
Received January 19, 2021, accepted February 5, 2021, date of publication February 10, 2021, date of current version February 19, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3058423

Detection of Binary Square Fiducial Markers
Using an Event Camera
HAMID SARMADI1, RAFAEL MUÑOZ-SALINAS 1,2, MIGUEL A. OLIVARES-MENDEZ 3,
AND RAFAEL MEDINA-CARNICER 1,2
1Instituto Maimónides de Investigación en Biomedicina (IMIBIC), 14004 Córdoba, Spain
2Department of Computing and Numerical Analysis, Córdoba University, Campus de Rabanales, 14071 Córdoba, Spain
3Interdisciplinary Centre for Security, Reliability and Trust (SnT), Space Robotics Research Group, Université du Luxembourg, Kirchberg Campus, 1855
Luxembourg City, Luxembourg

Corresponding author: Rafael Muñoz-Salinas (rmsalinas@uco.es)

This project has been funded under projects TIN2019-75279-P and IFI16/00033 (ISCIII) of Spain Ministry of Economy, Industry and
Competitiveness, and ‘‘Fonds National de la Recherche’’ (FNR), Luxembourg, under the projects C19/IS/13713801/5G-Sky.

ABSTRACT Event cameras are a new type of image sensors that output changes in light intensity (events)
instead of absolute intensity values. They have a very high temporal resolution and a high dynamic range.
In this paper, we propose a method to detect and decode binary square markers using an event camera.
We detect the edges of the markers by detecting line segments in an image created from events in the current
packet. The line segments are combined to form marker candidates. The bit value of marker cells is decoded
using the events on their borders. To the best of our knowledge, no other approach exists for detecting
square binary markers directly from an event camera. Experimental results show that the performance of
our proposal is much superior to the one from the RGB ArUco marker detector. Additionally, the proposed
method can run on a single CPU thread in real-time.

INDEX TERMS Event camera, ArUco markers, square binary markers, silicon retina.

I. INTRODUCTION
Event cameras or ‘‘silicon retina’’ cameras [1] are a new type
of image sensors with a fundamentally different approach to
sensing. The name silicon retina comes from the similarity
of these cameras to the retina in the human eye in the way
they sense images. Instead of capturing absolute values for
each pixel in the image, they sense the change in brightness
at each pixel. This change in brightness is then compared
to a threshold and if it is greater, an event for that pixel
is produced and communicated. Positive changes in bright-
ness produce the so-called on events and negative changes
in brightness produce the so-called off events. Because of
the asynchronous nature of these cameras, they are able to
produce events with a very high temporal resolution (e.g.
1 microsecond) [2]. Another advantage of these cameras is
their very high dynamic range which makes them suitable in
situations with a very low or very high amount of illumination
or with a high contrast of brightness in the field of view. They
also tend to consume less energy compared to normal image

The associate editor coordinating the review of this manuscript and

approving it for publication was Genoveffa Tortora .

sensors since they do not need to send a value for every pixel
at regular intervals [3].

All these advantages have resulted in a lot of interest in
developing different computer vision algorithms for event
cameras [2], [4]–[7]. Although the currently available event
cameras are more expensive and have relatively lower reso-
lution compared to conventional counterparts, it is expected
that they will become more available with higher resolutions
in the future with companies like Samsung [8] investing in
their mass production.

On the other hand, binary square fiducial markers are a
popular technology for pose estimation in augmented reality
and other applications. There are many examples of them
such as IGD [9],Matrix [10], binARyID [11], ARToolKitPlus
[12], and ARTag [13]. One of the most recent and most
widely used versions is the ArUco marker [14] which has
been employed in important applications such as medicine
and robotics [15]–[20]. The ArUco markers are also used in
more fundamental computer vision problems such as camera
calibration, environment mapping, and SLAM [21]–[23]. All
binary square fiducial markers have a system of ID codes
which helps to identify unique markers within each type.

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 27813

https://orcid.org/0000-0002-8773-8571
https://orcid.org/0000-0001-8824-3231
https://orcid.org/0000-0003-4481-0614
https://orcid.org/0000-0003-4765-8371

H. Sarmadi et al.: Detection of Binary Square Fiducial Markers

These codes are presented on a square cell grid with black
and white colors representing zeros and ones. This visual
representation is common among all binary square markers.

In this paper, we propose a method to detect and decode
square binary markers using an event camera. The funda-
mental concept which we employ is that when a pixel moves
from a white to a black binary grid cell it produces off events
and when it moves from a black to white grid cell produces
on events. Since binary square fiducial markers also have a
black border around their code grid it is also possible to find
the edge of the marker that is in the same direction as the
marker’s movement. This is done by finding a line segment
of off events and correspondingly a line segment of on events
on the opposite edge.

To the best of our knowledge, this is the first work that
attempts to decode fiducial planar markers in event cameras
using only the CPU unit in real-time. It is possible to convert
the events from the camera to an intensity image employing
one of the recent methods [7], [24], [25] and then use the
RGB marker detection algorithms. This has been done in
[26] employing the intensity image reconstruction algorithm
introduced in [27]. However, these reconstruction methods
either have a considerable amount of inaccuracy in intensity
image reconstruction or they need a powerful dedicated GPU
to perform their computations. On the other hand, there is
another CPU-based method [28] for detecting and decoding
markers in event cameras that works based on optimizing
a generative model. However it cannot operate in real-time
despite it using a much more powerful hardware (10-Core
CPU and 64 GB of RAM) than us. Our approach can run on a
single CPU thread in real timewhichmakes it more accessible
and also suitable for low-powered devices.

The rest of this paper is structured as follows. Section II
presents the related works, then in Section III the proposed
approach is introduced in detail. Section IV describes the
experimental results and discussion for validating our method
and finally Section V draws some conclusions and suggests
future work.

II. RELATED WORK
A. BINARY SQUARE MARKER DETECTION IN REGULAR
CAMERAS
Square binary markers are fiducial markers that can be easily
detected in images and their pose can be efficiently determine
with respect to the camera given the size of the square marker.
One of their most important applications is augmented reality
[18], [29], [30] however they are also used in other fundamen-
tal computer vision problems such as camera calibration [31],
[32], 3D reconstruction [16], [33], [34], and SLAM [23], [35].
Additionally, they are applied to unmanned aerial vehicles
[19], [20] medicine [16], [18], and swarm robotics [36], [37]
amongst other applications.

One of the first works to design a marker with binary
squares for coding and a black edge for easy detection is
Matrix [10]. To detect the marker, they first binarize the

image and then select marker candidate areas by connected
component analysis. They then fit a quadrangle to the area
and using its four corners, the pixels are projected to a code
frame. The code is then extracted by counting the white and
black pixels in each cell. Finally, a CRC-error test is applied
to the extracted code to check the validity of the marker.
In another work by Fiala called ARTag [38] marker candi-
dates are detected by finding line segments in the extracted
edge image. Where the lines segments form a quadrilateral a
candidate is determined. For binarization, they use a threshold
obtained from the edges of the marker. They also use CRC
code correction to verify the code from the code cells. The set
of possible markers is generated in a manner that minimizes
the confusion between markers. In another method presented
by Flohr and Fischer [11] a way of generating binary codes
is introduced that does not confuse the markers with each
other when the marker is rotated. In a more recent approach
called ArUco by Garrido-jurado et. al. [39], a probabilistic
stochastic approach is employed to generate marker codes
to maximize their distances from each other. For detection,
the marker candidates are determined by contour extraction
and then polygon approximation. The four-sided polygons
are selected and a homography is calculated to transform
them to the standard marker shape. For binarizing, an optimal
bimodal image thresholding algorithm is employed. Finally,
the extracted code from the cells is looked up in a dictionary
to verify the marker ID.

B. EVENT-BASED CAMERAS
Event cameras are a new type of camera that senses changes
in light intensity rather than their absolute value [1]. Since
these sensors are fairly new, they are more expensive and
have limited resolution compared to regular RGB cameras
[2]. However, because of their different design, they are good
at sensing with high temporal resolution and high dynamic
range which makes them appropriate for outdoor and indus-
trial applications. Researchers have already attempted to use
these cameras for common computer vision problems which
include object classification [40], image deblurring [41], face
detection [42], person tracking [43], mosaicing [44], and 3D
reconstruction [4], [45].

One of the earliest examples of object detection and track-
ing by event cameras is the work of Litzenberger et. al. [46].
They cluster the events in the image spatially and update the
clusters when new events arrive. This method is employed to
track the cars on a highway. Another early work [47] used for
balancing a pencil on its tip estimates the line representing the
pencil in the image as a Gaussian in Hough space. They take
advantage of a quadratic representation which is the log of
the Gaussian. At the arrival of each event, a quadratic related
to its position is added to the Hough space while the previ-
ous quadratic is slightly decayed. Later, Schraml et. al. [48]
presented a method that applied stereo matching to estimate
depth using two event cameras. They introduced a tracking
algorithm based on finding bounding boxes for each object
where every bounding box contains events that are spatially

27814 VOLUME 9, 2021

H. Sarmadi et al.: Detection of Binary Square Fiducial Markers

connected. Piatkowska et. al. in [43] took advantage of a
Gaussian mixture model to track multiple people in the scene
using the maximum a posteriori probability estimation. After
that, Reverter et. al. in [49] tracked an object by assign-
ing bivariate Gaussians to its different parts. The Gaussian
trackers are restricted by spring-like links to track the object
as a whole. They demonstrate their results for tracking of
the human face. In another work by Glover et. al. [50] a
moving ball is detected using a circular Hough transform
that also integrates optical flow estimation to reduce false
detections in a cluttered scene. Mitrokhin et al. [51] minimize
the background noise to track an object by a moving camera
through iteratively optimizing a motion model employing the
event count image and the event timestamp image.

Up to our knowledge, there are no attempts on using
event cameras to detect and decode binary planar markers
in real-time using only the CPU unit. There is a CPU based
method presented in [28] which decodes QR codes by opti-
mizing a generative model. They first estimate and initialize
the motion and affine transformation of the marker and then
optimize these two parameters iteratively. At the end the QR
code is optimized to be decoded. Nevertheless, they cannot
achieve real-time detection and decoding in spite of employ-
ing a much more powerful hardware than us. On the other
hand, one might use one of the methods for intensity image
reconstruction from event cameras and then apply a normal
marker detection algorithm as is done in [26]. However, these
methods have some drawback that we explain below. The
first example is the work by Brandli et. al. [24]. They can
get a high frame rate on CPU, however, their algorithm needs
an intensity image of the first frame. Furthermore, there is a
considerable amount of inaccuracy in their intensity recon-
struction. Another method which creates fairly acceptable
reconstruction only taking advantage of events is presented
by Munda et. al. [25]. Their reconstruction is done on an
event by event basis. They achieve real-time performance,
however, they need to take advantage of GPU computing to
achieve that. Bradow et. al. present an algorithm in [7] which
can reconstruct optical flow as well as intensity image. They
use a sliding window-based algorithm and can achieve near
real-time performance. However, they need a dedicated GPU
to perform their optimization.

III. METHODOLOGY
We have developed our method using ArUco markers how-
ever it is applicable to all binary square markers since they all
contain a binary grid of black and white cells surrounded by
black borders. You can see an example of an ArUco marker
and its cell grid in Figure 1. As can be observed, the cells
on the edges of the grid are colored black and the marker is
supposed to be printed on a white background to be easily
detectable. The cells which are not on the border can be
colored black or white. A binary code is associated to each
marker by assigning 0 and 1 bits to black and white inner
cells and forming a binary number by concatenating them.
These binary codes come from a dictionary with codes that

FIGURE 1. The structure of an ArUco marker. The marker is printed on a
white background. The border cells of the marker are all black and the
inner cells are used to keep the identification code using black and white
colors. Please note that the red lines are for visualization of the cell grid
and are not part of the marker.

FIGURE 2. An example of the marker detectable by our algorithm in the
camera frame. The marker is detectable when moving roughly parallel to
its edges which is visualized by red and blue arrows on the marker above.

have a highHamming distance from each other to reduce their
chance of being confused. In the process of detection, the
binary code is extracted from the marker and looked up in this
dictionary to check if they are valid and determine their ID.

Our algorithm is capable of detecting markers that move
in front of an event camera in the directions that are roughly
parallel to its edges as visualized in Figure 2. Event cameras
send events by packets that contain events from a fixed period
of time, which is normally very short (e.g. 10 ms). You can
find a visual overview of our approach in Figure 3. At the first
step, events from each packet are converted into two separate
images, one for on and another for off events. After doing
some preprocessing on these images we detect line segments
in them that correspond to the edges of the marker. Then
we create marker candidates by combining single line seg-
ments from the corresponding on and off images. After that,
the pixels within each candidate is unwarped to a standard
square representation of the marker. We decode the marker

VOLUME 9, 2021 27815

H. Sarmadi et al.: Detection of Binary Square Fiducial Markers

FIGURE 3. Overview of our marker detection algorithm from an event packet. Please note that the red color represents the on events and line segment
detections in the on events image, and blue color represents the same for off events.

by convolving Gaussian filters in positions where we expect
events should exist to decode the color within each cell of the
marker. Finally, the reconstructed colors are used to extract
the binary code and it is compared to the codes within the
marker dictionary to detect the ID number.

A. CREATING EVENT IMAGES FROM EVENT PACKETS
The procedure of creating an image from on events and off
events is identical and is done separately for each event type.
Hence, to avoid repetition, the procedure is described without
specifying the event type.

Each event ei = (x, y, t) consists of three attributes, x and
y are pixels coordinates and t is the time stamp. Because
the pixel at (x, y) can have several events in the packet with
different timestamps, t is taken as the minimum timestamp
among all events at (x, y).

Let us assume that E is the set containing all events of one
type in the current event packet:

E = {ei|i = 1 . . .N } (1)

where N is the number of events in E . We create an image
I with the same resolution as the event camera for each type
of event. Hence we define the set of all pixel locations in the
image by:

G = {1 . . .W } × {1 . . .H} (2)

where W ∈ Z+ is the width and H ∈ Z+ is the height of
the image in pixels. We also define S as the set of the pixel
coordinates where at least one event exists:

S = {(x, y) ∈ G|∃i ∈ {1 . . .N } : (x, y, ti) ∈ E}. (3)

We call every pixel belonging to S a valid pixel and put

I (x, y) = ti,∀(x, y) ∈ S.

In order to simplify the timestamps, we normalize them
according to the minimum and maximum timestamps in the
packet and put the values in the image Inorm. We also set the
non-valid pixels to zero:

Inorm(x, y) =

I (x, y)− tmax

tmax − tmin , t(x, y) ∈ S

0, (x, y) ∈ S = G \ S
(4)

where \ is the set difference operator and S is the set of
non-valid pixels, and furthermore:

tmin
= min{ti}Ni=1 and tmax

= max{ti}Ni=1. (5)

Wewere able to get better line segment detections (increase
in marker detections by around 10% of total detections) with
1− Inorm values as opposed to Inorm values, hence we define:

I ′norm(x, y) =

{
1− Inorm(x, y), (x, y) ∈ S
0, (x, y) ∈ S

(6)

Next, we fill the holes and refine the events in I ′norm with
the following function:

Iref(x, y)=

∑
(x ′,y′)∈BS (x,y)

I ′norm(x
′, y′)

|BS (x, y)|
(x, y) ∈ F

0 (x, y) ∈ F ′

I ′norm(x, y) (x, y)∈G \ (F ∪ F ′)
(7)

where:

B(x, y) =
{
(x ′, y′) ∈ G

∣∣∣∣ x − 1 ≤ x ′ ≤ x + 1
y− 1 ≤ y′ ≤ y+ 1

}
(8)

27816 VOLUME 9, 2021

H. Sarmadi et al.: Detection of Binary Square Fiducial Markers

is the set of neighbors if pixels position (x, y) in G,

BS (x, y) = B(x, y) ∩ S (9)

is the set of neighbors at (x, y) which contain events,

F =
{
(x, y) ∈ S

∣∣∣∣|BS (x, y)| > |B(x, y)|2

}
(10)

is the set of pixel positions with no event that most of their
neighbors have events, and:

F ′ =
{
(x, y) ∈ S

∣∣∣∣|B(x, y) ∩ S| > |B(x, y)|2

}
(11)

is the set of positions with events that most of their neighbors
have no events. After that, we smooth the Iref image using a
2DGaussian filter, gns×ns to obtain the Ismooth image. Here, ns
is the width and height of the Gaussian filter in pixels which
also has the standard deviation of σs. The smoothing is done
by the following function to reduce the noise from the sensor:

Ismooth(x, y) =

(Iref ∗ g)(x, y)
(M ∗ g)(x, y)

, (x, y) ∈ S ′

0, (x, y) ∈ G \ S ′
(12)

Here, S ′ = (S ∪ F) \ F ′, which is the set of pixels with valid
refined events andM is an image mask define by:

M (x, y) =

{
1 (x, y) ∈ S ′

0 G \ S ′.
(13)

In Equation 12, we divide the convolution of the normalized
image by the convolution of the mask to eliminate the effect
of non-valid pixels in smoothing the valid pixel values.

As said before, the procedure mentioned so far is applied
separately to on and off events to obtain two images. The next
step is to detect line segments in these images.

B. DETECTION OF LINE SEGMENTS IN EVENT IMAGES
Since binary square markers have a rectangular black margin
on a white background it is possible to detect their edges
in event images when they are moving. A line in off events
image will appear on the edge on the direction of movement,
and a line of on events will appear on the edge on the opposite
direction of movement. We take advantage of the LSD line
segment detector introduced in [52]. We chose this detector
because it is faster and produces fewer and more accurate
candidate than other methods such as the Hough Transfor-
mation [53]. We remove line segments that are shorter than a
minimum length, lmin, from the output of the LSD algorithm.
This helps to remove candidates that are too far away from
the camera or have too much of the perspective effect to be
decoded.

Let us take L as the set of all detected valid line segments:

L = {li}
NL
i=1 , li =

(
(x i1, y

i
1), (x

i
2, y

i
2)
)

(14)

Here, (x i1, y
i
1) ∈ R2 and (x i2, y

i
2) ∈ R2 are the two ends of the

line segment li and are positioned within the boundaries of
the camera’s image resolution. We also define the function:

length(li) = ||(x i1 − x
i
2, y

i
1 − y

i
2)||2, i = 1 . . .NL (15)

which returns the length of the line segment li.

C. LINE SEGMENTS’ AGE CORRECTION
In order to have segments that correspond to the same time in
the packet’s time interval, we correct the position of the line
segments so that their occurrence falls in the middle of the
time interval. For this purpose we define a measurement of
their age which is the average normalized timestamp of the
pixels that fall on the line segment. More formally the age of
the line segment l = ((x1, y1), (x2, y2)) is obtained as:

age(l) = ā, for all a ∈ A(l) (16)

where

A(l) =
{
Inorm(x, y)

∣∣∣∣M (x, y) = 1
(x, y) ∈ P(l)

}
(17)

and

P(l) =

(x, y)
∣∣∣∣∣∣∣∣

x = bsx + x1 + 0.5c∧
y = bsy + y1 + 0.5c∧

0 ≥ sx ≥ bx2 − x1 + 0.5c∧
0 ≥ sy ≥ by2 − y1 + 0.5c

 . (18)

Here P(l) is the set of all pixels on the line segment l, A(l)
is the set of pixel values on the segment in image Inorm, ā is
the average value of all elements in A(l), and sx and sy are the
steps in x and y directions for moving on the line segment.

To make our marker decoding more robust we would like
our line segments to contain events that are in the middle of
the packet’s time interval, i.e., we want the age of the line
segments to be equal to 0.5. However, our line segment detec-
tor does not always return segments with such age. Hence
we move the line segment perpendicular to its orientation in
two directions until we find the position with the right age
(0.5). The formal definition of this algorithm is presented in
Algorithm 1.

Algorithm 1 Line Age Correction

procedure CorrectAge(l =
(
(x1, y1), (x2, y2)

)
)

Eu← (y2 − y1, x1 − x2)
Eu← Eu/||Eu||2 F Eu: unit vector perpendicular to l
R←

{(
0, age(l)

)}
for d ∈ {−1, 1} do
Ev← dEu
s← 1
lnew← (sEv+ (x1, y1), sEv+ (x2, y2))
while |A(lnew)| < |P(lnew)|/2 do

R← R ∪ {(sd, age(lnew))}
s← s+ 1
lnew← (sEv+ (x1, y1), sEv+ (x2, y2))

end while
end for

(α̂, β̂) = argmin
α,β

(∑
(x,y)∈R

(αx + β − y)2
)

F α, β are parameters for linear regression over the
tuples in R

t ← (0.5− β̂)/α̂
return (tEu+ (x1, y1), tEu+ (x2, y2))

end procedure

VOLUME 9, 2021 27817

H. Sarmadi et al.: Detection of Binary Square Fiducial Markers

We correct the age of all detected line segments. Hence we
define:

Lcorrected = {CorrectAge(li)}
NL
i=1 (19)

The next step is to use the line segments in Lcorrected to form
candidates for marker detection.

D. CREATION OF MARKER CANDIDATES
In order to detect candidates for marker detection we need
to match line segments from on events to the ones from off
events. We make some conditions to make it more likely for
the line segments to represent a valid marker candidate. Let
us assume that Lcorrectedon and Lcorrectedoff are the corrected line
segments related to on and off events respectively such that:

Lcorrectedoff = {loffi }
N off
L

i=1 ,L
corrected
on = {loni }

N on
L

i=1 (20)

Then we form the set of our marker candidates, C , in the
following way:

C =

(l
on
i , l

off
j)

∣∣∣∣∣∣∣∣∣
length(loni) < 2× length(loffj)∧
length(loffj) < 2× length(loni)∧[

Project(loni , l
off
j) ∨ Project(loffj , l

on
i)
]
∧

γ (loni , l
off
i) ≤ π

6

(21)

where γ (loni , l
off
i) is the minimum angle between the two line

segments loni and loffi , and Project(., .) is the function that
takes two line segments and makes sure if at least one of the
end points of one segment projects within the end points of
the other line segment:

Project((Eb1, Ee1), (Eb2, Ee2))

= 0 ≤
(Ee1 − Eb1).Eb2
||e1 − b1||2

≤ ||e1 − b1||2

∨ 0 ≤
(Ee1 − Eb1).Ee2
||e1 − b1||2

≤ ||e1 − b1||2 (22)

Here (Eb1, Ee1) and (Eb2, Ee2) are, respectively, the coordinate
vector pairs of the beginning and end points for the first and
the second input line segments to Project(., .). Now that we
have formed the candidates for marker detection, we will
attempt to decode them.

E. DECODING OF MARKER CANDIDATES
The first step in decoding a marker candidate is to unwarp
it to a square image with standard dimensions. To decode
the candidates we use the image Inorm which was defined in
Section III-A.

To unwarp the candidates for decoding, we find the per-
spective transformation that maps the corners of the marker
in the Inorm image to the corners of the target image with
standard dimensions. We denote the unwarped image for the
i-th candidate by I iC :

I iC=UnwarpPerspective(ci, sc, Inorm), i=1 . . .NC (23)

Here, sc is the dimension of the standard square image in
pixels, ci is the i-th marker candidate from C , and NC is the
number of marker candidates, hence:

C = {ci}
NC
i=1. (24)

The unwarping is done in a manner that the edge detected
by the line segment from the off events is always on the left
and the one from on events is on the right. Therefore the
orientation of the unwarped marker would be as if it is always
moving towards the left direction.

You can see an example of unwarping the candidate from
Inorm in Figure 4(b) and 4(c) which are related to on and off
events respectively. The polygon representing the candidate is
shown by white borders in Figure 4(a) where the Inorm image
of on events (in red) and the Inorm image of off events (in blue)
are shown overlaid on top of each other.

After obtaining the unwarped standard candidate images,
they are segmented into square regions (inner cells) according
to ArUco’s specification. For each of these cells, we need to
determine if the color inside is white or black. Since in the
standard unwarped images the marker is always supposed to
move to the left, we check the events on the left side of each
cell. This is done by convolving a 2D Gaussian kernel (with
the standard deviation of σd) on each square cell’s left edge.
The grid used for decoding along with the positions where
the Gaussians are convolved with the unwarped images is
shown in Figure 4(d) where you can see a visualization of the
Gaussians on the left edge of the cells. Although, in theory,
the events should appear exactly on the edges of the cell
squares on the marker, in practice, because the on and off
events are not perfectly synchronized, this might not be the
case. For example in Figure 4(f) you can see that the on events
on the edge of each square is slightly shifted to the left while
for off events (Figure 4(e)) this issue does not exists. For this
reason, we have to shift the convolution point of the Gaussian
kernel slightly to the left for off pixels. We set the amount of
shifting to nd/4 pixels where nd is the side length of each
cell square (and also the Gaussian kernel) in pixels. When
the convolutions are applied, they result in values used to
determine the color of each cell of the marker. The scores
within each cell are shown in Figure 4(e) and 4(f).

Let us assume that rij is the response of the convolution
related to the inner cell on the i-th row and j-th column on
the marker. We normalize these responses according to the
maximum response and then threshold them:

fij =

(rij
max
i,j

rij
)/θ

 , i, j ∈ {1 . . .Nm} (25)

where Nm is the size of the code square of the ArUco marker,
θ is the threshold for the cell response, and fij determines if the
events occur on the left edge of the cell. We obtain this value
separately for on and off events, hence, we have both f onij and
f offij for each cell at position (i, j). Now we can determine the

27818 VOLUME 9, 2021

H. Sarmadi et al.: Detection of Binary Square Fiducial Markers

FIGURE 4. Summary of our marker detection algorithm. First the marker candidate in (a) is unwarped to a standard square images related to on (b) and
off (c) events. Then Gaussian kernels on a grid (d) are convolved with the images and the responses at convolution points are saved for on (f) and off
(e) events. Finally, the responses are used to reconstruct the marker (g).

color code within each cell of the marker as follows:

bi,j =

0 j = 0

1− bi,j−1
(bi,j−1 = 0 ∧ f onij = 1)

∨(bi,j−1 = 1 ∧ f offij = 1)

bi,j−1 otherwise

(26)

where bi,j,∀i = 1 . . .Nm, j = 0 . . .Nm determines the color
code at cell (i, j) in themarker. In Figure 5 you can find ri,j, fi,j,
and bi,j values for an example of a marker that is successfully
reconstructed. In the last stage, the binary code is extracted
from the reconstructed marker and checked for its validity
and its ID according to the marker specifications. In the case
of ArUco markers, this is done by concatenating each row of
cell codes and looking up the resulting binary number in the
marker dictionary. This is done four times for each rotation
of the reconstructed marker. If the code is not found in the
dictionary we reject it as a false candidate, otherwise, its ID
is extracted from the dictionary.

IV. EXPERIMENTAL RESULTS
To test our algorithm we captured some sequences of moving
the event camera in front of ArUco markers. These sequences

were recorded1 using the iniVation DVS128 event camera,
with a resolution of 128× 128 pixels. The event camera was
attached to a camera rig together with a color camera to verify
the current scene in the color image as well. The color camera
was an IDS UI-1220LE-C-HQ with a global shutter and a
resolution of 752×480 pixels at 60 fps. Figure 6(a) shows our
camera rig setup. We ran our algorithm on a laptop with the
Core i7-4700HQ CPU and 8 GB of RAM. We implemented
our algorithm in C++ and did our experiments under the
Ubuntu 18.04 operating system. Our implementation only
needs a single CPU core to run. To reduce the noise from
the camera to some extent we employed the DVS noise filter
from the libcaer library.2

We did both quantitative and qualitative evaluations of our
algorithm using the data we captured from the event and
color camera. To do so we captured sequences by holding the
camera close to a grid of markers and moving it in different
directions with respect to the markers while pointing perpen-
dicularly at them. The recording was done in an environment
with controlled lighting and low ambient light noise. You can
see an image of the marker grid in Figure 6(b). Because of
the low resolution of the event camera, we had to keep the
cameras close to the markers, at approximately 20 to 30 cm

1The recording was done in the Interdisciplinary Centre for Security,
Reliability and Trust (SnT) at University of Luxembourg

2https://gitlab.com/inivation/dv/libcaer

VOLUME 9, 2021 27819

H. Sarmadi et al.: Detection of Binary Square Fiducial Markers

FIGURE 5. Details of decoding the markers from Gaussian convolution responses. From left to right: First responses of Gaussian convolutions are stored
for each code cell of the marker. Then the response values are normalized according to the highest response and then thresholded. After that, cells at
each row of the marker are decoded according to the normalized thresholded responses of on and off events and decoded value of the cell on the left.
Finally, the decoded marker is decoded and can be reconstructed.

TABLE 1. Parameters we have used for our evaluations of our approach.
The unit for all parameters except θ (which has no unit) is pixels.

away from them. In this way, only one marker was visible at
a time in the field of view of both cameras.

The captured sequences contain 3470 packets in total
where each packet contains the events from a 10 ms time
interval. We aggregated all packets and color frames from
the sequences together for our quantitative evaluation. For a
minority number of packets (< 100), there were distortions in
the events because of the bandwidth overflow, we discarded
these packets from our evaluations.

The parameter values we have employed for our algorithm
during our experiments are shown in Table 1.

A. RUNNING SPEED
We ran our implementation on the captured sequences and
measured the time needed for processing each packet. Then
we calculated the average of the durations which turned out
to be 8.44 milliseconds per packet on a single CPU core.
This means that our implementation can handle 118 packets
per second which are already higher than the 100 packets

TABLE 2. The average processing time and standard deviation for
different steps of our algorithm and also in total for processing each
packet (in milliseconds).

that our camera produces in each second. Hence we were
able to run our algorithm in real-time. For further analysis,
we also calculated the amount of time needed for different
steps of the algorithm. The values are presented in Table 2 in
milliseconds. As you can see the most time-consuming part
of the algorithm is unwarping the candidates to the standard
representation which takes 3.42 ± 3.51 ms. It also has a
relatively high standard deviation value, the reason is that in
some frames many marker candidates are formed while in
others, due to less detected line segments, fewer candidates
are generated which creates the variance in time needed for
unwarping. After candidate unwarping, the LSD line segment
detection and candidate formation takes most of the time with
the average of 2.69± 0.73 ms.

B. QUANTITATIVE EVALUATION AND DISCUSSION
In our evaluation sequences, we moved the camera rig in
side-to-side and up-and-down motions in front of the marker
grid. We analyzed the sequences manually to separate the

27820 VOLUME 9, 2021

H. Sarmadi et al.: Detection of Binary Square Fiducial Markers

FIGURE 6. Our experimental setup including (a) the camera rig we employed for capturing our dataset and (b) the 9 × 9 marker grid we used for
evaluation of our algorithm. The color and the event camera are fixed on the same rod facing the same direction. The sequences were captured
moving the camera rig by hand in left-right and up-down directions while pointing perpendicularly at the marker grid.

frames (packets) where a marker is completely visible in the
event camera.

We measured two metrics. First, the percentage of times
a marker passes in front of the camera and is detected. And
second, the number of frames in which the marker is detected
while visible in the event camera’s frame. More precisely,
we define that a marker ‘‘passes’’ in front of a camera when
the whole marker appears in the field of view of the camera
and moves in front of it until a part of it exits the field of view.
If the marker is detected at any time while ‘‘passing’’, we say
that we have a ‘‘pass detection’’. Likewise, frame detections
are counted within frames where the whole marker is within
the field of view of the camera.

TABLE 3. Accuracy of detected passes and detected frames when the
whole marker is in the field of view. This is calculated independently for
the color camera using ArUco algorithm and the event camera using our
algorithm.

Table 3 presents the results related to pass detection rate
and frame detection rate for the color camera (using ArUco
algorithm) and for the event camera (using our algorithm).
As can be observed our method has a very high pass detection
rate (94%) especially compared to that of ArUco’s (3%). The
low frame detection and pass detection rate of ArUco sug-
gests the high sensitivity of the ArUco algorithm to motion
blur. On the other hand, it can be seen that our approach has
detected 44% of the detectable frames, while ArUco only is
able to detect 2%.

We believe that the missed detections of our method are
due to several reasons. First, since the camera rig is moved
by hand in a lateral manner, it needs to stop at some points
and change direction. In these frames, the movement slows
down for a moment and then changes direction which causes

TABLE 4. Accuracy of detected frames when the marker is in the field of
view of both cameras.

few events to be created, and hence our algorithm would
not perform well. Another reason is that at some frames the
camera was not moving parallel enough to the edges of the
marker (as it should similar to Figure 2). In these cases,
our algorithm could not perform correctly, however, this is
a limitation of the design.

In order to make a deeper comparison, we also calculated
the frame detection rate only for frames where the whole
marker is in the field of view of both cameras. We also
counted the frames where both ArUco and our algorithm
detect the marker in the image where there was a ‘‘mutual’’
detection between the ArUco algorithm and our algorithm.
The results are shown in Table 4. As you can see there
were no frames that were mutually detected by both of the
cameras. This indicates that our algorithm is a very good
complement for the normal ArUco detection method. On the
other hand, our detection rate (35%) is still more than an order
of magnitude better than that of ArUco’s (2%)which suggests
the extreme sensitivity of the ArUco algorithm to motion blur
and that our algorithm handles moving markers much better.

C. QUALITATIVE EVALUATION AND DISCUSSION
For qualitative evaluation, we visualize different steps of
our marker detection algorithm for successful and unsuc-
cessful cases. First, successful cases for different markers
are presented in Figure 7. These cases are drawn from the
sequences used for quantitative evaluation where the marker
is detectable in the color camera as well as the event camera.
The picture from the color camera, the marker candidate,
normalized thresholded Gaussian responses for on and off

VOLUME 9, 2021 27821

H. Sarmadi et al.: Detection of Binary Square Fiducial Markers

FIGURE 7. Examples of successful detections in our dataset. For each case, the image from the RGB camera (a), the candidate overlaid on the
events (b), Gaussian responses overlaid on unwarped on (c) and off (d) events, and finally the reconstruction of the marker in event camera’s
field of view (e) is presented. Please note that on and off events in column (b) are shown in red and blue colors respectively.

events, and the marker reconstruction are visualized for each
case in columns (a) to (e). The marker is moving horizontally
with respect to the camera in rows 1 to 3 and vertically in
rows 4 to 6. As can be seen, despite the high frame rate
of the color camera (60 fps) the images are very blurry.
As established in the quantitative results section, in no one of
the color images of Figure 7, the ArUco algorithmwas able to

detect the marker due to its high sensitivity to blurred images.
The normalized thresholded Gaussian responses in columns
(c) and (d) make it possible to see how the decoded marker is
reconstructed.

Four different types of movements for which our detection
algorithm cannot function properly are shown in Figure 8.
In each category you can see the event image for on (red)

27822 VOLUME 9, 2021

H. Sarmadi et al.: Detection of Binary Square Fiducial Markers

FIGURE 8. Cases where marker candidates cannot be formed properly because of unsuitable line segment detection. These include:
(a) zooming into or out of the marker, (b) rotating with the center of rotation within the marker, and slow (c) or diagonal
(d) movement of the marker.

FIGURE 9. Problems with diagonal movement in marker decoding. Problems with leaking events and candidate edges that are too long are
shown in the first and second row respectively. In each case the marker candidate (a), thresholded normalized Gaussian responses for on
(b) and off (c) events, the decoded marker (d), and the correct marker (e) are visualized.

and off (blue) events in the first row. The smoothed event
image and line segment detections are shown in the second
and third row separately for on and off events. In the first
column (a) the camera is zooming out from themarker. As can
be observed, there are no line segment detections in the on
events representing any of the marker edges. This is because
when the zoom center is within the marker all its edges appear
to move away/towards the zoom center. Hence marker edges

would not be detectable for either on or off events and no
candidate can be formed. The second column (b) shows a
marker rotating with the center of rotation within the marker.
As can be seen, each edge of the marker produces both on
and off events in different places. This prevents the whole
edge to be detected in either type of event which prevents the
formation of a correct candidate. Column (c) represents the
case where the camera is moving too slowly. This results in

VOLUME 9, 2021 27823

H. Sarmadi et al.: Detection of Binary Square Fiducial Markers

the production of few events which in turn makes it impos-
sible to detect marker edges using line segments properly.
Finally, in the last column (d) the line segment detections for a
markermoving diagonally are shown.Although it might seem
fine in the pictures, the detected line segments turn out to be
too long for off events. This is because the off events from
two neighboring edges combine which makes these edges
appear longer. This becomes problematic when the marker
is unwarped for decoding. This is shown in the second row
of Figure 9. The distortion in unwarping the events image
in column (b) row 2 is especially noticeable if attention is
paid to the on events formed on the top edge. This distortion
makes the events move to the wrong cell and finally being
wrongly decoded as is visible in the decoded result in column
(d) of the second row. There is another problemwith diagonal
movement that could happen even if the marker candidate is
formed properly. This is visualized in the first row of Figure 9.
The issue is that when moving diagonally events from cells
below can leak into cells above or vice versa. This could
change the result of Gaussian convolutions and change the
decoded color of a cell. More specifically the events leaked
from the lower left or upper left cells can make it appear that
there is a change of color from the left cell to the current
cell and hence produce a wrong color for the current cell in
the decoding process. The affected cells for our example are
indicated with yellow circles in column (b) and the first row
of Figure 9. As you can see in column (d) of the first row the
resulted decoded marker has changed significantly.

As mentioned before, it is possible to use a intensity image
reconstruction method to convert the events into intensity
image in real-time and then apply a traditional marker detec-
tion algorithm. However, the good quality methods need a
powerful dedicated GPU. As the first attempt to detect and
decode binary planar markers only using the CPU unit in
real-time, our method has the limitations mentioned in this
section. Nevertheless, we think that it is possible to alleviate
these problems by taking into account extra parameters such
as the motion vector of the marker. However this is left to be
done in future works.

V. CONCLUSION
Amethod for decoding square binarymarkers from the output
of an event camera has been proposed in this paper. The
algorithm can run in real-time on a single CPU core without
the need for specialized hardware such as dedicated GPUs.
To the best of our knowledge, this is the first attempt to decode
fiducial planar markers using event cameras. An additional
contribution of this paper is that the different steps we have
proposed for processing events can be helpful in the design
of solutions for other problems using these cameras.

Experimental results show that our method is much supe-
rior compared to the RGB marker detector in the case
of ArUco for fast-moving markers. This is because the
intensity-based methods assume low blur in the image while
we demonstrated that even with a high frame rate there can be
a significant motion blur. Hence, the proposedmethod is ideal

in settings where objects move very fast in directions roughly
parallel or perpendicular to the camera, such as a production
line.

On the other hand, for situations other than fast lateral
(or up/down) movements our algorithm could be improved.
As future work, we propose to work on these cases including
diagonal movement, rotations, and zooming of the camera.
We suggest it might be possible to overcome these limitation
taking into account extra parameters such as the motion vec-
tor. Another matter that could be tested in future work is how
robust is the method in different lighting conditions and in the
presence of ambient light noise.

ACKNOWLEDGMENT
This work has been done in collaboration with the Automa-
tion and Robotics Research Group, Interdisciplinary Cen-
tre for Security, Reliability and Trust (SnT), University of
Luxembourg.

REFERENCES
[1] P. Lichtsteiner, C. Posch, and T. Delbruck, ‘‘A 128 x 128 120db 30mw

asynchronous vision sensor that responds to relative intensity change,’’ in
IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2006,
pp. 2060–2069.

[2] G. Gallego, T. Delbruck, G. Orchard, C. Bartolozzi, B. Taba, A. Censi,
S. Leutenegger, A. Davison, J. Conradt, K. Daniilidis, and D. Scaramuzza,
‘‘Event-based vision: A survey,’’ 2019, arXiv:1904.08405. [Online]. Avail-
able: http://arxiv.org/abs/1904.08405

[3] A. Amir, B. Taba, D. Berg, T.Melano, J.McKinstry, C. Di Nolfo, T. Nayak,
A. Andreopoulos, G. Garreau, M. Mendoza, J. Kusnitz, M. Debole,
S. Esser, T. Delbruck, M. Flickner, and D. Modha, ‘‘A low power, fully
event-based gesture recognition system,’’ inProc. IEEEConf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 7388–7397.

[4] H. Kim, S. Leutenegger, and A. J. Davison, ‘‘Real-time 3D reconstruction
and 6-DoF tracking with an event camera,’’ in Proc. ECCV (Lecture Notes
in Computer Science), B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds.
Cham, Switzerland: Springer, 2016, pp. 349–364.

[5] A. I. Maqueda, A. Loquercio, G. Gallego, N. Garcia, and D. Scaramuzza,
‘‘Event-based vision meets deep learning on steering prediction for self-
driving cars,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 5419–5427.

[6] V. Vasco, A. Glover, and C. Bartolozzi, ‘‘Fast event-based harris corner
detection exploiting the advantages of event-driven cameras,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2016, pp. 4144–4149.

[7] P. Bardow, A. J. Davison, and S. Leutenegger, ‘‘Simultaneous optical flow
and intensity estimation from an event camera,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 884–892.

[8] B. Son, Y. Suh, S. Kim, H. Jung, J. Kim, C. Shin, K. Park, K. Lee,
J. Park, J. Woo, Y. Roh, H. Lee, Y. Wang, I. Ovsiannikov, and H. Ryu,
‘‘4.1 A 640×480 dynamic vision sensor with a 9µm pixel and 300meps
address-event representation,’’ in IEEE Int. Solid-State Circuits Conf.
(ISSCC) Dig. Tech. Papers, Feb. 2017, pp. 66–67.

[9] X. Zhang, S. Fronz, and N. Navab, ‘‘Visual marker detection and decoding
in AR systems: A comparative study,’’ in Proc. Int. Symp. Mixed Aug-
mented Reality, Oct. 2002, pp. 97–106.

[10] J. Rekimoto, ‘‘Matrix: A realtime object identification and registration
method for augmented reality,’’ in Proc. 3rd Asia Pacific Comput. Hum.
Interact., Jul. 1998, pp. 63–68.

[11] D. Flohr and J. Fischer, ‘‘A lightweight ID-based extension for marker
tracking systems,’’ in Proc. Eurograph. Symp. Virtual Environ., Short
Papers Posters, B. Froehlich, R. Blach, and R. v. Liere, Eds. Genoa, Italy:
The Eurographics Association, 2007, pp. 59–64.

[12] D. Wagner and D. Schmalstieg, ‘‘ARToolkitplus for pose tracking on
mobile devices,’’ in Proc. Comput. Vis. Winter Workshop, Jan. 2007,
pp. 139–146.

[13] M. Fiala, ‘‘Designing highly reliable fiducial markers,’’ IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 32, no. 7, pp. 1317–1324, Jul. 2010.

27824 VOLUME 9, 2021

H. Sarmadi et al.: Detection of Binary Square Fiducial Markers

[14] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and
R. Medina-Carnicer, ‘‘Generation of fiducial marker dictionaries
using mixed integer linear programming,’’ Pattern Recognit., vol. 51,
pp. 481–491, Mar. 2016. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0031320315003544

[15] A. Dhall, K. Chelani, V. Radhakrishnan, and K. M. Krishna, ‘‘LiDAR-
camera calibration using 3D-3D point correspondences,’’ 2017,
arXiv:1705.09785. [Online]. Available: http://arxiv.org/abs/1705.09785

[16] H. Sarmadi, R. Muñoz-Salinas, M. Á. Berbís, A. Luna, and R. Medina-
Carnicer, ‘‘3D Reconstruction and alignment by consumer RGB-D
sensors and fiducial planar markers for patient positioning in radiation
therapy,’’ Comput. Methods Programs Biomed., vol. 180, Oct. 2019,
Art. no. 105004. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0169260719309162

[17] H. Su, C. Yang, G. Ferrigno, and E. De Momi, ‘‘Improved human–robot
collaborative control of redundant robot for teleoperated minimally inva-
sive surgery,’’ IEEE Robot. Autom. Lett., vol. 4, no. 2, pp. 1447–1453,
Apr. 2019.

[18] H. Sarmadi, R. Muñoz-Salinas, M. Álvaro Berbís, A. Luna, and
R. Medina-Carnicer, ‘‘Joint scene and object tracking for cost-effective
augmented reality assisted patient positioning in radiation therapy,’’ 2020,
arXiv:2010.01895. [Online]. Available: http://arxiv.org/abs/2010.01895

[19] J. Bacik, F. Durovsky, P. Fedor, and D. Perdukova, ‘‘Autonomous flying
with quadrocopter using fuzzy control and ArUco markers,’’ Intell. Service
Robot., vol. 10, pp. 185–194, Jul. 2017, doi: 10.1007/s11370-017-0219-8.

[20] M. F. Sani and G. Karimian, ‘‘Automatic navigation and landing of an
indoor AR. Drone quadrotor using ArUco marker and inertial sensors,’’ in
Proc. Int. Conf. Comput. Drone Appl. (IConDA), Nov. 2017, pp. 102–107.

[21] H. Sarmadi, R. Munoz-Salinas, M. A. Berbis, and R. Medina-Carnicer,
‘‘Simultaneous multi-view camera pose estimation and object tracking
with squared planar markers,’’ IEEE Access, vol. 7, pp. 22927–22940,
2019.

[22] R. Muñoz-Salinas, M. J. Marín-Jimenez, E. Yeguas-Bolivar, and
R. Medina-Carnicer, ‘‘Mapping and localization from planar markers,’’
Pattern Recognit., vol. 73, pp. 158–171, Jan. 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0031320317303151

[23] R. Muñoz-Salinas and R. Medina-Carnicer, ‘‘UcoSLAM: Simultaneous
localization and mapping by fusion of keypoints and squared planar
markers,’’ Pattern Recognit., vol. 101, May 2020, Art. no. 107193.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0031320319304923

[24] C. Brandli, L. Muller, and T. Delbruck, ‘‘Real-time, high-speed video
decompression using a frame- and event-based DAVIS sensor,’’ in Proc.
IEEE Int. Symp. Circuits Syst. (ISCAS), Jun. 2014, pp. 686–689.

[25] G. Munda, C. Reinbacher, and T. Pock, ‘‘Real-time intensity-image recon-
struction for event cameras using manifold regularisation,’’ Int. J. Comput.
Vis., vol. 126, no. 12, pp. 1381–1393, Dec. 2018, doi: 10.1007/s11263-018-
1106-2.

[26] O. Holešovský, V Hlavác, R. Škoviera, and R. Vitek, ‘‘Practical high-speed
motion sensing: Event cameras vs. global shutter,’’ in Proc. 25th Comput.
Vis. Winter Workshop, Rogaka Slatina, Slovenia, Feb. 2019, p. 9.

[27] H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza, ‘‘Events-To-video:
Bringing modern computer vision to event cameras,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 3852–3861.

[28] J. Nagata, Y. Sekikawa, K. Hara, T. Suzuki, and A. Yoshimitsu, ‘‘QR-code
reconstruction from event data via optimization in code subspace,’’ inProc.
IEEEWinter Conf. Appl. Comput. Vis. (WACV), Mar. 2020, pp. 2113–2121.

[29] L. Besharati Tabrizi and M. Mahvash, ‘‘Augmented reality–
guided neurosurgery: Accuracy and intraoperative application of
an image projection technique,’’ J. Neurosurg., vol. 123, no. 1,
pp. 206–211, Jul. 2015. [Online]. Available: https://thejns.org/
view/journals/j-neurosurg/123/1/article-p206.xml

[30] S. Sannikov, F. Zhdanov, P. Chebotarev, and P. Rabinovich, ‘‘Interactive
educational content based on augmented reality and 3D visualization,’’
Procedia Comput. Sci., vol. 66, pp. 720–729, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050915034316

[31] B. Atcheson, F. Heide, andW. Heidrich, ‘‘CALTag: High precision fiducial
markers for camera calibration,’’ in Vision, Modeling, and Visualization.
Genoa, Italy: The Eurographics Association, 2010. Accessed:
Feb. 1, 2014. [Online]. Available: https://diglib.eg.org:443/xmlui/
handle/10.2312/PE.VMV.VMV10.041-048

[32] M. Fiala and C. Shu, ‘‘Self-identifying patterns for plane-based camera
calibration,’’ Mach. Vis. Appl., vol. 19, no. 4, pp. 209–216, Jul. 2008, doi:
10.1007/s00138-007-0093-z.

[33] J. DeGol, T. Bretl, and D. Hoiem, ‘‘Improved structure from motion
using fiducial marker matching,’’ in Proc. Eur. Conf. Comput. Vis., 2018,
pp. 273–288. [Online]. Available: https://openaccess.thecvf.com/content
_ECCV_2018/html/Joseph_DeGol_Improved_Structure_from_ECCV
_2018_paper.html

[34] M. Rumpler, S. Daftry, A. Tscharf, R. Prettenthaler, C. Hoppe, G. Mayer,
and H. Bischof, ‘‘Automated end-to-end workflow for precise and
Geo-accurate reconstructions using fiducial markers,’’ in Proc. Ann.
Photogramm., Remote Sensing Spatial Inf. Sci., vols. 2–3. Göttingen,
Germany: Copernicus GmbH, Aug. 2014, pp. 135–142. [Online].
Available: https://www.isprs-ann-photogramm-remote-sens-spatial-inf-
sci.net/II-3/135/2014/

[35] R. Muñoz-Salinas, M. J. Marín-Jimenez, and R. Medina-Carnicer,
‘‘SPM-SLAM: Simultaneous localization and mapping with squared
planar markers,’’ Pattern Recognit., vol. 86, pp. 156–171, Feb. 2019.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0031320318303224

[36] R. Suzuki, C. Zheng, Y. Kakehi, T. Yeh, E. Y.-L. Do, M. D. Gross,
and D. Leithinger, ‘‘ShapeBots: Shape-changing swarm robots,’’ in Proc.
32nd Annu. ACM Symp. User Interface Softw. Technol. New York, NY,
USA: Association for ComputingMachinery, Oct. 2019, pp. 493–505, doi:
10.1145/3332165.3347911.

[37] H. Fekrmandi, S. Rutan-Bedard, A. Frye, and R. Hoover, ‘‘Validation
of vision-based state estimation for localization of agents and swarm
formation,’’ in Proc. Symp. Mech. Syst. Robot. (Mechanisms and Machine
Science), P. Larochelle and J. M. McCarthy, Eds. Cham, Switzerland:
Springer, 2020, pp. 216–224.

[38] M. Fiala, ‘‘ARTag, a fiducial marker system using digital techniques,’’ in
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2005, pp. 590–596.

[39] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and
M. J. Marín-Jiménez, ‘‘Automatic generation and detection of highly
reliable fiducial markers under occlusion,’’ Pattern Recognit., vol. 47,
no. 6, pp. 2280–2292, Jun. 2014. . [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0031320314000235

[40] S. Gao, G. Guo, H. Huang, X. Cheng, and C. L. P. Chen, ‘‘An end-to-end
broad learning system for event-based object classification,’’ IEEE Access,
vol. 8, pp. 45974–45984, 2020.

[41] L. Zhang, H. Zhang, J. Chen, and L. Wang, ‘‘Hybrid deblur net:
Deep non-uniform deblurring with event camera,’’ IEEE Access, vol. 8,
pp. 148075–148083, 2020.

[42] S. Barua, Y. Miyatani, and A. Veeraraghavan, ‘‘Direct face detection and
video reconstruction from event cameras,’’ in Proc. IEEE Winter Conf.
Appl. Comput. Vis. (WACV), Mar. 2016, pp. 1–9.

[43] E. Piatkowska, A. N. Belbachir, S. Schraml, and M. Gelautz, ‘‘Spatiotem-
poral multiple persons tracking using dynamic vision sensor,’’ in Proc.
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Workshops,
Jun. 2012, pp. 35–40.

[44] H. Kim, A. Handa, R. Benosman, S.-H. Ieng, and A. Davison,
‘‘Simultaneous mosaicing and tracking with an event camera,’’ in
Proc. British Mach. Vis. Conf. Nottingham, U,K.: British Machine
Vision Association, 2014, p. 26.1–26.12. [Online]. Available:
http://www.bmva.org/bmvc/2014/papers/paper066/index.html

[45] Y. Zhou, G. Gallego, H. Rebecq, L. Kneip, H. Li, and D. Scaramuzza,
‘‘Semi-dense 3D reconstruction with a stereo event camera,’’ in Proc.
Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 235–251. [Online]. Available:
https://openaccess.thecvf.com/content_ECCV_2018/html/Yi_Zhou_Semi-
Dense_3D_Reconstruction_ECCV_2018_paper.html

[46] M. Litzenberger, C. Posch, D. Bauer, A. N. Belbachir, P. Schon, B. Kohn,
and H. Garn, ‘‘Embedded vision system for real-time object tracking using
an asynchronous transient vision sensor,’’ in Proc. IEEE 12th Digit. Signal
Process. Workshop, Sep. 2006, pp. 173–178.

[47] J. Conradt, M. Cook, R. Berner, P. Lichtsteiner, R. J. Douglas, and
T. Delbruck, ‘‘A pencil balancing robot using a pair of AER dynamic vision
sensors,’’ in Proc. IEEE Int. Symp. Circuits Syst., May 2009, pp. 781–784.

[48] S. Schraml, A. N. Belbachir, N. Milosevic, and P. Schon, ‘‘Dynamic stereo
vision system for real-time tracking,’’ in Proc. IEEE Int. Symp. Circuits
Syst., May 2010, pp. 1409–1412.

[49] D. Reverter Valeiras, X. Lagorce, X. Clady, C. Bartolozzi, S.-H. Ieng, and
R. Benosman, ‘‘An asynchronous neuromorphic event-driven visual part-
based shape tracking,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 26,
no. 12, pp. 3045–3059, Dec. 2015.

VOLUME 9, 2021 27825

http://dx.doi.org/10.1007/s11370-017-0219-8
http://dx.doi.org/10.1007/s11263-018-1106-2
http://dx.doi.org/10.1007/s11263-018-1106-2
http://dx.doi.org/10.1007/s00138-007-0093-z
http://dx.doi.org/10.1145/3332165.3347911

H. Sarmadi et al.: Detection of Binary Square Fiducial Markers

[50] A. Glover and C. Bartolozzi, ‘‘Event-driven ball detection and gaze fixa-
tion in clutter,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Oct. 2016, pp. 2203–2208.

[51] A. Mitrokhin, C. Fermuller, C. Parameshwara, and Y. Aloimonos, ‘‘Event-
based moving object detection and tracking,’’ in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst. (IROS), Oct. 2018.

[52] R. Grompone Von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall,
‘‘LSD: A line segment detector,’’ Image Process. Line, vol. 2, pp. 35–55,
Mar. 2012. [Online]. Available: http://www.ipol.im/pub/art/2012/gjmr-lsd/

[53] R. O. Duda and P. E. Hart, ‘‘Use of the Hough transformation to detect
lines and curves in pictures,’’ Commun. ACM, vol. 15, no. 1, pp. 11–15,
Jan. 1972, doi: 10.1145/361237.361242.

HAMID SARMADI received the bachelor’s
degree in computer science from the University of
Tehran, Iran, and the master’s degree in machine
learning from the KTH Royal Institute of Tech-
nology, Sweden, where he is currently pursu-
ing the Ph.D. degree. Since 2017, he has been
with the Instituto Maimónides de Investigación
Biomédica de Córdoba (IMIBIC) and the Univer-
sity of Córdoba, Spain. His main research interests
include computer vision and machine learning and

their applications to real-world problems.

RAFAEL MUÑOZ-SALINAS received the bach-
elor’s degree in computer science and the Ph.D.
degree from the University of Granada, Spain,
in 2003 and 2006, respectively. Since then, he has
been working with the Department of Computing
and Numerical Analysis, Cordoba University,
where he is currently an Associate Professor.
He has coauthored more than 100 papers in confer-
ences, books, and top-ranked journals. One of his
papers was the most-cited of the prestigious jour-

nal PATTERN RECOGNITION and is considered a highly-cited paper. He has been
a Visiting Researcher with the DeMontfort University (U.K.), Orebro Uni-
versity (Sweden), TUM University (Munich), INRIA University (France),
and the University of Groningen (Netherlands). He has advised seven Ph.D.
students. He participated in more than 20 projects both industrial and scien-
tific. As a teacher, he has been teaching for more than 12 years, advised more
than 30 final degree projects, and taught three international courses at the
University of Groningen, the University of Luxembourg, and the University
of Brno. He has been also part of the Erasmus STA teaching mobility
projects at the University of Malta and University of Coimbra (Portugal).
His research interests include computer vision, soft computing techniques
applied to robotics, and human–robot interaction.

MIGUEL A. OLIVARES-MENDEZ received the
Diploma degree in computer science engineering
from the University of Malaga, Spain, in 2006,
and the M.Sc. and Ph.D. degrees in robotics
and automation from the Technical University of
Madrid, Spain, in 2009 and 2013, respectively.
He is currently an Assistant Professor of Space
Robotics and a Senior Research Scientist with
the SnT-University of Luxembourg. He leads the
Space Robotics Research Group (SpaceR), the

Luna Laboratory, and the Orbital Robotics Laboratory. In 2013, he joined
the SnT-University of Luxembourg, as an Associate Researcher with the
Automation and Robotics Research Group (ARG). In December 2016,
he joined as a Research Scientist and main responsible for the research
activities on mobile robotics at ARG. He has published over 90 peer-
reviewed publications. His main research interests include UAVs, planetary
and orbital robotics for perception, machine learning, autonomous naviga-
tion, and multi-robot interaction. He was a recipient of the Best Ph.D. Thesis
Award of 2013 from the European Society for Fuzzy Logic and Technology
(EUSFLAT).

RAFAEL MEDINA-CARNICER received the
bachelor’s degree in mathematics from the Uni-
versity of Seville, Spain, and the Ph.D. degree in
computer science from the Polytechnic University
of Madrid, Spain, in 1992. Since 1993, he has
been a Lecturer of Computer Vision with Cordoba
University, Spain. His research interests include
edge detection, evaluation of computer vision
algorithms, and pattern recognition.

27826 VOLUME 9, 2021

http://dx.doi.org/10.1145/361237.361242

