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ABSTRACT Key classes have become excellent starting points for developers to understand unknown
software systems. Up to now, a variety of approaches have been proposed to mine key classes in a software
project. Many of them are based on a network representation (namely, software networks) of the software
projects. However, the software networks they used are usually un-weighted and un-directed, which is not
consistent with the reality in a real software project where the coupling actually has direction and strength.
Worse still, the number of key class candidates returned by existing approaches is usually very large. Thus,
it is usually infeasible for developers to start the comprehension process from these classes, especially when
there are tight time and resource constraints. To tackle these problems, in this paper, we propose an approach
namedMinClass, toMine key Classes in Java projects by examining a very small number of classes. First, the
software structure at the class level is represented by a weighted directed software network, which considers
both the coupling strength and direction between every pair of classes. Second, we propose a newmetric, OSE
(One-order Structural Entropy), and use it to calculate the importance of each class in the system. Finally,
we sort classes in descending order according to their OSE values, and a small number of top-ranked classes
are treated as the key class candidates identified byMinClass. Experiments are performed on six open-source
Java projects, and comparison studies with other eight state-of-the-art approaches are also performed. Results
show that, although no one method performs best in all software systems, MinClass is the most promising
one. It performs best in the whole set of software systems according to the average ranking of the Friedman
test. Thus, MinClass is a valuable technique that can be used to mine the key classes.

INDEX TERMS Complex network, key classes, static analysis, program comprehensions.

I. INTRODUCTION
Software is always born to solve real problems, but real
problems and requirements are always changing [1]. There-
fore, software needs continuous adjustments and evolution
to be adapted to changes in the real world. Understanding a
software project is usually the first step for software engineers
to adjust and modify it. We usually call this behavior software
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maintenance, which has been the most costly part of the
software life cycle [2]. If developers can quickly understand
the unknown software project, then they can reduce the cost
of software maintenance timely. Obviously, understanding
the core components of a software project is a good entry
point to help developers quickly familiarize themselves with
unknown systems [3].

Before the rise of object-oriented (OO for short) software
projects, developers always understood software projects
from the perspective of modules. When OO software projects
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TABLE 1. Properties of the subject software system.

became mainstream, developers usually first understood the
key classes of software projects [4]. Software documentation
can provide new developers with relevant information about
key classes. However, in practice, most software development
teams do not provide complete and detailed documentation.
Therefore, we need to obtain the key classes of a soft-
ware project through other approaches instead of relying on
documents [3].

Complex networks provide a new perspective for identify-
ing key classes of software projects [5]–[7]. The identification
of key nodes is an important topic in the field of complex
network research [8]. When a software project is referred to
as software network (i.e., nodes represent classes (interfaces),
and edges represent relationships between classes (inter-
faces)) [9]–[11], we can use techniques in the complex net-
works to identify key classes in software projects, and many
interesting results have been reported [3]–[18]. However,
there are many shortcomings in the literature. For one thing,
the software networks they used are usually un-weighted and
un-directed, which is not consistent with the reality in a real
software project where the coupling actually has direction
and strength. For another, the existing work usually used a
threshold 15% to mine the key classes, i.e., the top-ranked
15% classes are treated as key classes. However, even 15% is
used, the number of key class candidates returned by existing
approaches is still very large. For example, even for a small
software project Ant (see Table 1) with only 900 classes, if a
threshold 15% is applied, the existing approaches will rec-
ommend 135 classes as key classes. Thus, it is still infeasible
for developers to start the comprehension process from the
135 classes, especially when there are tight time and resource
constraints.

The aim of this paper is to apply the key node identification
technology in complex networks to software networks, so as
to provide developers with an ordered list of a small number
of key classes (we use term classes to denote both classes and
interfaces from here on) for an unknown software project.
To this aim, we propose an approach, named MinClass,
to Mine key Classes in Java projects by examining a very
small number of classes. First, the software structure at the
class level is represented by a weighted directed software
network, which considers both the coupling strength and
direction between every pair of classes. Second, we propose

a new metric, OSE (One-order Structural Entropy), and use
it to calculate the importance of each class in the system.
Finally, we sort classes in descending order according to
their OSE values, and a small number of top-ranked classes
are treated as the key class candidates identified by Min-
Class. Experiments are performed on six open-source Java
software projects, and comparison studies with eight other
state-of-the-art approaches are also performed. Results show
that, although no one method performs best in all software
projects,MinClass is themost promising one. It performs best
in the whole set of software projects according to the average
ranking of the Friedman test.

The contribution of this work can be summarized as
follows:

• We propose a new problem on key class identification,
i.e., identifying key classes by only examining a very
small of classes in a specific software project.

• We propose a new metric OSE to measure the impor-
tance of classes in the software network. It is a metric
which is based on both the weight on the link and the
direction of the link. Our metric characterizes much
more information of the software structure.

• We provide a replication package for the experiments
performed in our empirical studies. Interested read-
ers can use the data set and tool therein to replicate
our research (see https://github.com/SEGroupZJGSU/
MinClass).

The rest of this paper is structured as follows: Section II
briefly summarizes the related work on identifying key
classes in software projects, and Section III introduces our
software network and OSE metric in detail. Section IV
provides the experimental validation of our approach, with
focus on the answering of our raised research questions.
In Section V, we give the conclusion remark and discuss the
future work.

II. RELATED WORK
Many results on key class identification have been reported
in the last few years. These studies can be roughly clas-
sified into two groups, i.e., approaches based on dynamic
analysis and approaches based on static analysis. For the
approaches based on dynamic analysis, they heavily depend
on the dynamic execution scenarios of the target Java project.
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FIGURE 1. The framework of our MinClass approach.

Thus, to perform the task, it is the first step to obtain complete
execution scenarios, which is usually infeasible in practice,
especially for large-scale software projects in the sense that to
obtain all possible execution scenarios in an acceptable time
period seems impossible. For the approaches based on static
analysis, the data set required for a specific approach is easy
to be collected. Thus, compared with the approaches based
on dynamic analysis, approaches based on static analysis
have great potential to be applied in practice. In this work,
we mainly discuss the studies which are based on static
analysis.

Zaidman et al. [3] used the HITS (Hypertext Induced Topic
Selection) webmining algorithm to mine key classes from a
software project. Perin et al. [5] modeled the software struc-
ture as a directed graph, and then leveraged the PageRank
algorithm to mine key classes. Zhou et al. [6] modeled the
software structure as a dependency graph, and leveraged the
h-index and its invariants to mine key classes. Steidl et al. [7]
modeled the software structure of a software project as a
dependency graph, and characterized the properties of classes
using some metrics such as betweenness, PageRank, and
HITS so as to mine key classes. Osman et al. [12] lever-
aged machine learning algorithms to mine key classes by
compressing the class diagram of the target software project.
Thung et al. [13] improved the performance of Osman et al.’s
approach by combining design metrics and network metrics
together in the learning processes. Meyer et al. [14] mod-
eled software projects as software networks and leveraged
k-core decomposition to mine key classes. Jiang et al. [15]
measured the importance of classes using finite state machine
approach. Şora and Chirila [16] compared the performance
of different approaches such as PageRank, HITS and Degree
in the key-classes identification problem, and recommended
to use network metrics to mine key classes in practice.
Pan et al. [17] represented software projects as software
networks at class level, and proposed a generalized k-core
decomposition algorithm to compute the coreness of each
class in the software network, which is further used to
mine the key classes. Vale and Maia [18] proposed a
semi-automatic way, Keecle, to collect key classes in a target
software project; it is based on a dynamic analysis of the
subject system.

III. THE MINCLASS APPROACH
The framework of our MinClass approach is shown
in Figure 1. The MinClass approach mainly includes three

parts: (1) software structural information extraction: analyz-
ing the software source code to obtain structural information;
(2) software network definition: defining a weighted directed
software network and using it to formally represent the struc-
tural information; and (3) OSE metric definition: defining an
OSE metric and using it to measure the importance of each
class in a software system. In the following subsections we
will elaborate on the main parts of our approach.

A. SOFTWARE STRUCTURAL INFORMATION EXTRACTION
MinClass also follows the line of approaches based on static
analysis to mine key classes from a target software project.
Thus, it also relies on the structural information enclosed in
the source code of the target project. To extract the structural
information and further represent it as a software network,
we refer to our own-developed software analysis platform
SNAP (Software Network Analysis Platform) [17]. SNAP
can extract software structural information, and also contains
many network analysis and visualization functions. In this
section, we use SNAP to extract various software elements
(e.g., classes, interfaces, attributes, methods, and local vari-
ables) and their coupling relationships (e.g., inheritance rela-
tion, implementation relation, and method call relation) in
the target software project. Note that, in this work, we only
consider the software elements which are actually defined
in the target project, i.e., software elements which are only
referenced are ignored.

B. SOFTWARE NETWORK DEFINITION
After extracting the structural information of a target project,
we use a weighted directed network CCN (Class Coupling
network) to formally describe it. In the CCN, we did not
distinguish classes from interfaces, and regarded them as
the same kind of elements, i.e., the term class (or classes)
designates both the classes and interfaces. When a class uses
the services provided by another class, a directed link will be
established in the CCN to represent the coupling between the
two classes. The weight on the link represents the coupling
strength between the two classes. Thus, CCN can be formally
defined as

CCN = (N ,L),

where N is the node set, each of which denotes a class
in the target projects; L is the link set, each of which
denotes the coupling between a specific pair of classes. Note
that, in the CCN, we consider a total of seven types of
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FIGURE 2. A simple code snippet (the left part) and its corresponding CCN (the right part).

couplings between classes, i.e., inheritance relation (INR),
implements relation (IMR), parameter relation (PAR), global
variable relation (GVR), method call relation (MCR), local
variable relation (LVR), and return type relation (RTR). These
couplings are very common in Java projects.

We use a simple example shown in the left part of Figure 2
to illustrate the seven types of couplings that we consider in
this work. As shown in Figure 2, there is an INR coupling
between classes Dog and Animal since Dog extends Animal
(see line 14); there is an IMR coupling between class Animal
and interface Name since Animal implements Name (see line
6); there is aPAR coupling between classesBabyDog andDog
since the constructor of BabyDog has a parameter with type
ofDog (see line 24); there is aGVR coupling between classes
BabyDog and Dog since BabyDog has an attribute with type
ofDog (see line 23); there is aMCR coupling between classes
BabyDog and Dog since the method faterName of BabyDog
calls the method myName of Dog father (see line 26); there
is a LVR coupling between classes Dog and BabyDog since
a local variable myBabyDog of type BabyDog is defined
in Dog (see line 16). These coupling types are mapped to
different links in the corresponding CCN (see the right part
of Figure 2).

In the CCN, we assign weights to the links between every
pair of classes if they interact with each other. These weights
are used to represent the coupling strength between the cor-
responding class pairs. Obviously, two classes may interact
with each other via multiple coupling types (see the couplings
between classes Dog and BabyDog), and different types of
couplings may differ in strength. Thus, how to compute the

weights to express the strength of multiple couplings between
classes is a question worth exploring.

Abreu et al. [19], [20] proposed an object approach to
quantify the strength of different coupling types by tracing
the intra- and inter-module distribution of different coupling
types in the whole software project. Specifically, the coupling
strength for different coupling types is computed as follows:

wr

=


10, N r

intra 6= 0 ∧ N r
inter=0

1, N r
intra=0 ∧ N

r
inter=0

Round(0.5+ 10×
N r
intra

N r
intra+N

r
inter

), otherwise,

(1)

where r ∈ {INR, IMR,PAR,GVR,MCR,LVR,RTR} is a
specific coupling type; wr is the strength assigned to the
coupling of type r ; N r

intra and N
r
inter are the count of intra- and

inter-module coupling, respectively. Round(x) is the rounded
integer of x.
As mentioned above, there might exist more than one cou-

pling types between a specific pair of classes. For example,
in Figure 2, classes Dog and BabyDog have a total of three
coupling types, i.e.,GVR,PAR andMCR. Furthermore, differ-
ent coupling types may have different coupling frequencies.
Thus, in this work, the final weight on each link is computed
as follows:

wij =
∑

r
f rij × wr , (2)

where f rij is the count of the coupling of type r on the link <

ci, cj > (r ∈ {INR, IMR,PAR,GVR,MCR,LVR,RTR}), and
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wr is the strength of the coupling of type r , which is computed
according to their intra- and inter-module distribution. For
example, there is only one instance of IMR between class
Animal and interface Name. Thus, according to formula (1),
wIMR equals to 10, and the final weight on the link equals to
10 (see the right part of Figure 2).

C. OSE
As mentioned above, in the CCN of a target software project,
the weight on the link is used tomeasure the coupling strength
between two classes, and the direction is used to represent the
coupling direction. Thus, as an effectivemetric tomeasure the
importance of classes in software systems, it should consider
both the coupling strength and coupling direction between
classes. Specifically, when designing a metric to measure
class importance, we should take the following characteristics
into consideration:
• The difference in the coupling strength between class
nodes in the CCN: the coupling strength between nodes
is neglected in the traditional un-weighted networks, and
is regarded as the same. Weighted networks use weights
on the links to quantify the coupling strength between
classes. Generally, the weights on links are often not
the same, which will affect the relative importance of
different classes.

• The difference in the number of neighbors of different
class nodes in the CCN: different nodes often have
different numbers of neighbors, and such a difference
may affect the importance of different classes.

• The difference in the distribution of weights on the
links between class nodes and their neighbors: differ-
ent classes often have different neighbor sets, with the
weight sets on all the links between these class nodes and
their neighbors also being different. Thus, the weight-
distributions of class nodes and their neighbors are dif-
ferent, whichmight greatly affect the importance of class
nodes.

• The difference in the importance of neighbors of class
nodes: different class nodes have different neighbors,
and the importance of neighbors is usually different.
Neighbors with difference importance will make differ-
ent contributions to the importance of class nodes. Thus,
we should consider the difference in the contributions
that a specific neighbor makes to the class nodes.

In this work, we propose a newmetric namedOSE to measure
the importance of classes. OSE can be formally defined as:

Pxw =
wxw

/
wmax∑

y∈in(w) wyw
/
wmax

, x, w ∈ N , (3)

hw=
(
1−

∑
x∈in(w)

(Pxw lnPxw)
)∑

x∈in(w)
wxw

/
wmax,

w ∈ N , (4)

OSEw= hw +
∑

v∈in(w)

(
wvw

/
wmax∑

u∈on(v) wvu
/
wmax

hv

)
, w ∈ N ,

(5)

where N is the class node set in the CCN; x and w are two
class nodes in N ; in(w) is the in-neighbors of class w; on(v)
is the out-neighbors of class v; wxw is the weight on the link
< x,w >; OSEw is the OSE of class w; wmaxis the maximum
weight on the links in the CCN.

Note that our OSEmetric takes all the three characteristics
that we have mentioned above into consideration. Specif-
ically, MinClass considers the difference in the coupling
strength between classes by containing wxw in formula (5),
considers the difference in the number of neighbors by con-
taining in(w) and on(v) in formulae (3), (4) and (5), considers
the difference in the distribution of weights on the links by
containing
−
∑

x∈in(w) (Pxw lnPxw) in formula (4), and considers the
difference in the importance of neighbors by considering∑

v∈in(w)

(
wvw

/
wmax∑

u∈on(v) wvu
/
wmax

hv

)
in formula (5).

Note that, for some special classes like utility classes, they
might be used by a lot of other classes and thus might be
identified by OSE as key classes, even if these classes do
not contain much functionality. As mentioned above, our
approach ignores the referenced software elements. Thus,
the referenced simple utility classes will be ignored. But for
the utility classes defined in the target project, even if they
are very simple, they might still be identified as key classes,
thus affecting the performance of our approach. OSE cannot
differentiate these simple utility classes from the classes in
the target project and filter them out. Generally, filtering out
these simple utility classes can improve the performance of a
specific approach, but it is not the focus of this work.

Figure 3 give a simple example to show our process to
compute the value of OSE. We take node B as an example.
First, we compute the value of hw(w ∈ {A,B,C,D,E,F})
of each node according to formula (3) and formula (4), and
the results are shown in the middle part of Figure 3. After
all the results are obtained, the results are substituted into the
formula (5) (see the right part of Figure 3) to compute OSEB,
which is the value of OSE for class B.

D. CLASS IMPORTANCE SORTING
After obtaining the OSE values of all the classes in the
target software project, we sort all the classes in the CCN in
descending order. Then a threshold k is used to mine the key
classes, i.e., classes with a rank less than k (i.e., top-k) will be
regarded as the key class candidates returned by MinClass.

IV. EMPIRICAL STUDY
In this section, we perform a set of experiments on six
Java projects to validate the effectiveness of our MinClass
approach.

A. SUBJECT SOFTWARE PROJECTS
We use a total of six Java projects (see Table 1) as our
subject systems to validate our MissClass approach. The six
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FIGURE 3. Illustration of the process to compute OSE.

TABLE 2. The number of different coupling types and the strength of each coupling type using the form as number of intra-couplings |number of
inter-couplings|strength of the coupling type.

Java projects are regarded as the benchmark systems in the
literature, which are widely used to validate the effectiveness
of any approach on key classmining. The source code of these
projects is downloaded from their homepages.

In Table 1, column System shows the name of the subject
Java projects, column Version shows the version of the cor-
responding software project that we analyzed, column LOC
is the line of code in the system, and columns # packages,
# classes(# enums), # methods, and # attributes denote the
number of packages, classes (enums), methods, attributes in
the subject system, respectively. Column URLs shows the
URL used to download the corresponding software system.
Note that LOC does not contain the number of comments and
blank lines; # classes contains the number of interfaces, inner
classes and anonymous classes. Table 2 shows the number of
intra-couplings, number of inter-couplings, and the strength
of the corresponding coupling type. The three values are
separated by ‘‘|’’.

B. RESEARCH QUESTIONS
To validate the effectiveness of our MinClass approach,
we focus on the following two research questions (RQs):
• RQ1: Is our MinClass approach better than the existing
approaches? There are many related approaches on min-
ing key classes in software projects. Thus, we will per-
form a set of experiments to check whether our approach
is better than the related approaches in the literature.

• RQ2: Does the MinClass approach have good scalabil-
ity? As a feasible approach on mining key classes in
software projects, MinClass should have the ability to
be applied to software projects of different scale. Thus,
we will perform a set of experiments to check whether

our approach has the ability to be applied to software
projects with a large number of classes.

C. EVALUATION METRICS
Any approaches on mining key classes organize the classes
in a target software project into two groups, i.e., key classes
and non-key classes. The key classmining problem is actually
a binary classification problem. Thus, in this work, we use
the two metrics, precision and recall for the comparison of
different approaches.

For the key classes mining problem, its corresponding
confusion matrix is shown in Figure 4, where TP denotes
the number of key classes in the reference set which are
also predicted by a specific approach as key classes, FP
denotes the classes which are not in the reference set but are
predicted by a specific approach as key classes, FN denotes
the number of key classes in the reference set which are
not predicted as key classes by a specific approach, and TN
denotes the number of classes which are not in the reference
set and are also predicted as non-key classes by a specific
approach. Based on the definitions of TP, FP, FN and TN,

FIGURE 4. The confusion matrix for the key classes mining approach.
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TABLE 3. Comparison of the results obtained by the approaches applied to ant.

the evaluation metrics, precision and recall can be defined
as [22]

precision =
TP

TP+ FP
, (6)

recall =
TP

TP+ FN
, (7)

Note that the reference set is composed of the true key classes
in the target software project. In this work, the true key classes
are retrieved from the design documents, where the original
developers explicitly provided a short description to give an
overview of the key classes of the target project in free texts
or diagrams. Generally, the true key classes can be found in
the sections of architectural overview, core of the system, and
introduction for developers in the design documents.

D. BASELINE APPROACHES
As we have reviewed in the related work, there are
many approaches on mining key classes in software
projects. We select a total of eight approaches as
our baseline approaches, i.e., PageRank [5], [7], [16],
HITS [3], [7], Betweenness [7], Coreness [14], [21],
InDeg (In-Degree) [16], OutDeg (Out-Degree) [16], Deg
(Degree) [16], and ICOOK (Identifying key Class candi-
dates in OO software using generalized K-core decom-
position) [17]. We do not select other approaches as
baline approaches mainly because we cannot replicate their
approaches easily duing to the lack of sufficient information
to implement their approaches. These approaches can be
briefly described as follows:

• PageRank: PageRank has been widely used to measure
the node importance in networks, and also has been used
to measure class importance. In this work, we compute
PageRank values of all class nodes in the CCN of the
target software project.

• HITS: HITS (Hyperlink-Induced Topic Search) is an
algorithm to rate Web pages by computing two scores
(i.e., Hub and Authority) for each node in a network.
In this work, we compute the Authority values of class
nodes in the CCN as their importance.

• Coreness: the k-core is defined on a un-weighted net-
work, which is the largest subgraph whose nodes with a
degree> k . Then the coreness of a node is k if it belongs
to k-core but does not belong to (k + 1)-core. The core-
ness has ever been used to measure class importance.
In this work, we compute the coreness of class nodes in
the CCN. Note that when computing the coreness, we do
not consider the link weight and direction.

• Betweenness: the betweenness centrality of a node is the
ratio of the number of shortest path containing the node
to the number of shortest paths in the network. It has ever
been used to measure the class importance. In this work,
we compute the betweenness values of class nodes in the
CCN as their importance.

• InDeg: InDeg denotes the in-degree of a node in
a directed network, which quantifies the number of
out-going links of a node.

• OutDeg: OutDeg denotes the out-degree of a node in
a directed network, which quantifies the number of
in-going links of a node.

• Deg: Deg denotes the degree of a node. In the CCN,
it equals to the sum of InDeg and OutDeg, i.e., Deg =
InDeg + OutDeg.

• ICOOK: ICOOK represented the target software project
as a software network at the class level, and used a
generalized k-core decomposition algorithm to compute
the coreness of each class in the software network.

E. RESULTS AND ANALYSIS
In this work, we used our own-developed software analysis
platform, SNAP, to analyze the subject software projects
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TABLE 4. Comparison of the results obtained by the approaches applied to GWTPortlets.

shown in Table 1, i.e., extracting the structural information,
building the CCN and applying MinClass to sort classes.

We provide a replication package for the experiments per-
formed in our empirical studies. Interested readers can use
the data set and tool (see https://github.com/SEGroupZJGSU/
MinClass) therein to replicate our research.

In this section, we perform a set of experiments with the
aim to answer our research questions.

1) RQ1: IS OUR MINCLASS APPROACH BETTER THAN THE
EXISTING APPROACHES?
As we all know, the scale of software systems is increasingly
large; software systems usually have thousands of classes and
interfaces. Thus, even if a very small proportion of classes
(e.g., treating the top 15% ranked classes as candidate key

classes) are selected as candidate key classes; the number of
candidate key classes is still very large, making the recom-
mended classes cannot be used in practice, especially when
the resources are limited. Şora and Chirila [16] considered
that the number of key classes in a specific software system
is not directly proportional to the size of software system, and
the average number of key classes is between 20 and 30. Thus,
in this work, we are limited to examine only the classes whose
positions are less than 25 in the ranked list of classes, i.e., we
only examine a very small number of classes to mine the key
classes.

Tables 2 to 8 show the results of the nine approaches
(i.e., our MinClass approach and the eight approaches in
the baseline) on the six subject software systems. The first
column key classes is the key classes in the reference set,
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TABLE 5. Comparison of the results obtained by the approaches applied to jEdit.

TABLE 6. Comparison of the results obtained by the approaches applied to JHotDraw.

and the other columns are the results of the corresponding
approach, where ‘‘

√
’’ denotes the corresponding classes are

predicted as key classes, and ‘‘×’’ denotes the corresponding
approach misses the key classes. The last two rows show the
recall and precision of the corresponding approaches, respec-
tively. As mentioned above, we only consider the classes
who rank in the top-25 of the ranked list of classes, i.e.,
the classes whose ranking positions before 25 are predicted as
key classes, and those larger than 25 are predicted as non-key
classes and will be filtered out.

From Table 3, we can see that there are ten key classes in
the reference set of Ant; our MinClass and PageRank achieve
a same level of performance with the recall and precision
being 50% and 20%, respectively. They perform best among
the nine approaches.

It can be seen from Table 4 that, when MinClass applied
to GWTPortlets, it achieves a precision of 64%, and a recall
of 59.3%, which are better than that of the approaches in the
baseline.

As shown in Table 5, MinClass finds a total of five key
classes in jEdit. Compared with PageRank, MinClass misses
class EBMessage. By referring to the source code of this
class, we found that EBMessage is an abstract class in the

system. It is not used very frequently in jEdit; it cannot be
predicted by MinClass as a key class. Compared with the
results of Betweeness and ICOOK, the results of MinClass
miss class JEditTextArea. By a close inspection of the CCN,
we observed that the node representing JEditTextArea has a
larger in-degree and smaller out-degree, which means JEdit-
TextArea is used much more frequently by other classes when
compared with its reliances on the services provided by other
classes. JEditTextArea is more inclined to be a tool class. Our
MinClass approach fails to recognize it as a key class.

In can be seen from Table 6 that, MinClass finds a total of
seven key classes in JHotDraw, which is one less than that
of coreness and ICOOK. However, for coreness, eight out
of nine classes are found in the same core; their positions
all equal to 25. In this sence, coreness is not a very effec-
tive approach since it cannot differentiate the classes in the
same core. Although the number of key classes found by our
approach is slightly less than coreness, our approach has a
better ability to distinguish different key classes in the ranked
list.

Table 7 shows the results obtained on the software system
Maze. From Table 7, we can observe that our MinClass
performs worse than Deg but no worse than other seven
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TABLE 7. Comparison of the results obtained by the approaches applied to Maze.

approaches in the baseline. Specifically, Deg identifies a total
of fifteen key classes in the reference set while MinClass
identifies a total of fourteen key classes in the reference set.

Since the set of key classes found by the two is not highly
consistent, we believe that these two approaches have differ-
ent behaviors when mining key classes in a target software
system. By a deep exploration, we observe that MinClass
is easier to miss the key classes whose out-degree is much
greater than the in-degree. However, for Deg, since it ignores
the direction information of links, it is not affected by the
direction information and performs better. On the contrary,
for key classes whose in-degree is much greater than out-
degree, our MinClass seems better than Deg.

Table 8 shows the results obtained on the software system
Wro4J. From Table 8, we observe that MinClass performs no

worse than other eight approaches in the baseline. Specifi-
cally, MinClass is better than PageRank, Deg, Betweenness,
InDeg, and OutDeg, but achieves a same level performance
with HITS and coreness.
The answer to RQ1: Obviously, in the above experiments,

no one approach always performs best in all the cases, includ-
ing the state-of-the-art approaches. Thus, we use the average
ranking of the Friedman test to help us better compare the
performance of different approaches in the whole set of sub-
ject systems. Table 9 shows the results of the average ranking
of the Friedman test with regard to recall and precision. Note
that, for the metrics recall and precision used in this work,
a larger ranking value indicates a worse approach. Thus,
the Friedman test sorts the nine approach into the following
order: MinClass > ICOOK > PageRank > Deg > InDeg >
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TABLE 8. Comparison of the results obtained by the approaches applied to Wro4J.

TABLE 9. Results of the average ranking of the friedman test.

Betweenness > HITS > Coreness > OutDeg, which means
MinClass performs best and OutDeg performs worst in the
whole set of subject systems.

2) RQ2: DOES THE MINCLASS APPROACH HAVE GOOD
SCALABILITY?
As a feasible approach on mining key classes in software
projects, MinClass should have the ability to be applied to
software projects of different scale. To validate the scalabil-
ity of MinClass, we traced the CPU time of our MinClass
when applied to the subject software projects (see Table 10).
Obviously, our MinClass is very efficient. The CPU time of
MinClass on all the subject systems is all less than 1 minute.
For example, jEdit has more than 1,000 classes, but the CUP
time of MinClass on jEdit is only 48 seconds. Note that
theCPU time shown in Table 10 is measured in seconds, and
the time less than 1 second is omitted.

We also compare the CPU time of MinClass with that
of the approaches in the baseline (see Figure 5). Obviously,
the nine approaches are all very efficient. Even for the most

TABLE 10. The CPU time of MinClass on the subject software projects.

FIGURE 5. The CPU time of different approaches.

inefficient approach Betweenness, its CPU time is still less
than 1.5 minutes.
The answer to RQ2: From the results shown above, we can

observe that our MinClass approach and the approaches in
the baseline are all very efficient. Specifically, our MinClass
can mine the key classes for all subject software projects
in 1 minute; the approaches in the baseline can mine the
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key classes for the subject software projects in 1.5 minutes.
Our MinClass approach has the ability to be applied to larger
software projects.

F. THREATS TO VALIDITY
The first threat to the effectiveness of our work mainly comes
from the construction of the reference set of key classes. The
reference set of key classes we used in this work is con-
structed based on the design document of the corresponding
software system. In practice, when writing the documents,
the document writer may be inclined to the part developed by
the writer himself (or herself). Thus, the document might not
be very objective. We partially mitigated this threat by using
the benchmark software systems which are widely used in the
literature.

The second threat comes from the subject software projects
that we used in the experiments. Our subject systems are all
open-source Java systems, which are different from the soft-
ware systems developed using other programming languages
such as Python, C++ and C. Thus, the conclusions obtained
in Java software projects have the risk to be generalized to
other non-Java software projects. In the future, we need to
replicate this work on more non-Java software projects.

The third threat comes from the utility classes defined
in the target software projects. Utility classes usually per-
form special functionality in the projects and may be heavily
used by a lot of other classes. They might be identified
by our OSE as key classes, even if these classes do not
contain much functionality, thus affecting the performance
of our approach. However, in the literature, to the best of
our knowledge, no approach considers the special role that
the utility classes play. Our approach also suffers from the
losses of effectiveness result from these simple utility classes.
We partially mitigated this threat by the objective weighting
mechanism used to quantify the strength of different coupling
types by tracing the intra- and inter-module distribution of
different coupling types in the whole software project. For
utility classes, they might have much more inter-module
couplings than intra-module couplings, thus reducing the
strength of this coupling type (see formula (1)). This might
reduce the probability of utility classes to be identified as key
classes. To further mitigate this threat, we need to identify
these simple utility classes and filter them out in the future
work.

The last threat comes from the scale of our data set.
As mentioned above, we only used six software projects
systems to validate the effectiveness of MinClass. It is a very
small scale when compared with the number of software
projects in the whole software ecosystem. Thus, in the future,
we need to replicate this work on a larger number of software
projects.

V. CONCLUSIONS AND FUTURE WORK
This paper proposed an approach named MinClass to mine
the key classes from software systems, with the aim to
facilitate the process of developers to understand unknown

software systems. Our approach mined the key classes by
examining a very small number of classes. To this end, our
approach treated any software system as a class coupling
network, and proposed a new metric, OSE, to measure the
importance of each class in the system. Empirical results on
a set of six subject software projects showed that our Min-
Class performed best in the whole set of software systems,
according to the average ranking of the Friedman test, when
compared with eight other approaches in the baseline.

Our future work includes: (1) replicating this work on other
non-Java software systems; (2) replicating this work on a
larger number of software systems; and (3) proposing some
new approaches to improve the performance of key class
mining.
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