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ABSTRACT Optimal planning of integration the Photovoltage Distributed Generation (PV-DG) and
DSTATCOM is a crucial task due to the stochastic variations of PV output power and the load demand
which are related to solar irradiance variations and the activities of the customers, respectively. In this
article, the optimal planning problem of the PV-DG and DSTATCOM system is solved. The proposed
model considers the uncertainties of the solar irradiance and the load demand for a multi-objective function,
including the cost reduction, the voltage profile, and stability index improvement. Modified Ant Lion
Optimizer (MALO) is proposed to enhance the basic ALO searching ability using two strategies. The first
strategy is based on Levy Flight Distribution (LFD) to strengthen the exploration of the algorithm and avoid
the premature of the basic ALO. In contrast, the second strategy is based on updating the solutions in a spiral
orientation to improve the exploitation of the algorithm. The IEEE 69-bus and 118-bus radial distribution
systems are used to demonstrate the effectiveness of the proposed method, and the yielded simulations are
compared with the basic ALO and other well-known optimization techniques for power loss minimization
under deterministic conditions. The simulation results demonstrate that the techno-economic benefits can
be increased considerably by optimal inclusion of two PV-DGs and DSTATCOMs compared with a single
system.

INDEX TERMS Distributed generators, PV, DSTATCOM, optimal planning, uncertainty, electrical distri-
bution.

I. INTRODUCTION
A. LITERATURE SURVEY
Integration of renewable distributed generators and the shunt
compensators is an effective solution from technical and eco-
nomic perspectives. Several renewable-based technologies
have been progressed to generate the required electricity,
including wind turbine, biomass, solar thermal, solar PV,
geothermal and hydro systems [1]. Distribution Flexible AC
Transmission System(D-FACTS) are also widely embedded
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in the distribution grid [2]. D-FACTS include numerous
controllers such as Distribution Static Var Compensator
(D-SVC), unified power quality conditioner (UPQC), and
Distributed static compensator (DSTATCOM) [3]. The inclu-
sion of DGs can yield several economic, technical, and envi-
ronmental benefits. It can also reduce the power loss, reduce
the voltage deviation, maximize the system reliability, and
decrease the emissions of greenhouse gases, dimmish the
generation cost [4].

DSTATCOM is an efficient device working on a voltage
source converter connected in shunt to a certain bus. DSTAT-
COM is better than the other shunt compensation devices;
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this is due to its fast response to inject or absorb reactive
power through injection of a controllable voltage as well
as its capability to mitigate the system harmonic, the load
balance, and improving the system performance consider-
ably. Furthermore, it has not any operational problems such
as transient harmonics or resonance, unlike series or shunt
capacitors [3], [5], [6].

The optimal integration of DSTATCOM in distribution
grids has been presented in many papers. In [7], the immune
algorithm has been employed to assign the siting and sizing of
the DSTATCOM for cost and loss reduction. In [8], Harmony
Search Algorithm has been implemented to optimize the site
and size of the DSTATCOM for loss reduction. In [5], Differ-
ential evolution (DE) technique has been applied for optimiz-
ing the site and size of the DSTATCOMwith optimal network
reconfiguration for losses reduction. The binary gravitational
search technique has been employed to assign the site and
size of the DSTATCOM for enhancement [9]. The authors
in [10] have applied the imperialist competitive algorithm
to determine the optimal site and capacity of the DSTAT-
COM for a multi-objective function under uncertainties of
the load demand. A Bio-Inspired Cuckoo Search technique
has been used for optimizing the allocation of the DSTAT-
COM for loss reduction under different load models [11].
In [12], the whale optimization algorithm has been applied for
optimizing the allocation of DSTATCOM in the distribution
network. In [13], the differential evolution algorithm has been
used to assign the location and size of DSTATCOM for cost
and loss reduction. The site and size of the DSTATCOM
are allocated to reduce the losses and boost the stability
and the voltage profile using a multi-objective sine cosine
Algorithm [14]. The Fuzzy-GA based algorithm has been
employed to optimize the allocation of the DSTATCOM for
reducing losses and the total cost [14], [15].

The motivation of using PV-DG comes from several
aspects compared with other types of RERs: 1) no moving
parts are needed, 2) high reliability with at least a 25-year
warranty, 3) less conspicuous than a wind turbine 4) less
susceptible to high wind damage and 5) requires less space
in most cases as the panels can be installed on a roof 6)
the mutual relationship of environment, economic and power
network performance is strongly interrelated for this type.
Numerous efforts have been presented to allocate the PV-DG
in the power system. In [16], the optimal allocation of the
PV-DG and DSTATCOM is assigned using a fuzzy approach
and ant colony algorithm. The PSO has been employed to
allocate the DSTATCOM and DG for reducing the losses and
support the voltage [17]. The Bacterial Foraging Optimiza-
tion technique has been applied to assign the DSTATCOM
and DG to minimize the cost, the losses, and the voltage
profile [18]. In [19], the DSTATCOM and DG allocation is
solved using the lightning search algorithm for loss reduc-
tion and boosting the voltage profile and stability. In [20],
the optimal PV, DSTATCOM, and energy storage unit has
been assigned optimally for voltage profile and reliability
improvement, and cost minimization. The authors in [21]

have applied the whale optimization algorithm to optimize
the sites and sizes of the DSTATCOM and DG to reduce
cost and losses. In [22], the DSTATCOM and DGs allocation
has been optimized the hybrid lightning search algorithm
with the simplex method for reducing cost, loss, and voltage
deviations. In [23] the authors applied the Harris Hawks
Optimization algorithms to assign the optimal location and
sizes at different values of the power factors.

Incorporating renewable distributed energy resources
(RDERs) in distribution networks such as solar PV units
is challenging due to seasonal and daily variations of the
solar irradiance and the weather variations that increase the
uncertainty in the power system. Thus, it is mandatory to
consider the uncertainties of the RDERs for efficient planning
in the power system. Several efforts have been presented to
integrate the DGs under the uncertainties. In [24], the optimal
planning problem has been solved with RDERs consider-
ing uncertainties of solar radiation, load demand, and wind
speed. The authors in [25] assigned the DGs’ optimal size
and site under uncertainties of the RDERs fuel price and
future load growth. In [26]–[29], The optimal reactive power
dispatch problem has been solved under the uncertainties
of renewable sources. In [30]–[34], the optimal site and a
rating of the RDERs have been assigned optimally under
uncertainties of the solar radiation, wind speed, and load
demand.

Ant Lion Optimizer (ALO) is an efficient technique based
on the ant lion’s hunting behavior. It should be highlighted
here that the ALO algorithm includes the main two tech-
niques (i.e., population-based search strategy and local-based
search strategy) to produce an intelligent technique that
can search effectively by the two main search strategies
(global exploration and local exploitation). Compared to the
other meta-heuristic methods, ALO algorithm is easy, simply
implemented, and adjustable. Thus, the ALO is applied for
solving the planning problem.

Thus, ALO has been employed in solving many optimiza-
tion problems [35]–[37]. However, ALO succeeded in solv-
ing several optimization problems; it suffers from stagnation
in some cases. Insequent, several modified and improved ver-
sions of the ALO have been emerged to enhance the searching
abilities of the conventional ALO. Z. Wu et al. presented
an improved ALO version based on chaotic sequence for
assigning individual initial location for realizing the param-
eter of the solar PV model [38]. In [39], a modified ALO
has been presented, which is based on Lévy flight to opti-
mize the feature selection. The authors in [40] proposed a
hybrid binary ALO with hill-climbing techniques for feature
selection. S.K. Dinkar and K. Deep presented an opposition
Laplacian ALO for Gear Train Design and Capacity of Gas
Production Facilities [41]. In [42], the authors have proposed
a modified version of the ALO based on the chaotic mapping
approach to recognize and State of Charge evaluation of
NMC Cells. S.K. Dinkar and K. Deep presented a modified
version of the ALO based on opposition learning with Lévy
Flight [43]. In [44], a modified ALO version is based on

26542 VOLUME 9, 2021



E. S. Oda et al.: Stochastic Optimal Planning of Distribution System Considering Integrated Photovoltaic-Based DG and DSTATCOM

chaotic maps to optimize the feature selection. The author
in [45] presented a consensus algorithm with multiagent sys-
tem which has been applied to distributed generators in the
Energy Internet for improving and increasing the energy uti-
lization. In [46], a line impedance cooperative stability region
method for grid-tied inverters under weak grids has been
presented.

It is worth mentioning that the Levy Flight Distribu-
tion (LFD) application has been proposed earlier. However,
it is still applied widely to enhance the exploration of opti-
mization algorithmswhere the application of the LFD enables
the population to jump to new areas to avoid stagnations of the
optimization algorithms [47]–[50]. Also, populations’ spiral
movement around the best solution is an efficient approach
for enhancing the exploitation phase and search abilities of
several optimization algorithms [51]–[53]. Thus, in this arti-
cle, a modified Ant Lion Optimizer (MALO) is proposed
for enhancing the searching ability of the basic ALO using
Levy Flight Distribution (LFD) and spiral orientation of the
population to strengthen the exploration and exploitation of
the basic ALO.

Solving the optimal power planning in the distribution
system with the DGs and the compensators has drawn
researchers’ attention in the last decades. Due to uncertain-
ties of load and solar irradiance, the power planning under
uncertainties in the power system becomes difficult to solve in
actual implementation. To address this issue, the uncertainties
of the solar irradiance and load demand have been modeled.
An efficient optimization approach has been proposed and
applied for solving this problem working on an improved
version of the ALO.

B. CONTRIBUTION OF PAPER
It should be highlighted here that most of the presented works
related to optimal allocation of DG andDSTATCOMproblem
have been solved at the deterministic condition or solving
the optimal power planning considering the technical and the
economic perspective separately. In this article, the optimal
power planning problem with integration of the PV-DG and
DSTATCOM has been solved considering uncertainties of
the solar irradiance and load demands of four seasonal (sum-
mer, winter, spring, autumn) variations of these parameters.
Besides that, an improved version of the ALO is proposed to
solve the planning problem based on Levy flight distribution
and spiral orientation. The main contributions are summa-
rized as follows:
• Solving the optimal planning problem in the distribu-

tion system under optimal integration of the PV-DG and
DSTATCOM.

• Considering the uncertainties of the load demand and
solar radiation in four seasons based on three years of
historical data.

• Proposing a modified ALO version for solving the pre-
sented problem based on two improvements includes
the spiral movement around the best solution and the
levy flight-based motion.

• The mathematical model of the optimal planning prob-
lem is formulated as a multi-objective optimization
problem that includes the total annual cost and voltage
deviations reductions and stability enhancement.

• The obtained outcomes clearly indicate that scenario 2
(Optimal installation of two-hybrid systems) is more
effective in optimal planning.

C. PAPER LAYOUT
The paper is organized as follows: Section II ‘Problem For-
mulation’ described the considered objective function along
with the constraints. Section III ‘Uncertainty modeling’
explains the strategy of considering the uncertainty of the
load and the solar irradiance. Section IV ‘Ant LionOptimizer’
gives an overview of the ALO. Section V ‘Modified Ant Lion
Optimizer’ depicts the concept of the MALO. Section VI
‘simulation results’ shows the yielded results by application
theMALO. Finally, SectionVII ‘Conclusion’ summarizes the
outcomes of the paper.

II. PROBLEM FORMULATION
A. THE OBJECTIVE FUNCTION
The main presented task of this work is maximizing the
techno-economic benefits of optimal planning of integration
of the PV-DG andDSTATCOM in the power system. It should
be highlighted here that the planning period is carried out for
three years where the uncertainity of the load demand and
solar irradiance are considered in the four seasons in which
each season includes 91.25 days. The objective function to
be minimized is a multi-objective function including the cost
reduction, the voltage profile, and stability index improve-
ment, which can be formulated as follows:

min F = min (ω1×Obj1 + ω2×Obj2 + ω3×Obj3) (1)

where Obj1, Obj2, and Obj3 denote cost reduction, voltage
deviations minimization, and voltage stability index (VSI )
enhancement, respectively. ω, ω2, and ω3 represent the
weighting factors. Summation of theweighting factors should
be formulated as follows:

|ω1| + |ω2| + |ω3| = 1 (2)

in which:

Obj1 =
CostWith
CostWo

(3)

Obj2 =
TVDWith
TVDWo

(4)

Obj3 =
1∑NB

n=1 VSIn
(5)

where CostWo and TVDWO denote the total cost and sum-
mation voltage deviations without inclusion PV-DG or
DSTATCOM, respectively. CostWith denotes the total annual
cost, which can be formulated as follows:

CostWith = CostLoss + CostGrid + CostS + CostPV (6)
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where CostLoss, the energy power loss, CostGrid , CostPV and
CostSare the cost of the energy losses, the cost of the injected
energy at the substation, the installation cost of the PV unit,
and the installation cost of the DSTATCOM, respectively. in
which

CostLoss = Closs × 91.25×
Ns∑
i=1

24∑
h=1

NT∑
j=1

PLoss(i,h,j) (7)

where Closs denotes the cost of the energy loss. Ns equals
4, which represents the number of seasons per year. NT
represents the number of the network branches. The power
loss in each transmission line is given as follows:

PLoss = Rn,n+1

(
P2n + jQ

2
n

|Vn|2

)
(8)

The cost of the power injection at the substation which is
expressed as follows:

CGrid = CGrid × 91.25×
Ns∑
i=1

24∑
h=1

PGrid(i,h) (9)

The installation cost of the DSTATCOM is expressed as
follows:

CostS = CS × QS ×
(1+ α)Ns × α

(1+ α)Ns − 1
(10)

where QS denotes the rated kVar of the DSTATCOM; CS
represents the capital cost of DSTATCOM; Ns is the lifetime
of the DSTATCOM in years; α denotes the asset rate of return
DSTATCOM. The installation cost of the PV system includes
fixed cost (CostFix) and the variable cost (CostVar ) which can
be represented as follows:

CostPV = CostFix + CostVar (11)

CostFix = CR× CPV × Pr (12)

where CPV , Pr , and CR are the purchased cost of the PV unit
in $/kW, rated power of the PV system, and capital recovery
factor, which can be founded as follows:

CR =
τ × (1+τ )NP

(1+τ )NP − 1
(13)

where τ is the rate of interest on capital investment of the
installed PV; NP is the lifetime of the PV-DG in years;
CostVar is calculated as follows:

CostVar = CO&M ×
Ns∑
i=1

24∑
h=1

PPV (i,h) (14)

where CO&M denotes the operation and maintenance cost,
which is associated with the output kWh of the PV unit; PPV
represents the output power of the PV unit, which can be
given as follows:

PPV =


Pr
(

G2
s

Gstd×Xc

)
for 0 < Gs ≤ Xc

Pr
(
Gs
Gstd

)
for Xc ≤ Gs ≤ Gstd

Pr GSTD ≤ Gs

(15)

where Gs and Gstd are the solar irradiance in W/m2 and
standard solar irradiance environment, which is 1000 W/m2,
respectively. Xc represents a certain irradiance point. The sec-
ond objective function is enhancing the voltage profile by
diminishing the voltage deviations, which can be expressed
as follows:

TVD = 91.25×
Ns∑
i=1

24∑
h=1

∑NB

n=1
|Vn − 1| (16)

where TVD is the summation of voltage deviations while NB
denotes the number of buses. The third considered function
is enhancing the stability by maximizing the voltage stability
index (VSIn) as follows:

TVSI = 91.25×
Ns∑
i=1

24∑
h=1

∑NB

n=1
VSIn (17)

in which:

VSIn = |Vn|4 − 4 (Pmn+1Xn − Qn+1Rn)2

−4 (Pn+1Xn + Qn+1Rn) |Vn|2 (18)

B. THE SYSTEM CONSTRAINTS
1) EQUALITY CONSTRAINTS
The equality constraints represent the balanced powers as
follows:

PSlack +
NPV∑
i=1

PPV ,i =
NT∑
i=1

Ploss,i +
NB∑
i=1

PL,i (19)

QSlack +
NDS∑
i=1

QDS,i =
NT∑
i=1

Qloss,i +
NB∑
i=1

QL,i (20)

where PSlack andQSlack are the active and the reactive powers
from the substation, respectively. PL and QL are the active
and reactive load demands, respectively. NPV is the number
of PV unit while NDS denote to number DSTATCOM in the
grid.

2) INEQUALITY CONSTRAINTS

Vmin ≤ Vi ≤ Vmax (21)

In ≤ Imax,n n = 1, 2, 3 . . . ,NT (22)
NPV∑
i=1

PPV ≤
NB∑
i=1

PL,i (23)

NDS∑
i=1

QDST ,i ≤
NB∑
i=1

QL,i (24)

where Vmin is the minimum voltage limit while Vmax repre-
sents the maximum voltage limit. Imax,n denotes the maxi-
mum limit of current in line number n.

III. UNCERTAINTY MODELING
This section describes the uncertainty modeling of the PV
and load demand. The probabilistic generations of the load
demand and each PV unit have been modeled based on the
location’s hourly historical data under research. Three years
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of hourly historical data for solar irradiance and load demand
have been considered in this work. Therefore, every single
year has been divided into four seasons. A daywithin a season
(24−h) is considered for characterizing the stochastic behav-
ior of the PV and load demand during this season. Hence,
each year has 96 time periods (4 seasons× 24 − h). For each
season, the probability distribution function (pdf) of each
period can be obtained by utilizing the data related to the same
hours of the day. Consequently, each period has 270 solar
irradiances and load demand (3 years×3 months per season
×30 days per month) to generate the corresponding hourly
pdfs. The probabilistic model of the PV system and load
demand can be characterized as follows.

A. SOLAR IRRADIANCE MODELING
The data of the solar irradiance for each hour have been used
to generate a Beta pdf for that hour and can be described as
follows [44], [45]:

fb (gs)

=


0(α+β)
0(α).0(β)

g(α−1)s . (1− gs)(β−1) , 0 ≤ gs ≤ 1;α, β ≥ 0

0, Otherwise

(25)

where fb (gs) denotes the Beta pdf of the solar irradiance; 0
represents the gamma function; α and β are the Beta param-
eters for each period. These parameters can be determined
using the historical data as follows [27], [54]:

β = (1− µ)×
(
µ× (1+ µ)

σ 2 − 1
)

(26)

α =
µ× β

1− µ
(27)

where µ and σ are the mean and standard deviation of the
solar irradiance for each period. The continuous Beta pdfs are
split into numerous segments where each segment generates
a mean value and a probability of occurrence. The occurrence
probability of a segment during a specific hour can be deter-
mined by:

probgsi =

gs,i+1∫
gs,i

fb (gs) dgs,i (28)

where gs,i and gs,i+1 represent, respectively, the start and
endpoints of the interval i. probgsi represents the probability
occurrence of interval i. Based on the generated Beta pdf of
the solar irradiance of a period, the output power PV for this
period’s states can be calculated using (15).

B. LOAD DEMAND MODELING
As the load demand has a stochastic nature, normal pdf is
utilized for modeling it at each bus. The normal pdf of the
uncertain load demand can be determined as follows [44]:

fn (l) =
1

σl
√
2π
× exp

[
−

(
l − µl
2σ 2

l

)]
(29)

w where fn (l) represents the normal pdf of the load demand;
µl and σl represent the mean and standard deviation of the
load demand for each period. The occurrence probability of a
segment during a specific hour can be expressed as follows:

probli =

li+1∫
li

fn (l) dl (30)

where li and li+1 denote the starting and ending points of
the interval i. probli represents the probability occurrence of
interval i.

C. COMBINED MODEL OF PV AND LOA
The probabilistic models of the solar irradiance and load
demand given in subsections A and B are utilized to create
a combined probability model (Pcom,i) of PV-load. For each
time period, the combined model of the interval i can be com-
puted by convoluting the probabilities of the solar irradiance
and load demand, as follows:

Pcom,i = probgsi ×prob
l
i (31)

For each state, the objective function given in (1) should
be calculated and weighted according to the probability of
occurrence (i.e., combined probability model) of this state
during the whole planning period. Each time segment repre-
sents one hour. This means that each time period there are
several values for each variable. However, for the sake of
simplicity, we have only shown the expected or mean values
of the variables.

IV. ANT LION OPTIMIZER
Ant Lion Optimizer (ALO) is a population-based optimiza-
tion technique presented by Seydali Mirjalili in 2015 [35].
ALO simulates the hunting behavior of Ant Lion and the
interaction between the prey or the ants and the predator ant
lions where the ant lions build circular traps to hunt the ants.
The ants move in a stochastic pattern to search for their foods.
Themathematic model of the stochastic movement of the ants
is formulated as follows:

A. RANDOM MOVEMENT OF AN ANT
The random movement of the ant is described using the
following equation:

X (t) = [0, cumsum(2r(t1)− 1), cumsum(2r(t2)

−1), cumsum(2r(tn)− 1)] (32)

where x(t) represents the location of the ant at the t-th itera-
tion. cumsum denotes the cumulative sum. N is the maximum
number of iterations. r(t) denotes a random which can be
given as follows:

r(t) =

{
1 if r and> 0.5
0 if r and≤ 0.5

(33)

The min-max normalization equation is utilized for keeping
the ants move in random walks inside the search spaces,
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which can be described as follows:

Rti =

(
X ti−ai

)
×
(
U t
i − L

t
i

)
di − ai

+ Li (34)

here Rti denotes the location of the i-th ant after random walk
closed to j-th antlion. U t

i and L
t
i are the upper and the lower

boundaries of i-th variable at t-th iteration, respectively. ai and
d i represents theminimum and themaximum steps of random
walk, respectively. The ants will update their positions based
on a random walk, and they will be trapped in the ant lion pit.
The positions of ants are listed in a matrix as follows:

MAnt=


X1,1 X1,2
X2,1 X22

· · · X1d
· · · X2,1

...
...

Xn,1 Xn,2

. . .
...

. . . Xn,d

 (35)

The corresponding objective functions for each vector of the
ant positions are listed as follows:

ObjAnt=


f1
(
X1,1,X1,2, . . . ,X1d

)
f2
(
X1,1,X1,2, . . . ,X1d

)
...

fn
(
X1,1,X1,2, . . . ,X1d

)
 (36)

The search agents (ant positions) are sorted, and the best
agents are selected as antlions, which are listed as follows:

MAntlion =


AL1,1 AL1,2
AL2,1 AL22

· · · AL1d
· · · AL2,1

...
...

ALn,1 ALn,2

. . .
...

. . . ALn,d

 (37)

B. TRAPPING IN ANT LION PITS
The effects antlions’ traps on the ant movement can be math-
ematically represented as follows:

L ti = Antliontj+L
t
i (38)

U t
i = Antliontj+U

t
i (39)

C. SLIDING ANTS TOWARDS ANT LIONS
When the ants trapped in the pit of the antlion, the upper and
the lower bound should reduce with the increase of iteration
as follows:

U t
i =

U t
i

I
(40)

L ti =
L ti
I

(41)

where I represent a ratio that can be described as follows:

I = 10ω
t
T

(42)

where T and t denote the maximum number of iterations and
the current iteration. ω represents a constant which can be

described as follows:

ω =



2t > 0.1T
3t > 0.5T
4t > 0.75T
5t > 0.9T
6t > 0.95T

(43)

D. ELITISM
The elitism in optimization algorithmmeans the best solution
(best antlion) is saved as an elite, which guide the motion of
the populations in the iteration process, and can be formulated
as follows:

X tj =
RtA+R

t
E

2
(44)

where RtA denotes the random walk closed to the best antlion
using the roulette wheel for t-th iteration. RtE denotes the
position of randomly walking of the j-th ant, nearby the best
or the elite antlion (E) in the swarm of ants.

E. CATCHING PREY AND REBUILDING THE PIT
The final stage of hunting behavior of ant lions is catching an
ant that reaches the pit’s bottom. It has to update its position
to the latest position by the following equation.

Antliontj = Ant tj if f
(
Ant tj

)
> f (Antliontj ) (45)

V. MODIFIED ANT LION OPTIMIZER (MALO)
MALO is based on enhancing the basic ALO’s searching
capability by enhancing the exploration and the exploitation
process. The exploration phase is enhanced by applying Levy
flight distribution (LFD), enabling the algorithm to jump to
new areas to avoid the basic ALO’s stagnation.

Xnewi = Xi+ ∝ ⊕Levy (β) (46)

where ∝ represents a random step parameter; ⊕ respre-
sents the entry-wise multiplication. β represents a parameter
related to the LFD. The step size is described as follows:

∝ ⊕Levy (β) ∼ 0.01
u

|v|1/β

(
X ti − Antlion

t
j

)
(47)

where u and v denote variables obtained by normal distribu-
tion as:

u ∼ N
(
0, φ2u

)
, v ∼ N

(
0, φ2v

)
(48)

φu =

[
0 (1+ β)× sin (π × β/2)

0 [(1+ β) /2]× β

]1/β
, φv = 1 (49)

where 0 is the standard gamma function; 0 ≤ β ≤ 2.
The exploitation process of the algorithm is enhanced by

updating the location of ants around the elite (best) solution
in a spiral path as follows:

Xnewi =

∣∣∣Antliontj − Xi∣∣∣ ebt cos (2π t)+ Antliontj (50)

b represents a constant which used for definining the loga-
rithmic spiral shape. To balance between the exploitation and

26546 VOLUME 9, 2021



E. S. Oda et al.: Stochastic Optimal Planning of Distribution System Considering Integrated Photovoltaic-Based DG and DSTATCOM

FIGURE 1. Flow chart of application of the MALO for optimal planning.

the exploration, an adaptive operator is used for this sake as
depicted in the following:

A(t) = Amin +
(
Amax − Amin

T

)
× t (51)

where, Amax and Amin are the maximum and the minimum
A limits. This value is changed dramatically from Amax to
Amin. When the value of A is closed to Amin, the position of
the populations will be updated using (46) for enhancing the
exploration of this technique while when the value of A is
closed to Amax the position of the populations will be updated
using (50), which enhance the exploitation of this technique.
The application of the proposed algorithm for solving the
planning problem is depicted in Fig. 1.

VI. SIMULATION RESULTS
In this section, the proposed algorithm is applied for solv-
ing the optimal power problem for optimal allocation of a
hybrid system (PV-DG and the DSTATCOM) under uncertain
conditions. Two test systems are utilized to incorporate the
hybrid system, which includes IEEE 69-bus and 118-bus
systems. The single line diagrams of the IEEE 69-bus and
118-bus systems are depicted in Fig. 2 and Fig.3, respectively.
The system’s data are given in [55] and [56], respectively.
The initial power flow solutions of these systems are shown
in Table 1 and Table 2. The proposed technique was written
usingMATLAB software (MATLAB) in core I7, and 8 GB of
RAM. The empirical parameters of theMALO for the studied
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FIGURE 2. Single line diagram of the IEEE 69 bus.

TABLE 1. The system specification of 69-bus systems and its initial power
flow.

TABLE 2. The system specification and initial power flow.

cases are selected to be the maximum number of iterations
= 100, number of populations = 25, Amax = 0.85 and
Amin = 0.4. The studied cases are listed as follows:

A. CASE 1: OPTIMAL INSTALLATION OF PV SYSTEM
UNDER THE DETERMINISTIC CONDITION
In this case, to state the ALO and the MALO’s effectiveness,
these techniques have been examined on the standard IEEE
69-bus to assign the optimal locations and ratings of the PV
units for power loss minimization. Single, two, and three
PV units are installed optimally, and the obtained results
are compared with other reported techniques. The obtained
results are listed in Table 3. Judging from this table, the power
losses are reduced considerably with the increasing number
of the installed PV units. Referring to the comparison of
Table 4, it clear that the obtained power losses by MALO are

better than ALO and the reported algorithms, which verifies
the effectiveness of the proposed algorithm. The convergence
characteristics of the MALO is shown in Fig. 4. This figure
illustrates that the proposed algorithm has excellent and sta-
ble convergence characteristics where there is no oscillation
appeared. The trends of the power losses vs. iteration number
with incorporating a single DG are converged at iteration
numbers 5, 15, 10 and 43 by applying the proposed method,
ALO, and the modified teaching–learning-based optimiza-
tion (MLBO) algorithm [57]. The trends of the power losses
vs. iteration number in the case of incorporating two DGs is
converged at iteration number 12, 15, 15, 35, 60, 41 using the
proposed method, ALO and the modified teaching-learning
based optimization (MLBO) algorithm [57], Genetic Algo-
rithm (GA) [58], Particle Swarm Optimization (PSO) [58],
and Cuckoo Search algorithm (CSA). In the case of the
inclusion of three DGs, the objective function is converged at
iteration number 12,23, 25 and using the proposed method,
ALO, and the modified teaching-learning based optimization
(MLBO) algorithm [57]. The previous comparison verified
that the proposed algorithm reached to the optimal solution
faster than reported algorithms.

B. CASE 2: OPTIMAL PLANNING UNDER UNCERTAINTIES
OF SYSTEM
1) IEEE-69 BUS SYSTEM
In this case, the optimal planning problem is solved using
the proposed algorithms under the uncertainties of the con-
nected load and solar irradiances on IEEE 69 bus-system.
The optimal planning problem is solved for a multi-objective
function, including the cost reduction, the voltage profile, and
stability index improvement. It should be pointed out here
that three years of hourly historical data of load demand and
solar irradiance have been considered in this article. Based
on this, every single year has been split into four seasons.
To characterize the stochastic behavior of the PV and load
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FIGURE 3. Single line diagram of the 118-bus system.

TABLE 3. Results of optimal allocation of PV units for loss reduction.

demand during each season, a day within that season (24−h)
is considered. Thus, each year has 96 time periods (4 seasons
× 24 − h). The obtained load profiles and solar irradiance
under uncertain conditions are depicted in Fig. 5 and 6.

At the base case (without the inclusion of PV or DSTAT-
COM), the total cost, TVD, and TVSI are 1.24867E+4 p.u,
5.48787E+5 p.u, and 2.70673E+6 $ respectively. The
optimal planning problem is solved with the inclusion
of single and two PV-DGs and DTSTACOMs using the

proposed algorithm. The cost data of the PV-DG and the
DSTATCOM are listed in Table 5. The simulation results for
optimal integration of a single and two hybrid PV-DG and the
DSTATCOM are listed in Table 6 and Table 7, respectively.

In case of inclusion a single hybrid system, the total
cost is reduced considerably to 2.5012E+06$ or by 7.59%
compared to without insertion PV-DG or DSTATCOM as
well as the TVD is reduced to 6.0753E+3 p.u (51.35%)
and the TVSI is enhanced to 5.7645E+5 p.u (5.04 %).
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TABLE 4. Comparative results for incorporating PV in the 69-bus system.

Besides that, the drawn energy from the grid and the
energy losses are reduced considerably. The hybrid system’s
assigned best location is at the 58th bus, while the size of
the PV-DG and DSTATCOM are 3389kW and 2691kVAR,
respectively.

The output power of the PV unit is depicted in Figure 7.
It is evident that the output power of the PV unit follows
the changes in the solar irradiance. Judging from Table 6,
the obtained results by the proposed algorithm are better than
those obtained by the conventional ALO, SCA, WOA, and
GOA in terms of the cost, TVD, and TVSI . In this case,
two-hybrid systems are embedded in the IEEE 69-bus distri-
bution system. According to Table 7, the total cost is reduced

FIGURE 4. The convergence characteristic of the ALO and MALO for
power loss minimization with incorporating (a) Single PV unit, (b) Two PV
units, and (c) Three PV units.

FIGURE 5. The seasonal hourly load profile.

TABLE 5. The cost coefficients of the PV-DG and the DSTATCOM.

considerably to 2.41485E+6 $ or by 10.78 % compared to
the base case, and the TVD is reduced to 5.300667E+3 p.u
(57.55%), and the TVSI is increased to 5.801994E+5 p.u
(5.72 %). The assigned best locations of the hybrid systems
for this case are at the 61st bus and the 12th bus, while the
sizes of the first PV-DG and DSTATCOM are 1646 kW and
1987kVAR, respectively.
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TABLE 6. The simulation results of the inclusion of single PV-DG and DSTATCOM in the 69-bus system considering the system’s uncertainties.

FIGURE 6. The seasons solar irradiance variations.

FIGURE 7. The hourly output power of the PV unit.

FIGURE 8. The output power of the first PV unit.

The sizes of the second PV-DG and DSTATCOM are
2155kW and 707kVAR, respectively. The first and second
PV units’ output power are depicted in Figures 8 and 9,
respectively.

Referring to figures 8 and 9, the output power of PV
units are varied during the day ahead with solar irradiance
variations.

Fig. 10 shows the power losses under uncertain condi-
tions. Referring to Fig. 10, the minimum power losses are
obtained by the inclusion of two-hybrid systems. Fig. 10 the
voltage profile of the system incorporating the PV-DGs and
DSTATCOMs in four seasons. According to Fig. 11, it is clear

FIGURE 9. The output power of the second PV unit.

FIGURE 10. The power losses under uncertain conditions.

that the voltage profile is enhanced considerably with the
inclusion of two-hybrid systems comparedwith the base case.
Table 7 shows a comparison between the obtained results by
the proposed algorithm, the conventional ALO, SCA, WOA,
and GOA in terms of the cost, TVD, and TVSI . Judging
from Table 7, the outcomes by application of the proposed
algorithm are better than the reported algorithm.

2) IEEE-118 BUS SYSTEM
In this case, the proposed algorithm is applied for solving
the optimal power planning problem under uncertainty con-
ditions for the 118-bus system as a large-scale system. The
system load profile and solar irradiance for this case under
uncertain conditions are also depicted in Fig. 5 and Fig. 6,
respectively. The optimal power planning problem solution
is assessed by incorporating single and two-hybrid systems.

The outcomes for this case are listed in Table 8. At the base
case (without the inclusion of PV or DSTATCOM), the total
cost, TVD, and TVSI are 1.61300E+7 p.u, 3.5605E+4 p.u.
and 8.93320E+5 p.u., respectively. In the case of the
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FIGURE 11. The voltage profile of the 69-bus system by incorporating the PV-DGs and DSTATCOMs in (a) Spring, (b) Summer, (c)Autumn
(d) Winter.

TABLE 7. The simulation results of the inclusion of two PV-DGs and DSTATCOMs in the 69-bus system considering the system’s uncertainties.

TABLE 8. The simulation results of the inclusion of the PV-DGs and DSTATCOMs in the 118-bus system considering the system’s uncertainties.

inclusion a single PV-DG and DSTATCOM, the total cost and
the TVD are reduced to 1.47990E+7 $ and 2.5869E+4 p.u.,

respectively.While theTVSI is enhanced to 9.34980E+5 p.u.
The hybrid system’s optimal location is at bus number 64,
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FIGURE 12. The voltage profile of 118-bus system by incorporating the PV-DGs and DSTATCOMs in (a) Spring, (b) Summer, (c)Autumn
(d) Winter.

FIGURE 13. The hourly output power of the single PV unit in the 118-bus
system.

FIGURE 14. The output power of the first PV unit in the 118-bus system.

while the optimal ratings of the PV-DG and DSTATCOM are
22709 kW and 14642 kVAR, respectively. The voltage profile
for this is illustrated in Fig. 12. From this figure, the voltage

FIGURE 15. The output power of the second PV unit in the 118-bus
system.

profile is enhanced with the inclusion a single PV-DG and
DSTATCOM.The output power of the PV unit for this case is
depicted in Fig. 11. According to this figure the output power
is changed hourly with variations of the solar irradiance.
In case of incorporating two PV-DGs and DSTATCOMs in
system, the total cost and the system performance is enhanced
considerably where the total cost and the TVD are reduced to
1.465397E+7 $ and 2.1244E+4 p.u. respectively. While the
TVSI is enhanced to 9.51969E+5p.u.

VII. CONCLUSION
In this study, the optimal planning and assessment of inte-
gration a hybrid system including PV- DG and DSTATCOM
have been addressed considering the seasonal variations of
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the load demand and the solar irradiance. The stochastic
nature of load demand and the solar irradiance are correctly
modeled using normal and Beta probability density func-
tions. A modified Ant lion optimizer (MALO) has been
proposed based on the Levy Flight Distribution and spi-
ral orientation movement of the populations to improve the
conventional ALO searching abilities. The proposed MALO
applied to assign the optimal site and size of a multi-objective
function has been considered, including the cost reduction,
the voltage profile, and stability index improvement. The
proposed method has been implemented on IEEE 69-bus and
118-bus systems. A comparison for power loss minimization
at deterministic conditions has been carried out to verify the
proposed technique’s effectiveness.

The simulation results reveal the following conclusions:

� The proposed MALO enables a robust and powerful
tool for optimal planning of PV-DG and DSTATCOM
in the distribution system.

� The proposed MALO is superior for loss reduction
compared with the state-of-the-art algorithms.

� Optimal incorporating a single hybrid PV-DG and
DSTATCOM in the 69-bus system can minimize the
total annual cost, the voltage deviations by 7.59 % and
51.35%, respectively. The voltage stability is enhanced
by 5.05 %compared with the base case while optimal
incorporating two-hybrid PV-DG andDSTATCOMcan
minimize the total annual cost, the voltage deviations
by 10.78 % 57.55%, respectively. Also, the voltage
stability is enhanced by 5.72 % compared with the base
case.

� In optimal incorporation, a single hybrid PV-DG and
DSTATCOM in the 118-bus system can minimize the
expected cost, the voltage deviations by 8.25 % and
27.34%, respectively. The voltage stability is enhanced
by 4.66 %compared with the base case, while optimal
incorporating of two hybrid PV-DG and DSTATCOM
can minimize the total annual cost, the voltage devi-
ations by 9.151 % and 40.33 %, respectively. Also,
the voltage stability is enhanced by 6.57 % compared
with the base case.

The future work related to optimal integration of PV-DG and
DSTATCOM is solving the optimal power planning problem
by considering multi types of energy storage systems such as
batteries, hydro pump, compressed air, Fuel cell, and super-
conducting magnetic energy storage. Besides that, solving
this problem in the presence of the plug-in vehicles.
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