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ABSTRACT An outsourcing service named spatial crowdsourcing (SC) becomes popular, whereby the
SC-server allocates nearby tasks to the workers based on the outsourced task and worker locations.
Exposing real locations can cause serious privacy leakage. However, traditional differential privacy (DP)
and encryption methods do not consider the dynamic worker location and correlation privacy. Here, a Local
DP-based dynamic worker location protection (LDPDW) scheme is proposed to achieve high-quality task
allocation and locally protect the correlation and location privacy of dynamic workers. Specifically, LDPDW
generates noisy high correlated graph classes and obfuscates the worker locations in a static case by adopting
a LDP-based correlation graph (LDPCG) algorithm and distance score-based LDP (DSLDP) algorithm,
thereby achieving controlled noise addition and ensuring the correlation and location privacy. To support the
privacy-preserving dynamic locations, a dynamic correlation graph-based location obfuscation (DCGLO)
algorithm is proposed to allocate reasonable privacy budget ε, which ensures the data utility. Finally, a linear
acceptance model-based task allocation (LAMTA) algorithm is used to allocate tasks to the workers with
high acceptance rates. Privacy analysis and the extensive experimental results show that our LDPDW scheme
follows ε-LDP while allocating tasks with high data utility.

INDEX TERMS Task allocation, location privacy, local differential privacy, data utility.

I. INTRODUCTION
A new Spatial Crowdsourcing (SC) platform has become
popular promoted by the rapid development of mobile
devices, whereby the SC-server allocates the tasks outsourced
by the requesters to appropriate workers based on the task
and worker locations [1]–[3]. Since task allocation involves
large-scale data storage and matching calculations, it is per-
formed by SC-servers. SC services have been applied tomany
fields, such as urban planning [4], environmental testing [5]
and traffic monitoring [6]. Some popular SC platforms con-
tain DiDi [7], Waze [8], OpenStreetMap [9] and Uber [10],
etc. In particular, the ridership worldwide of Uber reached
1.7 billion trips in the second quarter of 2019, and its net
revenue reached 14.1 billion dollars in 2019 [11].
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To obtain the tasks, the workers require outsourcing their
locations to the SC-server. However, publishing real loca-
tions may cause the serious privacy leakage due to sensitive
workers information including health status [12], [13], daily
activities [14] and personal track [15], [16], etc. The untrusted
SC-server may leak the worker locations to the attackers
once it is hacked. The workers can be monitored or stolen
indentities when the attackers know their locations [15], [17].
For example, as a popular SC service platform, the workers
in Waze can be monitored by attackers based on exposed
locations [18]. Once the workers’ locations are leaked, they
will not participate in the SC services. Therefore, protecting
the workers’ location privacy becomes very important for
improving the quality of SC services.

To achieve the privacy-preserving worker locations in
SC services, traditional privacy-preserving methods such
as homomorphic encryption methods in [14], [20]–[22]
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and anonymity methods in [23]–[25] can ensure that the
SC-server allocates tasks to workers without knowing the
worker locations. However, the homomorphic encryption
method does not provide high efficiency [26], and the works
in [27], [28] have showed that the anonymity method may
be vulnerable caused by the strong background knowledge
attacks and the reference attacks. Recently, a popular Dif-
ferential Privacy (DP) method [29], [30] has been used
to protect the location privacy in SC services [27], [31],
[32]. For example, To et al [33], [34] protected the worker
location privacy in SC by using a DP-based private spa-
tial decomposition (PSD) method. Gong et al. [35] pro-
tected the location and reputation privacy of workers by
using a reputation-based DP method and relying on a cel-
lular service provider (CSP). In [36], Wang et al. proposed
an agent-based differential privacy (DADP) framework to
publish the crowdsourced data with strong privacy guar-
antees. However, above DP methods protect the worker
location privacy by adopting a trusted thord party (TTP).
The TTP is vulnerable by hacking since it stores all work-
ers’ original location information. The location privacy of
users may be leaked once the TTP is attacked. To over-
come this shortcoming, a novel Local Differential Privacy
(LDP) method allows the users to locally obfuscate their
own data [37]–[39], [41]. Wang et al. [40] introduced a dis-
tortion geo-obfuscation with LDP method to locally protect
the task allocation privacy in SC. The work in [42] adopted
the geo-indistinguishability method to ensure the location
privacy in vehicle-based spatial crowdsourcing. To et al. [43]
proposed a LDP framework to protect the location privacy
of workers in SC based on geo-indistinguishability. How-
ever, these LDP methods only protect the worker location
privacy at one time point without considering protecting the
location privacy of dynamic workers. In practice, the SC
services require the online workers to perform the tasks so
that the workers’ locations change dynamically [43], [44].
Exposing dynamic worker locations can increase the privacy
disclosure risk [34], [43]. Besides, the future work in [43]
also considers protecting the location correlation privacy
of workers since public worker trajectories following spe-
cific movement patterns may leak the location privacy [45].
Therefore, achieving the local location and correlation pri-
vacy protection of dynamic workers in SC becomes very
important.

In this paper, we explore using LDP to solve the problems
of both local location privacy and correlation privacy of
dynamic workers in SC, in which the SC-server performs
high-quality task matching from the noisy dynamic locations
outsourced by the workers themselves. To achieve this goal,
we need to face the following three challenges: (i) since the
workers’ locations are correlated, which can leak the loca-
tion privacy [43], [45]. Thus how to protect the correlation
privacy between dynamic locations is challenging. (ii) To
protect the dynamic location privacy, the workers’ dynamic
locations need to be locally obfuscated. However, traditional
LDP methods have low accuracy for the dynamic location

publishing since the amount of noise added at each location
increases as the released dataset increases [37], [43]. There-
fore, how to use the LDP to obfuscate the dynamic worker
locations locally while ensuring the data utility is a challenge.
(iii) Most importantly, since the workers’ dynamic locations
and correlations are obfuscated by LDP, this will reduce the
quality of task allocation. It is a challenge to achieve the
balance between dynamic worker privacy and task allocation
having high data utility.

Here, a LDP-based dynamic worker location protec-
tion (LDPDW) scheme is proposed to solve the above chal-
lenges. For the first challenge, a LDP-based correlation
graph (LDPCG) algorithm is proposed to cluster the high
correlated locations into different graph classes and add
laplace noise to the high correlated classes for protecting
the correlation privacy and ensuring the correlation utility.
Towards the second challenge, we first propose a distance
score-based LDP (DSLDP) algorithm to obfuscate the worker
locations in a static case by designing a smaller distance score
sensitivity, thereby adding controlled noise. Further, to sup-
port the privacy-preserving dynamic locations, we allocate
a fraction of privacy budget ε to generate noisy correlated
graph structure and use remaining privacy budget to obfuscate
dynamic worker locations by adopting a dynamic correlation
graph-based location obfuscation (DCGLO) algorithm. For
the third challenge, our LDPDW scheme requires achieving
ε-LDP to ensure the dynamic worker location and correla-
tion privacy. A linear acceptance model-based task alloca-
tion (LAMTA) algorithm is proposed to allocate the workers
with high acceptance rates. Besides, our LDPDW scheme
also has high data utility by extensive experiment evaluation.

We summarize the contributions as follows:
• We propose a LDPDW scheme to achieve high-quality
task allocation and perform the locally privacy-
preserving locations and correlations of dynamic work-
ers in SC.

• To protect the correlation and location privacy, we pro-
pose a LDPCG algorithm and a DSLDP algorithm to
generate noisy high correlated graph classes and obfus-
cate the worker location at each time point, respec-
tively, which ensures controlled noise addition. Further,
a LAMTA algorithm uses a linear acceptance model to
perform high-quality task allocation.

• To support the locally dynamic worker location protec-
tion, a DCGLO algorithm dynamically obfuscates the
worker locations and correlations by allocating privacy
budget reasonably, which considers the data utility.

• Strict privacy analysis and extensive experiments con-
firm that our LDPDW scheme follows ε-LDP and can
allocate the tasks with high data utility.

We organize this paper’s rest contents as follows.
We describe the problem formulation in Section II. The pre-
liminaries is introduced in Section III. Section IV details the
proposed algorithms in our LDPDW scheme and Section V
analyzes the proposed algorithms’ security and time com-
plexity. We evaluate our scheme’s performance in Section VI.
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FIGURE 1. System model.

Finally, the related works are introduced in Section VII and
the conclusions are summarized in Section VIII.

II. PROBLEM FORMULATION
Here, we introduce the system model, the threat model and
the design goals.

A. SYSTEM MODEL
In Fig. 1, our system model consists of three entities, such as
Requesters,Workers and SC-server.
• Workers: Here, the workers perform tasks voluntarily
without any rewards [32], [34], [35]. To obtain the tasks,
the workers with mobile devices need to outsource their
locations and reachable distance to the SC-server. Due
to sensitive privacy, the locations are first obfuscated
locally by the workers before outsourcing them. When
some workers are allocated by the SC-server, these allo-
cated workers start to perform the tasks, and return the
results to the corresponding requesters.

• Requesters: When a requester wants to obtain the analy-
sis results for a task, he/she publishes the task locations
to the SC-server. After receiving the performed results
from the allocated workers, the requester will perform
mining analysis.

• SC-server: The SC-server can be considered as a cloud
server who has huge storage and computing capabili-
ties [32], [43]. Upon receiving the task locations and
obfuscated worker locations, the SC-server searches all
obfuscated worker locations, allocates the workers to
perform the task based on the reachable distance submit-
ted by the workers, and feedbacks the allocated workers
to the corresponding workers.

In the following, our system model’s workflow is intro-
duced. Given n workers, for a worker Wi (i ∈ [1, n]), he/she
has a location set LWi = {LWit1 ,LWit2 , · · · ,LWitm} at m
timestamps and a reachable distance RWi , where LWitj is the
worker Wi’s location at j-th (j ∈ [1,m]) timestamp, and the
RWi represents a circular region centered at LWitj . Eachworker

Wi first adopts a LDP-based correlation graph (LDPCG)
algorithm to obfuscate the high correlations between LWitj
and LWitk (j, k ∈ [1,m]). After that, we obtain the loca-
tion set LcWi

= {LcWit1
,LcWit2

, · · · ,LcWitm} with noisy corre-
lations. Then Wi uses a novel distance score-based LDP
(DSLDP) algorithm to obfuscate the location set LcWi

and
outsources the obfuscated worker information (̃LWi ,RWi ) =
({̃LWit1 , · · · , L̃Witm},RWi ) to the SC-server (Step 1). To sup-
port the privacy-preserving dynamic worker location publi-
cation, a dynamic correlation graph-based location obfus-
cation (DCGLO) algorithm is proposed to publish dynamic
obfuscated worker locations. When a requester wants to pub-
lish the task T , he/she publishes the task location LT to
the SC-server (Step 2). Upon receiving the task location LT
and obfuscated worker information (̃LWi ,RWi ), the SC-server
uses a linear acceptable model (LCM) to allocate suit-
able workers {Wz1 ,Wz2 , · · · ,Wzk } close to the task location
LT by searching all noisy worker information (̃LWi ,RWi )
(i ∈ [1, n]), and returns the allocated workers and
the task location ({Wz1 ,Wz2 , · · · ,Wzk },LT ) to the corre-
sponding workers (Step 3). Finally, the allocated worker
Wzr (r ∈ [1, k]) decides whether to perform the task T
according to the actual distance between the actual worker
location LWi and the task location LT , and returns the per-
formed results to the requester (Step 4).

B. ATTACK MODEL
Here, we aim at the dynamic worker location and correlation
privacy in SC. The workers’ identifies are protected by the
anonymity method. Besides, the TLS-like scheme in [46] can
ensure the communication security.

In our attack model, following the works in
[14], [20]–[22], [34], [43], we take the SC-server as an
‘‘honest-but-curious’’ entity who performs task allocation
agreement but also leaks the workers’ real locations to the
attackers when it compromises caused by hacking. Since the
workers and the requesters have their own data, they are
trusted. To protect the worker location and correlation privacy
locally, the workers use LDP method to obfuscate the high
correlations and dynamic locations, respectively.

C. DESIGN GOALS
In this paper, the worker locations will be protected. How-
ever, protecting the worker privacy can complicate task allo-
cation and increase system overhead since the SC-server
requires allocating more workers to performs tasks. Besides,
the obfuscated locations will lead to incorrect allocation
results. Therefore, we design the following goals.

• Location and correlation Privacy. The worker location
privacy and correlation privacy cannot be leaked when
the SC-server performs task allocation from the obfus-
cated locations of the workers.

• Data Utility. The system model should have high data
utility, that is the tasks accepted by workers account for
a high ratio of all tasks.
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TABLE 1. Main symbols.

• System Overhead. Since the allocated workers’ number
can affect the task allocation complexity and communi-
cation overhead, the efficiency of system model should
not be significantly decreased.

III. PRELIMINARIES
In this section, the definitions of both worker locations and
local differential privacy (LDP) in [37]–[39] are introduced,
respectively. Table 1 gives the main notations.

Worker Locations: To represent the locations of dynamic
workers, we first define the worker Wi’s location LWitj at
timestamp tj is LWitj = (l

tj
loi, l

tj
lai), where l

tj
loi and l

tj
lai are the

longitude and latitude of the location LWitj , respectively.
Definition 1: (DynamicWorker Locations). Givenworker

Wi’s location LWitj = (l
tj
loi, l

tj
lai) at timestamp tj, for m times-

tamps, the original dynamic worker location dataset LWi can
be denoted by:

LWi = (LWit1 ,LWit2 , · · · ,LWitm )

= {(l
tj
loi, l

tj
lai)|j = 1, 2, · · · ,m}

Local Differential Privacy (LDP): Here, we first give the
concept of LDP. Two datasets LWi and L

∗
Wi

are neighboring
datasets iff they satisfy LWi = L∗Wi

∪LWitj or L
∗
Wi
= LWi∪LWitj .

A privacy mechanism 9̃ gets ε-LDP when a Laplace noise
Lap(19

ε
) ia added to the query function 9, where ε is the

privacy budget and 19 is the query sensitivity.
Definition 2: (Local Differential Privacy) [37]. For two

neighboring datasets Wi and W ∗i , given a privacy budget ε,
a privacy mechanism 9̃(Wi) ∈ Range(ϒ). 9̃ will achieve ε-
LDP when it has:

Pr[9̃(Wi) ∈ ϒ] ≤ eε × Pr[9̃(W ∗i ) ∈ ϒ]
Definition 3: (Query Sensitivity) [29]. For the neighbor-

ing datasets Wi and W ∗i , a query function9(Wi)→ <hi , thus
we calculate the query sensitivity 19 as:

19 = maxWi,W ∗i
‖9(Wi)−9(W ∗i )‖1

Definition 4: (Laplace Mechanism) [29]. If 9(Wi) =
(y1, · · · , yh), 9̃ will achieve ε-LDP when 9̃(Wi) satisfies:

9̃(Wi) = 9(Wi)+ Lap(
19

ε
)

IV. LDP-BASED DYNAMIC WORKER LOCATION
PROTECTION SCHEME
In this section, we propose a LDP-based dynamic worker
location protection (LDPDW) scheme to achieve the locally

privacy-preserving dynamic worker locations and corre-
lations while allocating high-quality tasks. The proposed
LDPDW scheme contains four modules, such as LocCorPro,
LocObfuca, DynaLocPro and TaskAlloc.
LocCorPro Module: Given the original dataset L(Wi) =
{LWit1 ,LWit2 , · · · ,LWitm} atm timestamps, the workerWi first
uses a LDP-based correlation graph (LDPCG) algorithm to
calculate the correlation score Sjk between the locations LWitj
and LWitk by using a complete undirect graph, and cluster
the high-correlated locations into graph classes. Finally, each
graph class is added Laplace noise based on LDP method so
that the correlations are obfuscated.
LocObfuca Module: In this module, each worker

adopts a distance score-based LDP (DSLDP) to obfus-
cate the location set LcWi

and obtains the noisy locations
(̃L(Wi),RWi ) = {(̃LWit1 ,RWi ), · · · , (̃LWitm ,RWi )}, where RWi

is the reachable distance.
DynaLocPro Module: To support the privacy-preserving

dynamic worker location publication, a dynamic correlation
graph-based location obfuscation (DCGLO) algorithm is pro-
posed to obtain the obfuscated dynamic worker location set
{(̃L tm1 (Wi),RWi ), (̃L

tm2 (Wi),RWi ), · · · , (̃L
tmk (Wi),

RWi )} for different timestamps {tm1 , tm2 , · · · , tmk }.
TaskAlloc Module: At any time, upon receiving the task

location LT and all the workers’ obfuscated location infor-
mation {(̃L(W1),RW1 ), (̃L(W2),RW2 ), · · · , (̃L(Wn),RWn )},
the SC-server first searches the workers close to the task loca-
tion by calculating the distances between the obfuscated loca-
tions and the real locations, then adopts a Linear acceptance
model to obtain the allocated workers {Wz1 ,Wz2 , · · · ,Wzk },
and finally notifies these corresponding workers by return-
ing the allocated workers and the task location information
({Wz1 ,Wz2 , · · · ,Wzk },LT ).

A. PRIVACY-PRESERVING LOCATION CORRELATIONS
The workers in SC services have specific movement pat-
terns and these locations are correlated [43]. The works
in [37], [45] also showed that the high correlated data may
leak the user privacy. Especially, the locations with high
correlations can reveal the gender of the user [45]. Therefore,
protecting the location correlation privacy of workers in SC
becomes important. The works in [37], [45] add noise to all
location correlations. However, these methods can reduce the
data utility since the low correlated locations are add noise
and they cannot leak the privacy. The Pearson correlation
coefficient in work [41] cannot be used to calculate the cor-
relations between locations since the difference between the
longitude and latitude attributes in the locations can affect
the correlation [45]. Here, a LDP-based correlation graph
(LDPCG) is proposed to protect the location correlation pri-
vacy. It contains: correlation graph construction, correlated
location clustering and correlation noise addition.

First, since any two locations may have correlations,
a complete undirect graph is used to represent the corre-
lations of all locations L(Wi) = {LWit1 ,LWit2 , · · · ,LWitm}.
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FIGURE 2. Privacy-preserving location correlations.

In Fig. 2(a), each node is a location LWitj and each edge is
a correlation score Sjk . Since the longitude and latitude in
a location are independent of each other, we use a location
correlation score to calculate the correlation Sjk between
any locations LWitj and LWitk . Given the locations LWitj =

(l
tj
loi, l

tj
lai) and LWitk = (l tkloi, l

tk
lai) (j, k ∈ [1,m]), the correlation

score Sjk is calculated as:

Sij = exp(−|l
tj
loi − l

tk
loi|)× exp(−|l

tj
lai − l

tk
lai|)

= exp(−|l
tj
loi − l

tk
loi| − |l

tj
lai − l

tk
lai|) (1)

When |l
tj
loi − l

tk
loi| and |l

tj
lai − l

tk
lai| are close to 0, the Sij is close

to 1. It means that the LWitj and LWitk are highly correlated.
Otherwise, the LWitj and LWitk have low correlation. This
change trend is in line with actual phenomena.

Second, inspired by the work in [41], since the low corre-
lation weights Sjk (i.e., Sjk < σ1) in the graph cannot leak the
privacy, they are deleted. For example, in Fig. 2(b), the low
correlated weights {S12, S14, S15, S24, · · · , } are deleted.
Here, the locations having high correlations are clustered
into different graph classes. In the following, we describe
how to cluster the high correlated locations: (a) Assuming
that high correlation scores with descending ranking are
{Sj1k1 , Sj2k2 , · · · , Sjpkp}, the biggest complete subgraph C1 is
calculated by searching the biggest correlated nodes both
LWij1 and LWik1 ’s neighboring nodes. As shown in Fig. 2(b),
if the locations LWit3 and LWit6 have the maximum correlation
score S36, they and their neighbor nodes {LWit2 ,LWit5} can
form two largest complete subgraphs {LWit2 ,LWit3 ,LWit6} and
{LWit3 ,LWit5 ,LWit6}. The {LWit3 ,LWit5 ,LWit6} is considered as
a class C1 when S23 + S26 < S35 + S56; (b) we reobtain a
new correlation ranking by moving the nodes in C1 and the
nodes linked to C1, and the steps (a) and (b) are continued
to generate the class Cl until there is no new correlation
ranking; (c) According to the correlation scores, the nodes
linked to the classes {C1,C2, · · ·Cq} are clustered into dif-
ferent classes. In Fig. 2(c), the node LWit2 is linked to the
classes {C1,C2}. When S23 + S26 > S27, we cluster the node
LWit2 into the class C1. Therefore, after performing above
steps, the high correlated locations are clustered into the
classes {C1,C2, · · ·Cq}.
Finally, the locations in each class Cl (l ∈ [1, q])

have high correlations and different classes have different

correlations. Some classes need to be added more noise
since they have higher correlations, the locations in dif-
ferent classes are personally added different noise based
on the LDP method instead of all locations. For the class
Cl (l ∈ [1, q]), given any location LWitlj

in the Cl , based on
the LDP’s Definition 2 in Section III, the LDPCG algorithm
adds Laplace noise to the LWitlj

. Since each location is a
two-dimensional vector containing longitude and latitude,
a random unit vector Ul = (yl1 , yl2 ) following Bernoulli
distribution is used to the noise addition. That is, the noisy
correlated location LcWitlj

= LWitlj
+ Ul × Laplj (

1S(Cl )
ε1

),
where 1S(Cl) is the query sensitivity (e.g., following The-
orem 1) for the class Cl (l ∈ [1, q]). After adding noise to
the correlations, we combine the location set LcWit that are
adding noise and the low correlated locations Llow(Wi) =
{LWitm1

, · · · ,LWitmr } without adding noise (e.g., the node
LWit4 in Fig. 2) to obtain whole noisy correlated location set
LcWi
= {LcWit1

,LcWit2
, · · · ,LcWitm}.

Theorem 1: For each original class Cl = {LWitl1
,LWitl2

,

· · · ,LWitlv }, when the correlation score between the loca-
tions LWitlj

and LWitlk
is Sjk , thus the query sensitivity

1S(Cl) = max
LWitlj

,LWitlk
∈Cl

(Sjk ) ≤ 1.

Proof: The Appendix A gives the detail proofs.

B. WORKER LOCATION PROTECTION
Although the location correlations are protected in
Section IV-A, the workers’ real locations are not fully pro-
tected, which can leak the worker privacy. In this section,
we propose a distance score-based LDP (DSLDP) algorithm
to obfuscate the real worker locations. Our DSLDP algorithm
contains two phases: (a) location distance score calculation,
and (b) location obfuscation.

First, the worker locations LcWit consist of a trajectory
sequence that contains m locations {LcWit1

,LcWit2
, · · · ,LcWitm}.

Therefore, the location sequence LcWit can be split into m− 1
segments and any two neighbor locations form a segment.
The distance between two locations can leak the worker
privacy since these locations follow specific movement pat-
terns. Here, we allocate a distance score DStj to the distance
segment between the neighbor locations LcWitj and LcWitj+1
(j ∈ [1,m− 1]). The distance score DStj is defined as:
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FIGURE 3. Privacy-preserving worker Locations.

Algorithm 1 DSLDP Algorithm
Input: The dataset LcWit = (LcWit1

, · · · ,LcWitm ), privacy
budget ε2

Output: Noisy Locations L̃Wit = (̃LWit1 , · · · , L̃Witm )
Initialize L̃Wit = ∅;
for each location LcWitj ,L

c
Witj ∈ L

c
Wit do

d(LcWitj ,L
c
Witj+1

) =
√
(l
ctj
loi − l

ctj+1
loi )2 + (l

ctj
lai − l

ctj+1
lai )2;

for each location LcWitj ∈ L
c
Wit do

DStj =
d(LcWitj ,L

c
Witj+1

)∑m−1
j=1 d(LcWitj ,L

c
Witj+1

)
;

Generate a random unit vector ϒj following the
Bernoulli distribution;

L̃Witj = LcWitj + Lap(
1DS(LcWit )

ε2
)× ϒj;

L̃Wit = L̃Wit
⋃
L̃Witj

return L̃Wit ;

Definition 5: (Distance Score). Given any two neighbor
locations LcWitj = (l

ctj
loi, l

ctj
lai) and LcWitj+1

= (l
ctj+1
loi , l

ctj+1
lai )

(j ∈ [1,m − 1]) in noisy correlated location
set LcWit , their location distance d(LcWitj ,L

c
Witj+1

) =√
(l
ctj
loi − l

ctj+1
loi )2 + (l

ctj
lai − l

ctj+1
lai )2, thus the distance score DStj

is calculated as:

DStj =
d(LcWitj ,L

c
Witj+1

)∑m−1
j=1 d(LcWitj ,L

c
Witj+1

)
Second, to protect the worker location privacy, we obfus-

cate the real worker locations. That is, each real location
LWitj should be added Laplace noise. Therefore, given a
privacy budget ε2, the noisy location L̃Witj = LcWitj +

Lap(
1DS(LcWit )

ε2
) × ϒj (j ∈ [1,m]), where ϒj = (xj1, xj2)

is a random vector that satisfies the Bernoulli distribu-
tion, and 1DS(LcWit ) is the query sensitivity of distance
score (e.g., following Theorem 2). For example, in Fig. 3,
based on our DSLDP algorithm, the real worker locations
{LcWit1

,LcWit2
,LcWit3

,LcWit4
,LcWit5

} are obfuscated into the noisy
locations {̃LWit1 , L̃Wit2 , L̃Wit3 , L̃Wit4 , L̃Wit5}.

Our DSLDP algorithm is shown in Algorithm 1. First,
the distance d(LcWitj ,L

c
Witj+1

) between two locations LcWitj and
LcWitj+1

is calculated (Lines 2 to 3). Then DSLDP algorithm
calculates the distance score DStj and adds Laplace noise to
the real location LcWitj (Lines 4 to 7). Finally, the noisy worker
location set L̃Wit is obtained (Lines 8 to 9).

Algorithm 2 DCGLO Algorithm
Input: Dynamic locations {LWit1 , · · · ,LWitm}, privacy

budgets ε1, ε2, parameters h1
Output: Noisy locations L̃Wit = (̃LWit1 , · · · , L̃Witm )
Initialize L̃Wit = ∅;
for any two locations LWitj1

and LWitj2
do

S̃j1j2 = Sj1j2 + Lap(
1
ε1h1

);

Calculate noisy correlated classes C̃ = {C̃1, · · · , C̃l} at
time tj based on LDPCG algorithm;
for each C̃p ∈ C̃ do

for each time tk ∈ [tj, tm] do
Cluster high correlated locations into different
classes;

L̃tj (C̃p) = Ltj (C̃p)+ Up × Lap(
1S(C̃p)
(1−g1)ε1

);

C̃ ←− update {̃Ltj (C̃p), · · · , L̃tm (C̃p)};

LcWit = C̃
⋃
{LWitm1

, · · · ,LWitmr } without edges;
for each location LcWitj ∈ L

c
Wit do

Calculate distance score DStj based on Algorithm 2;

L̃Witj = LcWitj + Lap(
m×1DS(LcWit )

ε2
)× ϒj for an unit

vector ϒj;
L̃Wit = L̃Wit

⋃
L̃Witj ;

return L̃Wit ;

Theorem 2: Given an original location dataset
LcWit = (LcWit1

, · · · ,LcWitm ), for two neighbor locations L
c
Witj

and LcWitj+1
, their distance score is DStj . Thus the query

sensitivity 1DS(LcWit ) = max
LcWitj ,L

c
Witj+1

∈LcWit
(DStj +DStj+1) ≤ 2.

Proof: Please refer to the Appendix B.
Finally, our DSLDP algorithm can generate noisy locations

L̃Wit = (̃LWit1 , · · · , L̃Witm ) locally of the worker Wi. The Wi
can outsource them to the SC-server safely.

C. PRIVACY-PRESERVING DYNAMIC WORKER LOCATIONS
In practice, the workers can dynamically move locations to
perform tasks. However, releasing dynamic worker locations
can leak the privacy. Therefore, the dynamic worker locations
should be protected. Given m timestamps, if we directly
adopt the LDPCG algorithm in Section IV-A and the DSLDP
algorithm in Section IV-B to protect the worker correla-
tion and location privacy at each timestamp, based on the
nature of LDP [37] and the sequential composition theorem
in [29], the noisy worker location L̃Witt at each timestamp tj
(j ∈ [1,m]) achieves (ε1+ ε2)-LDP. Further, the whole noisy
worker locations L̃Wit = (̃LWit1 , · · · , L̃Witm ) at m timestamps
satisfy m(ε1 + ε2)-LDP. When m is larger, the total privacy
budgetm(ε1+ε2) is larger, which reduces the privacy protec-
tion level. In this section, we propose a dynamic correlation
graph-based location obfuscation (DCGLO) algorithm to
protect the dynamic worker location privacy while providing
high data utility.
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FIGURE 4. Locations and correlations in correlation classes.

Our DCGLO algorithm is shown in Algorithm 2.
Given original dynamic worker locations L(Wi) =

{LWit1 ,LWit2 , · · · ,LWitm}, our DCGLO algorithm contains
two phases: dynamic correlation privacy and dynamic
location privacy. First, for the dynamic correlation pri-
vacy protection phase, given a privacy budget ε1, the cor-
relations between any two locations at first j timestamps
are added Lap( 1

ε1h1
) Laplace noise by allocating the privacy

budget ε1h1 (e.g., h1 ∈ (0, 1)) (Lines 2 to 3). Based on
the LDPCG algorithm in Section IV-A, DCGLO algorithm
clusters the noisy correlation classes {C̃1, · · · , C̃l} (Line 4).
In each class C̃p at timestamps tj to tm, we cluster high

correlated locations into the C̃p and add Up × Lap( 1S(C̃p)(1−g1)ε1
)

noise to the locations in C̃p by using privacy budget (1−h1)ε1
(Lines 5 to 8). Then the noisy high correlated locations LcWit
are generated by updating the classes {̃Lt1 (C̃p), · · · , L̃tm (C̃p)}
at m timestamps (Lines 9 to 10). For the dynamic location
protection phase, to achieve ε2-LDP, based on the DSLDP
algorithm in Section IV-B, the location L̃Witj at each times-

tamp is added Lap(
m×1DS(LcWit )

ε2
) × ϒj noise with a privacy

budget ε2m (Lines 11 to 14). Finally, the noisy dynamic worker
locations L̃Wit = (̃LWit1 , · · · , L̃Witm ) are obtained (Line 15).
According to the sequential composition theorem in [29],
the dynamic correlation privacy achieves (ε1h1+ (1−h1)ε1)-
LDP and the dynamic location privacy achieves (m× ε2m )-LDP.
In summary, our DCGLO algorithm for the whole dynamic
worker location protection achieves (ε1 + ε2)-LDP, which
ensures the privacy.

The noisy locations in dynamic location privacy can be
directly calculated by adding noise with ε2

m . In the dynamic
location correlation protection, since the locations and the
correlations in the class at different timestamp are different.
Here, we use an example to illustrate how we update the
locations and correlations at different timestamps. The main
updates contain: (i) location addition and (ii) correlation
update. In Fig. 4, from the timestamps tj to tj+1, the loca-
tion LWit7 is added and linked to classes {C̃1, C̃2}. Based
on the LDPCG algorithm, since noisy correlations S̃27 +
S̃67 > S̃37, thus the location LWit7 is clustered into the class
C̃1. According to our DCGLO algorithm, we add noise to
all the locations {LWit2 ,LWit5 ,LWit6 ,LWit7} in C̃1. Therefore,
the noisy correlations {̃S25, S̃26, S̃27, S̃56, S̃67} are updated to

{̃S∗25, S̃
∗

26, S̃
∗

27, S̃
∗

56, S̃
∗

67}. Correspondingly, the noisy correla-
tions {̃S12, S̃37} are updated to {̃S∗12, S̃

∗

37} since the correlations
{̃LWit2 , L̃Wit2} are added noise.
Suitable parameter h1 calculation: Since the dynamic

correlation graph class generation is allocated privacy budget
h1ε1, and the noisy correlation calculation is allocated privacy
budget (1− h1)ε1, when h1 is close to 1, the generated graph
classes have high accuracy since they have larger privacy
budget, but the noisy correlations have low data utility even
are unusable. Here, a privacy budget allocation method is
proposed to ensure the data utility. For simplicity, we allocate
the privacy budget (1−h1)ε1

m to each class correlation S(C̃p)
(p ∈ [j,m]). Based on the nature of LDP [37], the class
correlation S(C̃p) follows Lap(

1S(C̃p)m
(1−g1)ε1

) Laplace distribution.
Each class C̃p should have at least two locations since the

correlation S(C̃p) cannot be null. Based on the Lap(1S(C̃p)m(1−g1)ε1
)

Laplace distribution [29], [34], the probability P(h1) that
satisfies S̃(C̃p) > 0 is: P(h1) = 1 − 1

2 exp(−
S̃(C̃p)(1−g1)ε1
1S(C̃p)m

).
According to the Laplace distribution [29], the noisy standard

deviation of a two-dimensional location in C̃p is
4
√
21S(C̃p)
ε1g1

.
To ensure the high probability P(h1) that C̃p has at least two
locations, the noisy class correlation S̃(C̃p) should satisfy

S̃(C̃p) ≥
4
√
21S(C̃p)
ε1g1

. When S̃(C̃p) =
4
√
21S(C̃p)
ε1g1

, thus P(h1)
is:

P(h1) = 1−
1
2
exp(−

4
√
2(1− h1)
mh1

) (2)

D. TASK ALLOCATION
Since the outsourced worker locations L̃Wit = (̃LWit1 ,

· · · , L̃Witm ) contain noise, the SC-server cannot accurately
allocate suitable tasks to nearby workers from the unknown
worker locations. To achieve task allocation with high data
utility, aLinear AcceptanceModel (LAM) is first to proposed.

1) LINEAR ACCEPTANCE MODEL
Following the works in [32], [34], [43], in our paper,
the workers perform tasks voluntarily without considering
rewards. In real SC scenes, since the workers like to perform
nearby tasks and do not want to move large distance to per-
form tasks, thus the move distance is a key for task allocation.
That is, the acceptance rate that a worker can perform tasks
decreases as the move distance increases. Once the distance
between worker location and task location is bigger than the
reachable maximum distance of the worker, the acceptance
rate is 0. For simplicity, we use a linear function to evaluate
the acceptance rate since the acceptance rate decreases as the
distance increases. Therefore, the acceptance rate PA(̃LWitj )
of a worker at location L̃Witj is defined.
Definition 6: (Linear Acceptance Model). Given a

worker’s location L̃Witj and the task location LT , let
d (̃LWitj ,LT ) be the distance between worker location L̃Witj
and task location LT . If the reachable distance outsourced by
the worker Wi is RWi , the acceptance rate PA(̃LWitj ) that the
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worker Wi performs the task T is:

PA(̃LWitj ) =

 1−
d (̃LWitj ,LT )

RWi

, d (̃LWitj ,LT ) ≤ RWi

0, d (̃LWitj ,LT ) > RWi .

Some SC services such as environmental testing [5] and
traffic monitoring [6] may require multiple workers to per-
form the same task. Therefore, we give the acceptance rate
model that multiple workers perform the same tasks.
Definition 7: (Acceptance Rate ofMultipleWorkers). For

n workers, if a task T requires at leat k workers to perform
it and the worker Wi’s acceptance rate is PA(̃LWitj ), thus the
acceptance rate PAkT that at leat k workers perform the task
T is calculated as:

PAkT = 1−
k−1∑
l=0

(
n
l

)
(PA(̃LWitj ))

l(1− PA(̃LWitj ))
n−l

2) ALLOCATED TASK CALCULATION
At the time point tj, upon receiving the task location
LT and all the workers’ obfuscated location information
{(̃LW1tj ,RW1 ), (̃LW2tj ,RW2 ), · · · , (̃LWntj ,RWn )}, the SC-server
searches all obfuscated worker locations to calculate the
workers who close to the task location LT . Therefore,
we should achieve the following two goals: (i) the SC-server
should allocate sufficient workers so that the task can have
high acceptance rate; and (ii) the number of allocated workers
should be as small as possible so that the we can reduce
the system overhead. However, these two goals are in con-
flict. To achieve the balance between the acceptance rate
and the system overhead, a linear acceptance model-based
task allocation (LAMTA) algorithm is proposed as shown
in Algorithm 3. Our LAMTA contains three phases: calcu-
lating the workers who may perform the task, multi-worker
acceptance rate calculation, and task allocation.

First, based on the reachable maximum distance RWi out-
sourced by the worker Wi (i ∈ [1, n]), when the distance
d (̃LWitj ,LT ) between the worker location L̃Witj and task loca-
tion LT is smaller than RWi (Lines 2 to 4 in Algorithm 3),
we consider that it is possible for the worker Wi to per-
form the task T . Therefore, we obtain the workers Wp =

{Wp1 ,Wp2 , · · · ,Wpl } who may perform the task (Line 5).
Second, since a task may require multiple workers to per-

form it, to ensure that the task T can be accepted, we set
threshold σ2 (σ2 ∈ (0, 1]). When multi-workers’ acceptance
ratePAkT ≥ σ2, we consider that these k workers can complete
the task T . To ensure high acceptance rate, according to
the linear acceptance mode, we calculate the acceptance rate

PA(̃LWpr tj ) = 1−
d (̃LWpr tj ,LT )

RWpr
of the workerWpr in the dataset

Wp (r ∈ [1, l]) (Line 6). When at least k workers in dataset
Wp perform the task, these workers’ acceptance rate is:
PAkT = 1−

∑k−1
r=0

(l
u

)
(PA(̃LWpr tj ))

u(1− PA(̃LWpr tj ))
l−u.

Finally, the SC-server performs task allocation. To allocate
sufficient workers and achieve high acceptance rate, we first
sort all the acceptance rates in descending order, denoted
as PA = {PA(̃LWz1 tj

),PA(̃LWz2 tj
), · · · ,PA(̃LWzl tj

)} (Line 7).

Algorithm 3 DCGLO Algorithm
Input: Noisy worker locations

{(̃LW1tj ,RW1 ), (̃LW2tj ,RW2 ), · · · , (̃LWntj ,RWn )},
task location LT , threshold σ2

Output: Allocated workers {Wz1 ,Wz2 , · · · ,Wzk }

InitializeWp = ∅;
for each location LWitj1

do
Calculate the distance d (̃LWitj ,LT );
if d (̃LWitj ,LT ) < RWi then

Wp = Wp
⋃
L̃Witj ;

PA(̃LWpr tj ) = 1−
d (̃LWpr tj ,LT )

RWpr
;

PA = {PA(̃LWz1 tj
), · · · ,PA(̃LWzl tj

)} in descending order;
for each k ∈ [1, l] do

Select the workers with top-r acceptance rates;
PAkT = 1−

∑k−1
v=0

(l
v

)
(PA(̃LWzh tj

))v(1−PA(̃LWzh tj
))l−v;

if PAkT < σ2 then
Goto Line 8;

else
Select the workers {Wz1 ,Wz2 , · · · ,Wzk };
Break;

return {Wz1 ,Wz2 , · · · ,Wzk };

Then we select the worker Wz1 with the maximum accep-
tance rate PA(̃LWz1 tj

). If PA(̃LWz1 tj
) < σ2, we continue to

select the workers {Wz1 ,Wz2} with top-2 acceptance rates,
and calculate the acceptance rate PA2T , this step is continued
to perform when PA2T < σ2 (Lines 8 to 12). To reduce the
system overhead, when PAkT ≥ σ2, we no longer select the
workers. Therefore, the workers {Wz1 ,Wz2 , · · · ,Wzk } with
top-k acceptance rates are allocated to perform the task T
(Lines 13-15). The SC-server returns the allocated results
{Wz1 ,Wz2 , · · · ,Wzk ,LT } to the responding workers for per-
forming the task T .

V. LDPDW SCHEME ANALYSIS
A. PRIVACY ANALYSIS
As described in Section IV, our LDPDW scheme contains
four algorithms: LDPCG, DSLDP, DCGLO and LAMTA.
Since the SC-server performs the LAMTA algorithm from the
obfuscated worker locations and cannot infer the real worker
locations, thus the LAMTA algorithm is secure. Since the
LDPCG algorithm and the DSLDP algorithm all adopt LDP
method by allocating the privacy budgets ε1 and ε2, respec-
tively, thus we will first prove that the LDPCG algorithm
achieves ε1-LDP and the DSLDP algorithm achieves ε2-LDP.
Since the algorithm DCGLO protects the dynamic worker
location privacy based on the the LDPCG algorithm and the
DSLDP algorithm, the DCGLO algorithm will be proved to
satisfy (ε1 + ε2)-LDP. Finally, the LDPDW scheme will be
proved to achieve ε-LDP (i.e., ε = ε1 + ε2).
Theorem 3: Our LDPCG algorithm follows ε1-LDP.
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Proof: Please refer to the Theorem 3 of Appendix C.
Theorem 4: Our DSLDP algorithm achieves ε2-LDP.
Proof: Please refer to the Theorem 4 of Appendix C.

Theorem 5: The algorithm DCGLO achieves
(ε1 + ε2)-LDP.

Proof: As described in Section IV-C, we protect the
dynamic location correlation and location privacy based on
a DCGLO algorithm. For the correlation privacy, DCGLO
generates the noisy graph class structure by allocating the
privacy budget h1ε1, and then uses the privacy budget
(1− h1)ε1 to calculate high correlated locations of all times-
tamps. According to the sequential composition of LDP
in [29], this phase achieves h1ε1 + (1 − h1)ε1 (i.e., ε1)-
LDP. To ensure the dynamic location privacy, the worker
location at each timestamp is allocated privacy budget ε2

m .
For m timestamps, the whole noisy worker locations satisfy
(m× ε2

m )-LDP. In summary, when ε = ε1 + ε2, our DCGLO
algorithm achieves ε-LDP.
Theorem 6: Our LDPDW scheme follows ε-LDP.
Proof: According to previous analysis, the LAMTA

algorithm satisfies 0-LDP since it does not add any noise. The
algorithms LDPCG and DSLDP are static privacy protection
situations.DCGLO is a dynamic privacy protection situation.
Therefore, for the static situation, based on Theorem 3 and
Theorem 4, the LDPCG and DSLDP achieve ε1-LDP and
ε2-LDP, respectively. According to the sequential composi-
tion of LDP in [29], our LDPDW scheme in static situation
follows ε1 + ε2-LDP. In dynamic worker location privacy
case, since DCGLO achieves (ε1 + ε2)-LDP based on above
Theorem 5, thus LDPDW scheme also meets (ε1 + ε2)-LDP.
Let ε = ε1+ ε2, thus our LDPDW scheme follows ε-LDP.

B. TIME COMPLEXITY ANALYSIS
Here, we analyze the time complexities of four algorithms in
our LDPDW scheme, such as algorithms LDPCG, DSLDP,
DCGLO and TAMTA.

First, LDPCG algorithm calculates the correlations
between m locations, and clusters the high-correlated loca-
tions into q graph classes. This requires O(2m2) time com-
plexity. Further, each graph class is added noise. Thus the
total time complexity of LDPCG algorithm is O(2m2

+ q).
Second, for m locations, the algorithm DSLDP first calcu-

lates the distance scores between any two neighbor locations,
which requiresO(m−1) time complexity. Then we obfuscate
each location. Therefore, the total time complexity is (2m−1).

Third, for the dynamic correlation privacy, similar to the
LDPCG algorithm, the DCGLO algorithm first calculates the
l noisy graph classes at first j timestamps. Its time complexity
isO(2j2+l). Then, from j-th timestamp to them-th timestamp,
each graph class is added noise and updated, which requires
O(m− j+ 1). For the dynamic location privacy, the location
of each timestamp is obfuscated. Therefore, the DCGLO
algorithm’s time complexity is O(2j2 + 3(m− j)+ 1).
Finally, for n workers, TAMTA algorithm calculates the

distance between each worker and a task. When the task
requires w workers to perform it, thus TAMTA will need to

FIGURE 5. The effects of different ε1 and σ1 on the LoPub algorithm and
our LDPCG algorithm.

FIGURE 6. The performance evaluation of DSLDP algorithm for
different ε2.

select the workers with top-w acceptance rates. The total time
complexity of TAMTA algorithm is O(n+ w).

VI. EXPERIMENTS
In the following, our LDPDW scheme is evaluated by per-
forming experiments. The python2.7 platform is used to run
our experimental programs, and the experimental environ-
ment is based on the windows system having 8GB memory
and a @2.5GHz Intel Core CPU.

A. EXPERIMENTAL DATASET AND SETUP
Here, our experiments uses a real crowdsourcing dataset
named Gowalla [48]. Similar to the works in [32], [34],
we take the users of Gowalla dataset in San Franciso area
as the workers. The most recent check-ins locations are
the workers’ locations, and the locations of tasks are the
check-ins points except the most recent points. Since our
scheme contains four modules, the proposed scheme is evalu-
ated by the following phases: correlation and location protec-
tion evaluation, dynamic location protection evaluation and
task allocation evaluation. According to the work in [34],
the 90% workers’ maximum move distance is no bigger than
3.6 km, thus we set RW = 3.6km.
Following the parameter settings of works in [32], [34],

[37], the privacy budgets ε1, ε2 ∈ {0.1, 0.2, · · · , 1}. The
correlation threshold σ1 ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. The
budget split h1 ∈ {0.1, 0.2, · · · , 0.9} and the timestamps
m ∈ {10, 20, 30, 40, 50}. We set worker’s acceptance rate
PA = {0.1, 0.2, · · · , 0.9} and task acceptance threshold
σ2 ∈ {0.6, 0.7, 0.8, 0.9}. The number of the workers needed
by the task is set to k ∈ {2, 4, 6, 10}. Since we are the
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FIGURE 7. Effects of ε, m and h1 on the performance of different algorithms in dynamic worker
location protection.

first to consider the privacy-preserving dynamic workers in
SC, based on different parameters, we only evaluate the per-
formance of our scheme without considering comparing the
state-of-the-art static LDP methods.

B. CORRELATION AND LOCATION PROTECTION
EVALUATION
To evaluate the utility of noisy data, the data utility is defined
as: |R∩R̃|

|R| , where |R ∩ R̃| is the number of common elements
between real results and noisy results. The LDPCG algorithm
in Section IV-A protects the location correlation privacy. Thus
we first evaluate the data utility of our LDPCG algorithm
by varying privacy budget ε1 and the correlation threshold
σ1, compared with the performance of the LoPub algorithm
in [37]. In Fig. 5, when ε1 increases, the data utilities of our
LDPCG algorithm and the LoPub algorithm in [37] increase.
This is because we add less noise to the correlated locations
for a larger ε1 so the noisy correlated locations are closer to
the real results. These results are consistent with the nature of
LDP. For the same ε1, our LDPCG algorithm’s data utility is
higher than the LoPub algorithm in [37] since our LDPCG
algorithm only adds noise to the high correlated locations
instead of all locations. In Fig. 5(b), the data utility is larger
when the threshold σ1 is larger. The reason is that only the
locations with higher correlations are added noise when the
σ1 increases, so the less locations in original dataset are added
noise, which results in higher data utility.

Second, for different privacy budget ε2, our DSLDP
algorithm proposed in Section IV-B is evaluated as shown
in Fig. 6. As the ε2 increases, our DSLDP algorithm’s data
utility is gradually decreasing, which is in line with the LDP’s
nature. Especially, when the ε2 = 1, the data utility of our
DSLDP algorithm up to 90.687%. These results show that the
proposed DSLDP algorithm achieves high data utility while
ensuring the worker location privacy.

C. DYNAMIC LOCATION PROTECTION EVALUATION
In Section IV-C, a baseline algorithm that directly uses the
LDPCG and DSLDP algorithms with privacy budget ε

m at
each timestamp and the DCGLO algorithm are proposed
to protect the dynamic correlation and the location privacy.
Here, we evaluate these two algorithms’ performance by

using different privacy budget ε (ε = ε1 + ε2), budget split
h1 and the timestamps m.
First, in Fig. 7(a), for the different privacy budget ε, as ε

increases, the data utilities of the baseline algorithm and the
DCGLO algorithm increase. For a larger ε, we add less noise
to the real results so that the data utility is larger. Besides,
when the ε is the same, our DCGLO algorithm’s data utility
is larger than the baseline algorithm. Since our DCGLO algo-
rithm adopts the optimal privacy budget allocation model,
which can ensure the data utility.

In Fig. 7(b), two algorithms’ data utilities are evaluated
for different m. Our DCGLO’s performance is better than the
baseline algorithm. This is because the privacy budget ε1m of
each location for the baseline algorithm is smaller when m
is larger, which reduces the data utility. The privacy budget
of the noisy correlated locations generated by the DCGLO is
always ε1 for different m, thus our DCGLO algorithm cannot
significantly reduce the data utility.

Our DCGLO algorithm’s data utility is evaluated by vary-
ing h1 as shown in Fig. 7(c). As the ε increases, the data
utility is first gradually increasing and then decreasing. The
reasons are: When the h1 is larger, although the accuracy of
the clustered noisy graph classes is higher, the data utility of
the generated correlated locations is smaller since the smaller
privacy budget h1ε1 is allocated to the location correlation
protection. Especially, when h1 = 0.3, our DCGLO algo-
rithm has higher data utility.

D. TASK ALLOCATION EVALUATION
Most importantly, we evaluate the performance of our
LAMTA algorithm over the Gowalla dataset by varying ε,
acceptance rate PA, acceptance threshold σ2 and the number
k required by the task. The data utility and system overhead
indicators designed by the Section II-C are used to evaluate
the task allocation performance of LAMTA algorithm.

1) THE EFFECTS OF ε AND PA
First, different ε and PA affects the data utility and system
overhead of our LAMTA algorithm as shown in Fig. 8. For
the Fig. 8(a), when ε increases, the LAMTA algorithm’s data
utility increases. The reason is that a larger ε results in the
noisy locations with higher data utility so that the allocated
results have high accuracy, which is consists with the previous
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FIGURE 8. Effects of different ε, and PA in task allocation.

FIGURE 9. Effects of different ε and σ2 in task allocation.

FIGURE 10. Effects of different ε and k in task allocation.

results. When ε is the same, the data utility is larger for a
larger PA since the workers are more like to perform the task.
In Fig. 8(b), the system overhead of our LAMTA algorithm
decreases when ε increases. This is because LAMTA algo-
rithm allocates a smaller of number of workers for obtaining
the same acceptance rate when the ε is larger. When ε is the
same, the system overhead is gradually decreasing for a larger
PA since the less workers are allocated.

2) THE EFFECTS OF ε AND σ2
Here, our LAMTA algorithm’s data utility and system over-
head are evaluated in Fig. 9. The data utility is larger when
the ε is larger. For the same ε, as the σ2 increases, the data
utility is larger. The reason is that more number of workers
are required to perform tasks for a larger σ2. In Fig. 9, both
the data utility and the system overhead are larger when ε
and σ2 increase. This is because the larger ε and σ2 require
allocating more workers.

3) THE EFFECTS OF ε AND k
In Fig. 10, as the k increases, the data utility and the system
overhead of our LAMTA algorithm all increases. This is
because more workers are allocated to perform a tasks for

a larger k . Besides, when the k is the same, for a larger ε,
the data utility is larger and the system overhead is smaller
since the allocated results contain less noise and less workers
are allocated. Particularly, when ε = 1, PA = 0.9 and
k = 2, the data utility achieves the maximum value and
the system overhead achieves the smallest value, they are
91.816% and 19.997, respectively. These results show that
our LAMTAalgorithm can allocate high-quality tasks and has
high efficiency.

VII. RELATED WORKS
At present, there are many privacy-preserving methods to
research the worker location privacy in spatial crowdsourc-
ing. In the following, these methods will be reviewed and
they mainly contain three categories: anonymous methods,
encryption methods and differential privacy methods.

A. ANONYMOUS AND ENCRYPTION METHODS
There are some state-of-the-art anonymous methods, which
can ensure that the SC-server allocates tasks without knowing
the identities of the workers. To protect the location pri-
vacy, Alharthi et al. [23] proposed a DCentroid framework
that adopts a dummy-based anonymous method to calcu-
late dummy locations in SC. In [24], Shu et al. proposed a
single-keyword task allocation method to protect the location
privacy and identity privacy based on anonymous method.
The work in [25] designed a ZebraLancer system to imple-
ment the data and anonymous identity protection in decen-
tralized SC services. However, although these anonymous
can provide the worker privacy protection, the anonymous
method may be vulnerable caused by the strong background
knowledge attacks and the reference attacks [27], [28].

Another traditional privacy-preserving method known as
encryption methods are used to ensure the worker location
privacy in SC services. Zhang et al. [14] proposed an addi-
tive homomorphic encryption method that can protect the
both tasks and workers’ location privacy in vehicle-based SC
applications. Yuan et al. [20] proposed a grid-based attribute
encryption method to achieve the privacy-preserving location
privacy in SC without depending on a TTP. In [21], Wu et al.
introduced a fog-assisted SC framework to allocate the tasks
based on homomorphic encryption method. In [22], Xiao
et al. protected the location privacy and allocated the workers
with winning bids based on a secure reverse auction proto-
col. However, these homomorphic encryption methods do not
have high efficiency [26]. Besides, the users who are trusted
but have no keys cannot access to the data encrypted by the
encryption methods, thus the data availability is limited by
the encryption methods [32].

B. DIFFERENTIAL PRIVACY METHODS
Different from the traditional anonymousmethods and homo-
morphic encryption methods, differential privacy (DP) meth-
ods [27], [29]–[32] become popular and have been used to
ensure the location privacy of workers. For example, To et al
[33], [34] proposed a PSD method to protect the location
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privacy of workers in SC. In [35], Gong et al. adopted a
cellular service provider (CSP) to protect the location and
reputation privacy of workers by using a reputation-based DP
method. Wang et al. [36] published the noisy crowdsourced
data based on an agent-based DP framework. However, these
DPmethods protect the worker location privacy by relying on
a TTP. The worker location privacy may be leaked once the
TTP is attacked.

To remove the TTP, the works in [37]–[39], [41] adopted
LDP methods to allow the users to protect their own data
privacy without relying on a TTP. In [40], Wang et al.
introduced a distortion geo-obfuscation method to ensure
the task allocation privacy. The work in [42] protected
the location privacy in vehicle-based SC system based on
a geo-indistinguishability method. To et al. [43] proposed
a LDP framework to protect the worker location privacy
based on geo-indistinguishability. However, these LDPmeth-
ods only protect the worker location privacy in static case
without considering dynamic location privacy. In practice,
the dynamic worker locations are outsourced to the SC server
[43], [44], and public dynamic worker locations can increase
the privacy disclosure risk [34], [43]. Therefore, in our paper,
we propose a LDPDW scheme to locally protect the dynamic
worker location privacy and achieve high-quality task
allocation.

VIII. CONCLUSION
In this paper, we explore using LDPmethod to solve the prob-
lems of locally privacy-preserving dynamic worker locations
in SC. A LDPDW scheme is proposed to achieve the dynamic
worker location locally and the high-quality task allocation.
In our LDPDW scheme, the high correlated locations are
added noise based on a LDPCG algorithm, which protects
the location correlation privacy. Then a DSLDP algorithm is
proposed to obfuscate the worker locations. To achieve the
tasks with high acceptance rates, we use a linear acceptance
model (LAM) to allocate the tasks to the nearby workers,
which reduces the system overhead. Furthermore, we pro-
pose a DCGLO algorithm to perform the dynamic worker
location obfuscation, which ensures the correlation privacy
and the worker location privacy. Privacy analysis and exten-
sive experiments confirm that our LDPDW scheme achieves
ε-LDP and has high data utility.

.

APPENDIX A
Theorem 1. For each original class Cl = {LWitl1

,LWitl2
,

· · · ,LWitlv }, when the correlation score between the loca-
tions LWitlj

and LWitlk
is Sjk , thus the query sensitivity

1S(Cl) = max
LWitlj

,LWitlk
∈Cl

(Sjk ) ≤ 1.

Proof: Given the original class Cl = {LWitl1
,LWitl2

,

· · · ,LWitlv }, we can obtain its neighboring class C∗l =
{L∗Witl1

,L∗Witl2
, · · · ,L∗Witlv

} when any correlation edge Sjk
(j, k ∈ [1, v]) in Cl is deleted. Therefore, when r 6= j and
p 6= k , the correlation score Srp = S∗rp. The correlation
S∗rp = 0 when r = j and p = k . According to the Eq. (1), any

correlation Srp, S∗rp ∈ [0, 1]. Based on the query sensitivity
Definition 3 in Section III, thus the correlation sensitivity
1S(Cl) is calculated as:

1S(Cl) = max
Cl ,C∗l

(‖S(Cl)− S(C∗l )‖1)

= max
Cl ,C∗l

(
v∑
r,p

‖Srp − S∗rp)‖1)

= max
LWitlj

,LWitlk
∈Cl ,L∗Witlj

,L∗Witlk
∈C∗l

(|Sjk − 0|)

= max
LWitlj

,LWitlk
∈Cl

(Sjk )

≤ 1

Based on the nature of LDP, since our query sensitivity
is smaller, which can add less noise to the correlations
of dynamic locations. It means that our LDPCG algorithm
ensures the data utility while protecting the correlation
privacy.

APPENDIX B
Theorem 2. Given an original location dataset LcWit =

(LcWit1
, · · · ,LcWitm ), for two neighbor locations LcWitj and

LcWitj+1
, their distance score is DStj . Thus the query sensitivity

1DS(LcWit ) = max
LcWitj ,L

c
Witj+1

∈LcWit
(DStj + DStj+1) ≤ 2.

Proof: For the original datasetLcWit = (LcWit1
, · · · ,LcWitm ),

based on the LDP, the neighboring dataset Lc∗Wit =

(Lc∗Wit1
, · · · ,Lc∗Witm ) is obtained by arbitrarily deleting a loca-

tion LcWitj in L
c
Wit . According to the distance score definition,

the DStk ≤ 1 (k ∈ [1,m]). When k = j = 1, it means
that the 1-th location LcWit1

is deleted, thus DS∗t1 = 0 and
DStk = DS∗tk (k ∈ [2,m − 1]). According to the query
sensitivity definition 3 in Section III, the 1DS(LcWit ) =
max

LcWit ,L
c∗
Wit

|DS(LcWit ) − DS(Lc∗Wit )|1 = DSt1 . Similarly, when

the last location LcWitm is deleted, thus DS∗tm−1 = 0 and
DStk = DS∗tk (k ∈ [1,m − 2]). The query sensitivity
1DS(LcWit ) = max

LcWit ,L
c∗
Wit

|DS(LcWit ) − DS(Lc∗Wit )|1 = DStm−1 .

When we delete the location LcWitj from the second location to
the (m−1)-th location, and if j = k ,DS∗tj = 0 andDS∗tj+1 = 0.
Otherwise, DStk = DS∗tk (k ∈ [2,m−2]). Based on the query
sensitivity Definition 3 in Section III, thus the distance score
sensitivity 1DS(LcWit ) is calculated as:

1DS(LcWit ) = max
LcWit ,L

c∗
Wit

(‖DS(LcWit )− DS(L
c∗
Wit )‖1)

= max
LcWit ,L

c∗
Wit

(
m−2∑
k=2

‖DStk − DS
∗
tk‖1)

= max
LcWitj ,L

c
Witj+1

∈LcWit
|DStj + DStj+1 − 0|

= max
LcWitj ,L

c
Witj+1

∈LcWit
(DStj + DStj+1)

≤ 2
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Since DSt1 < max(DStj + DStj+1 ) and DStm−1 <

max(DStj + DStj+1), the query sensitivity 1DS(LcWit ) =
max

LcWitj ,L
c
Witj+1

∈LcWit
(DStj + DStj+1 ) ≤ 2.

APPENDIX C PRIVACY PROOF
Theorem 3. Our LDPCG algorithm follows ε1-LDP.
Proof: As described in Section IV-A, LDPCG generates high
correlated graph classes {C1,C2, · · · ,Cq} and low correlated
locations Llow(Wi). To protect the correlation privacy, each
class Cl (l ∈ [1, q]) is added noise and the low correlated
locations Llow(Wi) do not add noise. Based on the LDP, for
each Cl , we delete any correlation edge in Cl to obtain a
neighboring graph C∗l = {L

∗
Wil1

,L∗Wil2
, · · · ,L∗Wilk

}. To protect

the privacy, the class Cl is added Ul × Lap(1S(Cl )
ε1

) Laplace
noise based on our LDPCG algorithm, where Uj satisfies the
Bernoulli distribution so Pr(Ulj ) = Pr(U∗lj ) =

1
2 . Accord-

ing to the Theorem 1 in Section IV-A, the query sensitivity
1S(Cl) = max

LWitlj
,LWitlk

∈Cl
(Sjk ) ≤ 1. Since LDPCG(Cl) =

LcWil
= {LcWil1

,LcWil2
, · · · ,LcWilk

}, we have:

Pr[LDPCG(Cl) ∈ LcWil
]

Pr[LDPCG(C∗l )) ∈ L
c∗
Wil

]
=

Pr[LDPCG(LWilj
)]× Pr[Uj]

Pr[LDPCG(L∗Wilj
)]× Pr[U∗j ]

=

k∏
p,j=1

ε1
21S e

(− ε1
1S |L

c
Wilj
−Sjp|)

k∏
p,j=1

ε1
21S e

(− ε1
1S |L

c
Wilj
−S∗jp|)

=

k∏
p,j=1

exp(
ε1

1S
(|LcWilj

− S∗jp|

−|LcWilj
− Sjp|))

≤ e(
ε1
∑k
p,j=1(|Sjp−S

∗
jp)|)

1S(Cl )
)

≤ exp(
ε11S(Cl)
1S(Cl)

) = eε1

Based on the LDP Definition 1 in Section III, the
algorithm LDPCG(Cl) follows ε1-LDP. Similarly, the algo-
rithms {LDPCG(C1), · · · ,LDPCG(Ck )} all achieves ε1-LDP.
Besides, since low correlated locations Llow(Wi) are not added
noise, LDPCG(Llow(Wi)) achieves 0-LDP. Based on the par-
allel combination principle of LDP in [29], our LDPCG
algorithm follows ε1-LDP since max(ε1, 0) = ε1.
Theorem 4. Our DSLDP algorithm achieves ε2-LDP.
Proof: For the dataset LcWit

= {LcWit1
,LcWit2

, · · · ,LcWitm
},

the noisy locationsDSLDP(LcWit
) = L̃Wit = {̃LWit1

, · · · , L̃Witm
}

are obtained in Section IV-B, in which each noisy loca-

tion L̃Witj
= LcWitj

+ Lap(
1DS(LcWit )

ε2
) × ϒj, where query

sensitivity 1DS(LcWit ) = max
LcWitj ,L

c
Witj+1

∈LcWit
(DStj + DStj+1 )

and ϒj follows the follows Bernoulli distribution. Simi-
lar to the proof of Theorem 3, the neighboring dataset
Lc∗Wit

= {Lc∗Wit1
,Lc∗Wit2

, · · · ,Lc∗Witm
} and Pr[ϒt ] = Pr[ϒ∗t ].

We prove:

Pr[DSLDP(LcWit
) ∈ L̃Wit ]

Pr[DSLDP(Lc∗Wit
)) ∈ L̃Wit ]

=
Pr[DSLDP(LcWit

)]× Pr[ϒt ]

Pr[DSLDP(Lc∗Wit
)]× Pr[ϒ∗t ]

=

m−1∏
j=1

e
(− ε2

1DS |̃LWitj
−(DStj+DStj+1 )|)

m−1∏
j=1

e
(− ε2

1DS |̃LWitj
−(DS∗tj+DS

∗
tj+1

)|)

=

m−1∏
j=1

e
( ε2
1DS (|̃LWitj

−(DStj+DStj+1 )|−|̃LWitj
−(DS∗tj+DS

∗
tj+1

)|))

≤ e
(
ε2
∑
limitsm−1j=1 (|DStj+DStj+1−DS

∗
tj
−DS∗tj+1

|)

1DS(LcWit
)

)

≤ exp(
ε21DS(LcWit )

1DS(LcWit )
) = eε2

Therefore, our DWLDP algorithm achieves ε2-LDP based on
the LDP in [29].
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