solution. Fig. 2 shows a search operation
for solution X2 of the instance in Table 2. The procedure of
the LS algorithm is as follows.

FIGURE 2. A search operation of LS.

Algorithm 1 The LS Procedure: LS (X)

Step 1: Get an initial solution X solving ILP model,
X cur = X , let flag improved = true

Step 2: while (improved) do
improved = false;
For i = 1 to N do

For s ∈ Ci do
If s /∈ � (X cur) Then

X [i] := s;
If cost (X) < cost(X cur) Then

X cur [i] := s,;
improved = true

Else
X [i] := X cur [i]

Step 3: Return X cur

B. THE VLSN SEARCH ALGORITHM
The VLSN search algorithm is based on the observation that
searching a large neighborhood results in finding local optima
of high quality. Starting from an initial feasible solution,
the VLSN search algorithm iteratively improves the current
solution by using destruction and reconstruction operations
until the termination conditions are met. In the destruction
operation, the algorithm releases some decision variable val-
ues in the current solution and retains the remaining variable
assignments. In the reconstruction operation, the algorithm
uses a specially designed procedure to reassign the remained
variable values.

The proposed VLSN search algorithm starts from a feasi-
ble initial solution X . At every step, we release k hot rolling
slots to reassign candidate slabs and the neighborhood is
composed of all feasible assignments to released k hot rolling
slots, while the selected slabs have been fixed for the remain
N−k hot rolling slots. Then wemake use of a BAB algorithm
to optimally reassign slabs to these released hot rolling slots
forming a neighboring solution Xnew. If the chosen neighbor-
ing solution has a lower cost of objective function than the
current one, it becomes the new current solution. We set the
number of iterations, stopping until exceeds the predefined
limit. Fig. 3 shows a search operation for solution X2 of
instance in Table 2 and the neighborhood structure of the
VLNS. Let subk denote the sub problem involving k released

VOLUME 9, 2021 47859

Y. Shi, S. Liu: Very Large-Scale Neighborhood Search for Steel Hot Rolling Scheduling Problem

FIGURE 3. A search operation and neighborhood structure of VLNS.

hot rolling slots forming a set Bsubk , and Xsubk denote the
optimal solution of subk . All other symbols have the same
meaning as described above. The procedure of the VLSN
search algorithm is as follows.

Algorithm 2 The VLSN Search Procedure: VLSN (X , k)

Step 1: Initialize parameter k ,
maxUnsuccess = N − k , count = 0.
Get an initial solutionX using ILP model,
X cur = X .

Step 2: while (count ≤ maxUnsuccess) do
a. Based on X cur , release k hot rolling;
slot assignments to get a sub problem subk . ;
b. Solve subk by the BAB algorithm to;
get its optimal solution Xsubk . ;
c. Combine X cur and Xsubk to get a;
new complete solution Xnew.;
If cost (Xnew) < cost(X cur) Then

X cur := Xnew, count = 0
Else

count++
Step 3: Return X cur

In the following, we describe the destruction operators and
reconstruction operators in details.

1) DESTRUCTION OPERATOR
For the HRS problem, destruction operator is to randomly
release k hot rolling slots and reselect slabs for them. The
operation is a key factor in the VLNS algorithm that the
number of released hot rolling slots determines both the size
of the neighborhood and the scale of subproblems.

2) RECONSTRUCTION OPERATOR
BAB algorithm is an exact methodwhich is frequently used to
solve combinatorial optimization problems [30], and we use
it to solve a sub-problem subk . The BAB algorithm adopts
depth-first search strategy and the maximum depth of the
tree is k . During the solving procedure for subk , the objective

FIGURE 4. A BAB tree of solving a sub-problem.

TABLE 3. A new solution X3 for the instance.

TABLE 4. The parameters of test instances.

function value of nodes equals to the number of shuffles for
reassigned slabs in the sub-problem and selected slabs in the
main problem. Because if reassigned slabs for released hot
rolling slots in sub-problem locate in same stack as selected
slabs for retained hot rolling slots in the main problem, it will
change the number of shuffles for the selected slabs. Since the
current solution is feasible before the destruction operator is
applied, we take the objective function value of the current
solution as the upper bound (UB) of the BAB algorithm.

The BAB solution tree contains k + 1 levels. Level 0
represents the virtual root. Each level l(l = 1, 2 · · · , k)
corresponds to a slot in subk and each node denotes a can-
didate slab. Based on the index method of slabs in section
2.1, we state that the smaller the selected slab serial num-
ber is, the less number of shuffles for slabs. Therefore, the
branched nodes are sorted for each node in non-decreasing
order according to serial number of slab that the tree will be
pruned earlier in the BAB process.

There are two rules to prune branches in the search tree.
The one, comparing withUB, we prune the branches in which

47860 VOLUME 9, 2021

Y. Shi, S. Liu: Very Large-Scale Neighborhood Search for Steel Hot Rolling Scheduling Problem

TABLE 5. Computational results of the VLNS search algorithm with different size sub-problems.

TABLE 6. Comparison of the CH, ILP, LS and VLNS search algorithms.

the total number of shuffled slabs of assigned slots is bigger
than UB. The other one is that branched slabs have been
occupied by other slots, which means that we cannot find a
feasible solution. For subk , a k + 1-level tree can be formed
containing

∏
i∈Bsubk

|C i| nodes at most by a BAB algorithm.

In each operator, both the scale of selected subproblem and
the capacity of the candidate slab set for each hot rolling
slot are small, therefore, the BAB algorithm is efficient for
solving subproblems.
Example: We randomly select hot rolling slot 1, 3 and

8 to form a sub-problem of the instance in Section 2.1.
Fig. 4 shows a BAB tree of the sub-problem. The current solu-
tion is X1 in Table 1, namely UB = 11. In Fig. 2 each node
h(h = 1, 2, · · ·) shows a branching status, the currentUB and
the cost of the node Bh, where ‘‘i’’ represents slot number
and ‘‘s’’ represents slab number. There are 4 levels in the
tree, where level 0 is virtual root as node 0 and the other
three levels correspond to hot rolling slot 1, 3 and 8 in turn.
The BAB algorithm starts from node 0, which is branched
into three nodes, namely node 1, node 2 and node 3, each of
which denotes a candidate slab for hot rolling slot 1 in level 1.
According to selection strategy, we selected node 1 denoting
the smallest number slab in set C1. By depth-first search
strategy, since B1 < UB, node 1 can further be branched into
two nodes, namely node 4 and node 5. Since node 4 contains
a smaller number slab in set C3 and B4 < UB, node 4 is
branched into node 6, node 7 and node 8 in turn, all of which
are leaf, and the corresponding objective function values are
B6 = 7, B7 = 6 and B8 = 10. The node 7 has the minimal
objective function value B7 = 6, so we update UB = B7 = 6

and prune node 8. We traverse all the nodes forming the path
0−1−5, 0−2 and 0−3 in turn by backtrackmethod, all which
are pruned since B5, B2, B3 ≥ UB. As shown in Fig. 2, dotted
line indicates the whole depth-first search procedure. Since
the minimum objective value is 6(cost (X1) > 6) in the sub
-problem, we can conclude that slab 1, 3, 20 are respectively
selected for slot 1, 3, 8 in sub-problem to repair X1forming a
new solution X3 as shown in Table 3 and the objective value
is 6.

IV. COMPUTATIONAL RESULTS
In this section, we report our computational results of ILP
model, the LS algorithm and the VLSN search algorithm. All
the computational experiments were conducted on a desktop
computer with 4 GB of RAM, the Windows 10 Professional
64-bit operating system, and an Intel Core i5 processor with
four 3.3 GHz cores. Algorithms are implemented in C++
using CPLEX 12.61 and compiled with the Visual Studio
2013 C++ compiler. For all instances, the run time limit is
set to 3,600 seconds for CPLEX solver.

A. INSTANCE GENERATION
In order to test the performance of the proposed model and
algorithms, we generated 7 sets of instances simulating prac-
tical situations, each of which includes 10 instances. TheHRS
problems vary by the following parameters: the number of
hot rolling slots(N), the number of stacks (P), the height of
stacks (Hj, j = 1, . . . ,P), and the capacity of candidate slab
sets(|Ci| , i = 1, . . . ,N). In our experiments, the parameters
of each instance set are shown in Table 6.

VOLUME 9, 2021 47861

Y. Shi, S. Liu: Very Large-Scale Neighborhood Search for Steel Hot Rolling Scheduling Problem

In each instance set, there are three sizes of candidate slab
sets, whose capacities are 2, 3, and 4 slabs, respectively.
The quantitative proportion for three sizes of sets is 2:3:2.
Each stack randomly stores 3-11 slabs and candidate slabs are
randomly distributed in the stacks. The number of candidate
slabs accounts for about 2/3 of the total in the yard.

B. COMPUTATIONAL RESULTS
We solve each instance using VLSN search algorithms
with the different size of sub-problems (VLSN-k)k ∈

{3, 4, 5, 6, 7}, taking solutions obtained by the ILP model
as initial solutions. The computational results are shown
in Table 5. In Table 5, column ‘‘obj’’ represents the average
objective function values on 10 instances of each set. Column
‘‘CPU’’ represents the average solution time in second on
10 instances of each set.

Based on the results shown in Table 5 we note that as sizes
of sub-problems increase, the objective function values of
each set are improved, but more time is taken. Balancing time
and objective function values, it is more reasonable to use
VLNS-5 to solve HRS problems.

To the best of our knowledge, no the same or similar
problems have been considered by existing papers. To eval-
uate the effectiveness and accuracy of LS and VLNS algo-
rithms, we have compared our algorithms with a constructive
heuristic method that is currently used in real-world steel
plants. In the constructive heuristic (CH), we randomly select
a slab for each hot rolling slot from its candidate slab set
forming a feasible schedule and calculate the number of shuf-
fling operations. To avoid the randomness of the constructive
heuristic, we run it 10000 times and select the best solution
among the found ones as a competitor. The results of objective
function value and running time are shown in column ‘‘CH’’
of Table 6.

Besides, Table 6 compares the performance of the LS and
VLNS search algorithms. Both the LS and VLNS search
algorithms take solutions obtained by the ILP model as initial
solutions. We take the objective function value of the initial
solutions as the benchmark, and the improved ratio of the LS
algorithm and the VLSN-5 algorithm are shown in column
‘‘impr’’ of Table 6. The improved ratio is computed as fol-
lows.

improved ratio =
objILP − objLS(VLSN−k)

objILP

The results in Table 6 show that compared to the construc-
tive heuristic, both the model ILP, LS and VLNS algorithms
have significant advantages in terms of time and objective
function value. Besides, the results show that starting from the
same initial solutions, the improvement of the VLSN search
algorithm is better than the LS algorithm. But the runtimes
of the VLSN search algorithms are longer than that of the
LS algorithm. Balancing runtime and quality of solutions,
the VLSN search algorithm significantly improves objective
function values in acceptable runtime ranges. This shows the
VLSN algorithm’s accuracy and efficiency.

TABLE 7. Comparison between the LS and VLSN search algorithms for
different initial solutions.

In order to test the influence of different initial solutions on
performances of the LS andVLSN search algorithms, we take
randomly generated 5 feasible solutions as initial solutions
for LS and VLSN-5 algorithm to solve a stance in each set.
The computational results are shown in Table 7.

Table 7 shows that as the objective function values of
initial solutions increase, the objective function values of
the LS algorithm increase significantly, but that of VLNS
search algorithm have little change. It can be concluded that,
comparing with the LS algorithm, quality of initial solutions
has little influence on performance of the VLNS search algo-
rithm, namely, the VLNS search algorithm is more robust
than the LS.

V. CONCLUSION
In summary, we study HRS problems considering SSS.
We build an integer linear programming to compute approx-
imation solutions. Besides we propose the VLSN search
algorithm to solve the HRS problems, which can effectively
improve the quality of solutions with different scale of prob-
lems in acceptable time. At the same time, the VLSN search
algorithm is robust since that does not depend on the quality
of initial solutions. So, the proposed VLSN search algorithm
is effective in both theoretical and practical production for
HRS problems. In the future, we tend to explore other intelli-
gence algorithms, e.g. monarch butterfly optimization, earth-
worm optimization algorithm, elephant herding optimization
and moth search algorithm to solve the problem to further
improve the solution quality and computing time.Meanwhile,
we will attempt to find a suitable combinational optimization
problem to which the HRS can convert and use it to obtain
optimal solution of the problem. Besides, we will tend to

47862 VOLUME 9, 2021

Y. Shi, S. Liu: Very Large-Scale Neighborhood Search for Steel Hot Rolling Scheduling Problem

design effective methods to obtain good lower bounds of the
HRS.

REFERENCES
[1] L. X. Tang, J. Y. Liu, A. Y. Rong, and Z. H. Yang, ‘‘A multiple traveling

salesman problem model for hot rolling scheduling in Shanghai Baoshan
Iron & Steel Complex,’’ Eur. J. Oper. Res., vol. 124, no. 2, pp. 267–282,
Jul. 2000, doi: 10.1016/S0377-2217(99)00380-X.

[2] S. Jia, J. Zhu, G. Yang, J. Yi, and B. Du, ‘‘A decomposition-based hierar-
chical optimization algorithm for hot rolling batch scheduling problem,’’
Int. J. Adv. Manuf. Technol., vol. 61, nos. 5–8, pp. 487–501, Jul. 2012, doi:
10.1007/s00170-011-3749-9.

[3] S. X. Liu, J. H. Song, and S. C. Zhou, ‘‘Model and algorithm
for solving hot strip rolling batch planning problems,’’ Control. The-
ory Appl., vol. 24, no. 2, pp. 243–248, Feb. 2007, doi: 10.1360/
aas-007-0072.

[4] Q.-K. Pan, L. Gao, and L. Wang, ‘‘A multi-objective hot-rolling
scheduling problem in the compact strip production,’’ Appl. Math.
Model., vol. 73, pp. 327–348, Sep. 2019, doi: 10.1016/j.apm.2019.
04.006.

[5] C. Pan and G. K. Yang, ‘‘A method of solving a large-scale rolling batch
scheduling problem in steel production using a variant of column gener-
ation,’’ Comput. Ind. Eng., vol. 56, no. 1, pp. 165–178, Feb. 2009, doi:
10.1016/j.cie.2008.05.001.

[6] A. Witt and S. Voß, ‘‘Simple heuristics for scheduling with limited inter-
mediate storage,’’ Comput. Oper. Res., vol. 34, no. 8, pp. 2293–2309,
Aug. 2007, doi: 10.1016/j.cor.2005.09.004.

[7] M. Lyu, Z. Wang, and F. T. S. Chan, ‘‘Mixed integer programming
model and heuristic algorithm for production planning of continu-
ous casting and hot rolling,’’ in Proc. IEEE Int. Conf. Autom. Sci.
Eng. (CASE), Gothenburg, Sweden, Aug. 2015, pp. 1503–1508, doi:
10.1109/CoASE.2015.7294312.

[8] Z. Zhao, S. Liu, M. Zhou, X. Guo, and L. Qi, ‘‘Decomposition method for
new single-machine scheduling problems from steel production systems,’’
IEEE Trans. Autom. Sci. Eng., vol. 17, no. 3, pp. 1376–1387, Jul. 2020,
doi: 10.1109/TASE.2019.2953669.

[9] Z. Zhao, S. Liu, M. Zhou, D. You, and X. Guo, ‘‘Heuristic scheduling
of batch production processes based on Petri nets and iterated greedy
algorithms,’’ IEEE Trans. Autom. Sci. Eng., early access, Oct. 23, 2020,
doi: 10.1109/TASE.2020.3027532.

[10] Z. Zhao, S. Liu, M. Zhou, and A. Abusorrah, ‘‘Dual-objective mixed
integer linear program and memetic algorithm for an industrial group
scheduling problem,’’ IEEE/CAA J. Automatica Sinica, early access,
Dec. 29, 2020, doi: 10.1109/JAS.2020.1003539.

[11] B. Zhang, Q.-K. Pan, L. Gao, X.-L. Zhang, and Q.-D. Chen, ‘‘A hybrid
variable neighborhood search algorithm for the hot rolling batch schedul-
ing problem in compact strip production,’’ Comput. Ind. Eng., vol. 116,
pp. 22–36, Feb. 2018, doi: 10.1016/j.cie.2017.12.013.

[12] Q. Chen, Q. Pan, B. Zhang, J. Ding, and J. Li, ‘‘Effective hot rolling
batch scheduling algorithms in compact strip production,’’ IEEE Trans.
Autom. Sci. Eng., vol. 16, no. 4, pp. 1933–1951, Oct. 2019, doi:
10.1109/TASE.2019.2914925.

[13] L. Tang, J. Liu, A. Rong, and Z. Yang, ‘‘Modelling and a genetic algo-
rithm solution for the slab stack shuffling problem when implementing
steel rolling schedules,’’ Int. J. Prod. Res., vol. 40, no. 7, pp. 1583–1595,
Jan. 2002, doi: 10.1080/00207540110110118424.

[14] K. A. Singh, Srinivas, and M. K. Tiwari, ‘‘Modelling the slab stack shuf-
fling problem in developing steel rolling schedules and its solution using
improved parallel genetic algorithms,’’ Int. J. Prod. Econ., vol. 91, no. 2,
pp. 135–147, Sep. 2004, doi: 10.1016/j.ijpe.2003.07.005.

[15] M. Wang, T. K. Li, and B. L. Wang, ‘‘Local search algorithm
for the overlapped turned-out slab pile problem,’’ Comput. Integr.
Manuf, vol. 16, no. 3, pp. 658–662, Mar. 2010. [Online]. Available:
http://en.cnki.com.cn/Article_en/CJFDTotal-JSJJ201003029.htm

[16] H.-Z. Ren and L.-X. Tang, ‘‘Study on modelling and optimization method
for the slab stack shuffling problem considering area crane capacity,’’
Acta Automatica Sinica, vol. 36, no. 4, pp. 586–592, May 2010, doi:
10.3724/SP.J.1004.2010.00586.

[17] P. Shaw, ‘‘Using constraint programming and local search methods to
solve vehicle routing problems,’’ in Principles and Practice of Constraint
Programming, 4th ed., vol. 1520, M. Maher and J. Puget, Eds. Berlin,
Germany: Springer, 1998, doi: 10.1007/3-540-49481-2_30.

[18] U. Breunig, V. Schmid, R. F. Hartl, and T. Vidal, ‘‘A large neigh-
bourhood based heuristic for two-echelon routing problems,’’ Comput.
Oper. Res., vol. 76, pp. 208–225, Dec. 2016, doi: 10.1016/j.cor.2016.
06.014.

[19] S. Chen, R. Chen, G.-G. Wang, J. Gao, and A. K. Sangaiah, ‘‘An adap-
tive large neighborhood search heuristic for dynamic vehicle routing
problems,’’ Comput. Electr. Eng., vol. 67, pp. 596–607, Apr. 2018, doi:
10.1016/j.compeleceng.2018.02.049.

[20] K. Sinclair, J.-F. Cordeau, and G. Laporte, ‘‘Improvements to a large neigh-
borhood search heuristic for an integrated aircraft and passenger recovery
problem,’’ Eur. J. Oper. Res., vol. 233, no. 1, pp. 234–245, Feb. 2014, doi:
10.1016/j.ejor.2013.08.034.

[21] C. Yu, D. Zhang, and H. Y. K. Lau, ‘‘An adaptive large neighborhood
search heuristic for solving a robust gate assignment problem,’’ Expert
Syst. Appl., vol. 84, pp. 143–154, Oct. 2017, doi: 10.1016/j.eswa.2017.
04.050.

[22] M. Yagiura, S. Iwasaki, T. Ibaraki, and F. Glover, ‘‘A very large-scale
neighborhood search algorithm for the multi-resource generalized assign-
ment problem,’’ Discrete Optim., vol. 1, no. 1, pp. 87–98, Jun. 2004, doi:
10.1016/j.disopt.2004.03.005.

[23] E. Majid, D. Pierre, and P. Olivier, ‘‘A large neighborhood search heuristic
for supply chain network design,’’ Comput. Oper. Res., vol. 80, pp. 23–27,
Apr. 2017, doi: 10.1016/j.cor.2016.11.012.

[24] T. Brueggemann and J. L. Hurink, ‘‘Matching based very large-scale
neighborhoods for parallel machine scheduling,’’ J. Heuristics, vol. 17,
no. 6, pp. 637–658, Nov. 2010, doi: 10.1007/s10732-010-9149-8.

[25] P. Guo, F. Weidinger, and N. Boysen, ‘‘Parallel machine scheduling
with job synchronization to enable efficient material flows in
hub terminals,’’ Omega, vol. 89, pp. 110–121, Dec. 2019, doi:
10.1016/j.omega.2018.10.003.

[26] L. Fanjul-Peyro and R. Ruiz, ‘‘Size-reduction heuristics for the unrelated
parallel machines scheduling problem,’’Comput. Oper. Res., vol. 38, no. 1,
pp. 301–309, Jan. 2011, doi: 10.1016/j.cor.2010.05.005.

[27] M. Zenker and N. Boysen, ‘‘Dock sharing in cross-docking facilities of the
postal service industry,’’ J. Oper. Res. Soc., vol. 69, no. 7, pp. 1061–1076,
Jul. 2018.

[28] P. Guo, W. Cheng, Y. Wang, and N. Boysen, ‘‘Gantry crane scheduling in
intermodal rail-road container terminals,’’ Int. J. Prod. Res., vol. 56, no. 16,
pp. 5419–5436, Aug. 2018, doi: 10.1080/00207543.2018.1444812.

[29] L. X. Tang, J. Y. Liu, A. Y. Rong, and Z. H. Yang, ‘‘A review of planning
and scheduling systems and methods for integrated steel production,’’ Eur.
J. Oper. Res., vol. 133, no. 1, pp. 1–20, Aug. 2001, doi: 10.1016/S0377-
2217(00)00240-X.

[30] J. Gmys,M.Mezmaz, N.Melab, and D. Tuyttens, ‘‘A computationally effi-
cient branch-and-bound algorithm for the permutation flow-shop schedul-
ing problem,’’ Eur. J. Oper. Res., vol. 284, no. 3, pp. 814–833, Aug. 2020,
doi: 10.1016/j.ejor.2020.01.039.

YARONG SHI received the B.S. degree in automa-
tion from the Hunan University of Technology,
Zhuzhou, China, in 2014, and the M.S. degree
in systems engineering from Northeastern Univer-
sity, Shenyang, China, in 2016. She is currently
pursuing the Ph.D. degree in systems engineering
with Northeastern University, Shenyang, China.
Her research focuses on planning and scheduling
of steel production, mathematical programming,
and heuristics algorithm.

SHIXIN LIU (Member, IEEE) received the B.S.
degree in mechanical engineering from South-
west Jiaotong University, Sichuan, China, in 1990,
and the M.S. and Ph.D. degrees in systems engi-
neering from Northeastern University, Shenyang,
China, in 1993 and 2000, respectively. He is cur-
rently a Professor with the College of Information
Science and Engineering, Northeastern Univer-
sity, Shenyang, China. His research interests are
in intelligent manufacturing, industrial big data,

intelligent decision-making, production planning and scheduling. He has
over 100 publications including one book.

VOLUME 9, 2021 47863

http://dx.doi.org/10.1016/S0377-2217(99)00380-X
http://dx.doi.org/10.1007/s00170-011-3749-9
http://dx.doi.org/10.1360/aas-007-0072
http://dx.doi.org/10.1360/aas-007-0072
http://dx.doi.org/10.1016/j.apm.2019.04.006
http://dx.doi.org/10.1016/j.apm.2019.04.006
http://dx.doi.org/10.1016/j.cie.2008.05.001
http://dx.doi.org/10.1016/j.cor.2005.09.004
http://dx.doi.org/10.1109/CoASE.2015.7294312
http://dx.doi.org/10.1109/TASE.2019.2953669
http://dx.doi.org/10.1109/TASE.2020.3027532
http://dx.doi.org/10.1109/JAS.2020.1003539
http://dx.doi.org/10.1016/j.cie.2017.12.013
http://dx.doi.org/10.1109/TASE.2019.2914925
http://dx.doi.org/10.1080/00207540110110118424
http://dx.doi.org/10.1016/j.ijpe.2003.07.005
http://dx.doi.org/10.3724/SP.J.1004.2010.00586
http://dx.doi.org/10.1007/3-540-49481-2_30
http://dx.doi.org/10.1016/j.cor.2016.06.014
http://dx.doi.org/10.1016/j.cor.2016.06.014
http://dx.doi.org/10.1016/j.compeleceng.2018.02.049
http://dx.doi.org/10.1016/j.ejor.2013.08.034
http://dx.doi.org/10.1016/j.eswa.2017.04.050
http://dx.doi.org/10.1016/j.eswa.2017.04.050
http://dx.doi.org/10.1016/j.disopt.2004.03.005
http://dx.doi.org/10.1016/j.cor.2016.11.012
http://dx.doi.org/10.1007/s10732-010-9149-8
http://dx.doi.org/10.1016/j.omega.2018.10.003
http://dx.doi.org/10.1016/j.cor.2010.05.005
http://dx.doi.org/10.1080/00207543.2018.1444812
http://dx.doi.org/10.1016/S0377-2217(00)00240-X
http://dx.doi.org/10.1016/S0377-2217(00)00240-X
http://dx.doi.org/10.1016/j.ejor.2020.01.039

