
Received January 21, 2021, accepted January 31, 2021, date of publication February 10, 2021, date of current version February 19, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3058334

An Imbalanced Fault Diagnosis Method for
Rolling Bearing Based on Semi-Supervised
Conditional Generative Adversarial Network
With Spectral Normalization
MINQIU XU AND YOUQING WANG , (Senior Member, IEEE)
College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China

Corresponding author: Youqing Wang (wang.youqing@ieee.org)

This work was supported in part by the National Natural Science Foundation of China under Grant 61822308, in part by the Shandong
Province Natural Science Foundation under Grant JQ201812, and in part by the Program for Entrepreneurial and Innovative Leading
Talents of Qingdao under Grant 19-3-2-4-zhc.

ABSTRACT In actual industrial applications, rolling bearings are under normal working conditions most of
the time, and the fault data that can be collected are insufficient, so they are prone to data imbalance. Due
to the high cost of labeling all fault data, most fault data are unlabeled. In this study, the Semi-supervised
Conditional Generative Adversarial Network with Spectral Normalization (SN-SSCGAN) is proposed to
solve these problems. Its core idea is to generate new samples with similar distribution by using partially
labeled minority fault samples to balance the dataset. First, this method first applies wavelet transform
to preprocess a vibration signal and obtain a time-frequency matrix. Second, the partially labeled time-
frequency fault data are taken as the input of SN-SSCGAN, Nash equilibrium is achieved through adversarial
training, and then data with similar distribution are generated. Lastly, the generated fault data are added to the
dataset for balancing, and a convolutional neural network is used for fault diagnosis. The effectiveness of the
proposed method is verified with comparative experiments in the CWRU bearing dataset. Results show that
this method can generate high-quality samples and determine satisfactory results in bearing fault diagnosis
when only a small number of labeled samples and the remaining unlabeled samples are used.

INDEX TERMS Generative adversarial network, imbalanced fault, fault diagnosis, wavelet transform,
rolling bearing.

I. INTRODUCTION
Rolling bearing is one of the most frequently used parts in
automation equipment. In industrial production, it is prone
to damage because of its continuous operation in complex
working environments, such as high load, variable working
conditions, high temperature, and high pressure. Relevant
data have shown that about 30% of mechanical faults are
caused by rolling bearing faults [1]. The consequences caused
by the fault of the rolling bearing destroy the automation sys-
tem and may result in serious or even catastrophic accidents.
For this reason, the fault diagnosis of rolling bearing is of
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great significance to improve the reliability of equipment and
reduce economic losses.

In many studies, some data-driven methods for bearing
fault diagnosis assume that the dataset is balanced, that is, the
data collected and labeled under different working conditions
are the same in quantity. However, rolling bearing mostly
works in normal operating conditions, and the fault data that
can be collected are insufficient. When the training data are
imbalanced, the accuracy of the majority samples is relatively
high, and the accuracy of the minority samples is low; it
even has an ‘‘undo’’ effect on the minority [2]. Moreover,
labeling all fault data is more expensive, and most of the fault
data are unlabeled [3]. Through the semi-supervised learning
method, only a small number of labeled samples and the
remaining unlabeled samples are needed to train the model,
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which reduces the cost and is more in line with the actual
situation.

In recent decades, various machine learning methods have
been extensively studied. When the given data are limited,
some methods, such as support vector machine (SVM), have
a low classification accuracy [4].

Studies have been implemented to solve the problem of
imbalanced data and insufficient labeled samples. To solve
the imbalanced data problem, the synthetic minority over-
sampling technique (SMOTE) was proposed through which
new samples between two minority samples are synthe-
sized through linear interpolation. Han et al. [5] proposed
an improved SMOTE method named Borderline-SMOTE,
which only considers samples close to the classification
boundary, and oversamples them to increase the minority
samples at the boundary. He et al. [6] developed an adaptive
synthetic sampling approach (ADASYN), which adaptively
changes its weight in accordance with the distribution of
minority samples. Douzas et al. [7] designed the K-means
SMOTE algorithm, which involves K-means to perform
SMOTE oversampling on minority samples with a high
degree of clustering, avoid noise generation, and effectively
improve data imbalance. However, most of these methods
based on synthetic oversampling are generated through data
interpolation, which is still insufficient in reflecting the
potential distribution of actual data and cannot learn the fea-
tures of data distribution. Many semi-supervised algorithms
have emerged to address the problem of insufficient labeled
data.Monroy et al. [8] proposed a semi-supervisedmethod by
integrating independent component analysis, Gaussian mixed
model, and SVM. Jiang et al. [9] proposed semi-supervised
fisher analysis named SSKMFA for bearing fault diagnosis.
Li and Zhou [10] put forward a novel semi-supervisedmethod
called SWKC-GS for clustering the labeled and unlabeled
data. Jiang et al. [11] proposed a semi-supervised hierar-
chical sparse neural network for fault diagnosis. Therefore,
these methods have good performance in fault diagnosis, but
they cannot automatically learn the distribution features of
samples.

With the continuous improvement of deep learning algo-
rithms, it may become the most potential method to deal
with the problem of data imbalance [12]. Goodfellow et al.
[13] first proposedGenerativeAdversarial Network (GAN) in
2014; since then, GAN has one of the most popular research
directions in the field of deep learning. As a generative
model, it can generate new samples with similar distribu-
tions to original data and has been widely used in vari-
ous fields, such as emotional speech [14], computer vision
[15], super-resolution image [16]. On the basis of this idea,
scholars proposed various improved algorithms for GAN.
In order to solve the unstable factors of GAN in the training
process, such as gradient explosion and gradient vanishing
problem, the following improvement methods are proposed.
Arjovsky et al. [17] proposed Wasserstein GAN (WGAN),
which uses smoothWasserstein distance instead of discontin-
uous JS divergence as the loss function of GAN, and forced

the discriminator to be restricted to a 1-Lipschitz function
space through weight clipping. Gulrajani et al. [18] proposed
Wasserstein GANs with gradient penalty (WGAN-GP)and
replaced weight clipping by directly limiting the gradient
norm of the discriminator’s output relative to its input, mak-
ing the training progress more stable. Miyato et al. [19]
proposed the Spectrally Normalized GAN (SNGAN), which
transforms the training instability problem of GAN into a
process of finding the maximum singular value of the weight
matrix in the discriminator. In semi-supervised learning, the
following improvements are proposed. Salimans et al. [20]
proposed semi-supervised GAN (SSGAN), which improves
the effectiveness of GAN for semi-supervised learning and
introduced some training techniques to stabilize training.
Odena et al. [21] proposed the Auxiliary Classifier GAN
(ACGAN), which is improved on the basis of SSGAN.
Sricharan et al. [22] proposed semi-supervised conditional
GAN (SSCGAN) to further improve the performance of
semi-supervised GAN. In recent studies, some GAN-based
methods have been gradually applied to the field of fault
diagnosis because of the ability to generate minority samples.
Wang et al. [23] used a stacked denoising autoencoder as the
structure of the discriminator to solve the noise problem and
realize small samples of planetary gearbox fault diagnosis.
Han et al. [24] introduced the adversarial ideas in GAN
into convolutional neural networks to improve its general-
ization performance. Mao et al. [25] proposed a GAN-based
fault diagnosis method for imbalanced data and conducted a
detailed comparative study. Liang et al. [26] combined the
wavelet transform and semi-supervised GAN for the fault
diagnosis. Pan et al. [27] proposed a semi-supervised multi-
scale convolutional GAN framework, which can effectively
identify bearing faults. Relevant research has been conducted
on data imbalance and semi-supervised learning respectively.
They havemainly focused on the following points: (1) labeled
minority samples are used for training, and (2) a balanced
dataset is usedwhile some of the samples are labeled for train-
ing. However, in practical applications, the number of minor-
ity samples that can be collected is limited, labeled samples
are expensive, and unlabeled data are insufficient. Therefore,
studies should be performed to address the problems of data
imbalance and insufficient labeled samples simultaneously.

In this study, a new fault diagnosis method SN-SSCGAN
is proposed to solve the problem of data imbalance and
insufficient labeled samples. Spectral normalization is com-
bined with the improved semi-supervised conditional GAN
for the fault diagnosis of bearing imbalanced data. Wavelet
transform is adopted to extract the time-frequency features
of vibration signals, and labeled and unlabeled samples are
simultaneously used for training. The contributions of this
study are summarized as follows:

(1) Considering the problems of data imbalance and insuf-
ficient labeled samples in practical applications, an improved
semi-supervised conditional GAN is proposed to make full
use of labeled data and unlabeled data to balance the
dataset.
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FIGURE 1. Structure of GAN.

(2) The minority class fault samples are used to train
the proposed SN-SSCGAN, and the balanced minority and
majority classes are classified by the fault diagnosis classifier.

(3) Spectral normalization is used in the discriminator
to normalize the weight matrix to fundamentally solve the
problem of instability during training.

(4) The effectiveness of the proposed method is tested
on the CWRU bearing dataset. The results show that the
performance of this method is better than that of the three
other comparison methods under the condition of limited
labeled and unlabeled samples.

The remaining parts are organized as follows. Section II
briefly presents the basic theories of GAN, SSCGAN, spec-
tral normalization, and wavelet transform. Section III intro-
duces the proposed method in detail. Section IV discusses
the application of this method in the bearing dataset and its
comparison with other methods. Section V summarizes the
conclusions of this study.

II. RELATED WORKS
A. GAN
Inspired by binomial zero-sum game theory, Goodfellow et
al. [13] proposed GAN, which is mainly composed of a dis-
criminator D and a generator G, as shown in Fig. 1. The goal
of the generator is to capture the potential distribution of real
dataPdata(x) asmuch as possible to confuse the discriminator.
The generator takes random noise z as an input to generate
fake data G(z). The goal of the discriminator is to determine
the source (real data x or fake data G(z)) of the input data
and output the corresponding probability, where 0 means
completely fake data and 1 means completely real data. The
objective function of GAN is expressed in Eq. (1).

min
G

max
D

V (D,G) = Ex∼Pdata(x)[logD(x)]

+Ez∼Pz(z)[log(1− D(G(z)))] (1)

Through adversarial learning, the parameters of the dis-
criminator and the generator are updated. When the GAN is
trained well, the distribution of the fake data generated by the
generator is almost exactly the same as the distribution of the

FIGURE 2. Structure of SSCGAN [22].

real data. The discriminator cannot distinguish the source of
the data, and the output probability is 0.5.

B. SEMI-SUPERVISED CONDITIONAL GAN
Semi-supervised learning is widely used in GAN. Salimans
et al. [20] proposed SSGAN, which involves the use of a
discriminator to reconstruct label information, improve the
quality of the generated data, and obtain better results on com-
puter vision datasets. Odena et al. [21] proposed an ACGAN,
which uses label information for training, reconstructs label
information through the discriminator, and generates new
samples according to the specified label. Sricharan et al. [22]
proposed SSCGAN, which has better results than other semi-
supervised GANmodels. The structure of SSCGAN is shown
as Fig. 2, where xG represents the data generated by the
generator, xU represents the unlabeled data, xT represents the
labeled data, and yT represents the label corresponding to xT .
In SSCGAN, a stacked discriminator architecture com-

posed of unsupervised part Du and supervised part Ds is
considered, where Du is responsible for distinguishing the
true and false of unlabeled data x, and Ds is responsible for
distinguishing the true and false of labeled data (x, y). In the
model, the unsupervised discriminator Du yields the inter-
mediate layers output h(x), and the label y is subsequently
appended to h(x) and fed to the supervised discriminator Ds.
By providing the feature h(x) learned by Du to Ds, the advan-
tage over directly providing data x to Ds is that Ds cannot
overfit to the minority labeled samples. Instead, it must rely
on the features of the population to uncover the dependency
between x and y.

During the training process, whether the generator adds
label y is determined according to whether the training data
have a label, and the label y input to the generator is consis-
tent with the label yT of the input Ds. When the training is
completed, the label y in G(z, y) is arbitrarily specified. The
stacked discriminator and the generator apply batch normal-
ization [28] to stabilize training, and input concat is used to
add labels.
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The loss function of the generator and discriminator pair
is shown in the following equations. When the generator is
fixed, the discriminator loss function, including the super-
vised part LsD and the unsupervised part LuD, should be mini-
mized. When the discriminator is fixed, the parameters of the
generator are updated by minimizing LG. The α controls the
effect of the labeled data on the unlabeled part. The α is set
to 0 when the input data are unlabeled; otherwise, it is 1.

LD = LsD + L
u
D (2)

LsD = −{Ex,y∼Pdata(x,y)[logDs(x, y)]

+Ez,y∼Pz(z,y)[log(1− Ds(G(z, y)))]} (3)

LuD = −{Ex∼Pdata(x)[logDu(x)]

+Ez∼Pz(z)[log(1− Du(G(z)))]} (4)

LG = −{Ez∼Pz(z)[log(Du(G(z)))]

+αEz,y∼Pz(z,y)[log(Ds(G(z, y)))]} (5)

C. SPECTRAL NORMALIZATION
Miyato et al. [19] proposed a new weight normalization
method called spectral normalization to solve the problem of
instability of the discriminator during training. It controls the
Lipschitz constant by limiting the spectral norm (L2 matrix
norm) of theweightmatrix of each layer f in the discriminator
D.

For the linear layer f (x) = Wx, its Lipschitz norm is shown
in Eq. (6) according to the definition, where σ (W ) represents
the L2 matrix norm of matrix W , which is also equal to the
maximum singular value ofW .

‖f ‖Lip = supxσ (∇f (x)) = supxσ (W ) = σ (W ) (6)

σ (W ) = max
x 6=0

‖Wx‖2
‖x‖2

= max
‖x‖2≤1

‖Wx‖2 (7)

If the Lipschitz norm of the activation function a selected
for each layer is 1 (such as ReLU), according to norm com-
patibility, the boundary of the Lipschitz norm in discriminator
D can be obtained, as presented in inequality (8), where L is
the layer’s number of D.

‖D‖Lip ≤
L+1∏
l=1

∥∥∥W lxl−1
∥∥∥
Lip
=

L+1∏
l=1

σ (W l) (8)

Therefore, a spectral normalization method is needed to
ensure that σ (W l) is always equal to 1. Spectral normalization
is shown in Eq. (9).

W̄SN (W ) =
W
σ (W )

(9)

Eq. (9) is used to normalize the weight matrix W l of
each layer, thereby obtaining σ (W̄SN (W l)) = 1 so that D
can satisfy the 1-Lipschitz constraint. The training instability
problem of the discriminator is transformed into the problem
of obtaining the maximum singular value σ (W l). σ (W l) can
be determined by applying power iteration method [29]. The
specific process is as follows, where ũl represents the random

initialized vector of each layer of weight.

ṽl ← (W l)T ũl/
∥∥∥(W l)T ũl

∥∥∥
2

(10)

ũl ← W l ṽl/
∥∥∥W l ṽl

∥∥∥
2

(11)

σ (W l) = ũTl W
l ṽl (12)

D. CONTINUOUS WAVELET TRANSFORM
Wavelet transform, as a recognized time-frequency domain
analysis method, has a powerful time-frequency feature
extraction ability and has been widely used in the fault
diagnosis of rolling bearings [30]–[32]. In comparison with
the one-dimensional frequency domain signal obtained by
Fourier transform, wavelet transform can obtain a two-
dimensional time-frequency image, which contains more
usable information.Wavelet transform has a higher frequency
resolution and a lower time resolution in the low frequency
range, and vice versa [26]. In our study, continuous wavelet
transform (CWT) is implemented to preprocess the vibration
signal as the input data of the discriminator. The CWT pro-
vides continuous translating and scaling of the wavelet basis
function, as defined in Eq. (13),

Wψ (a, τ ) =
1
√
a

∫
+∞

−∞

x(t)ψ∗(
t − τ
a

)dt (13)

where x(t) is the input vibration signal, ψ is the wavelet
basis function (WBF), ψ∗ represents the complex conjugate
of ψ , a is the scaling factor, which control the expansion and
contraction of WBF, and τ is the translation factor, which
determines the position of WBF [33].

Morlet WBF is chosen as the basis function of CWT
with an explicit analytic equation. It is symmetric, has good
smoothness, and has a limited support length. Therefore,
compared with Db WBF, it is more reasonable to use Morlet
WBF to extract bearing fault features in wavelet transform
[34].

III. PROPOSED METHOD
A noval fault diagnosis method called SN-SSCGAN is pro-
posed to solve the problems of data imbalance and insuffi-
cient labeled samples. In this method, spectral normalization
is combined with an improved semi-supervised conditional
GAN, and limited labeled minority fault samples are used
to generate new samples with a similar distribution. The
balancedminority fault samples andmajority normal samples
are applied to the CNN classifier for fault diagnosis. Fig. 3
shows the flow chart of this method, which includes three
parts: data preprocessing, data generation and fault diagnosis.

A. DATA PREPROCESSING
In this method, the CWT is used to transform vibration
signals into time-frequency images and normalize them to
the interval [-1,1]. The minority data are extracted to train
SN-SSCGAN, and the majority data are used for fault diag-
nosis classifier.

VOLUME 9, 2021 27739



M. Xu, Y. Wang: Imbalanced Fault Diagnosis Method for Rolling Bearing Based on SN-SSCGAN

FIGURE 3. Flow chart of the proposed method.

B. DATA GENERATION
1) SN-SSCGAN FRAMEWORK
Themethod proposed in this study is improved on the basis of
SSCGAN by adding label nodes to the output ofDu andDs in
the discriminator and applying spectral normalization in the
stacked discriminator. The generator generates new samples
by inputting random noise z. In terms of the presence of the
label of the sample input to the stack discriminator, this study
determines whether the generator adds a label y. The label
y input to the generator is consistent with the label yT input
to Ds. The framework of SN-SSCGAN is shown in Fig. 4,
where xG represents the data generated by the generator, xU
represents the unlabeled data, xT represents the labeled data,
and yT represents the label corresponding to xT .

2) GENERATOR AND DISCRIMINATOR DESIGN
Convolution and deconvolution have an excellent per-
formance in image feature extraction and reconstruction,
so these two structures are used to build the discriminator and
the generator.

In the generator, 128-dimensional noise data are input
to a fully connected (FC) layer with 16384 nodes. The
output of the FC layer is converted into 4 × 4×1024
(width×height×channel number) images through a simple
reshape function.

Then, six deconvolution layers is used for processing,
where the size of filters is 5 × 5, and the stride is 2. The
first five deconvolution layers have 1024, 512, 256, 128,
and 64 filters respectively, and the activation function is
ReLU. The number of filters in the last deconvolution layer

FIGURE 4. SN-SSCGAN framework.

is 1, the activation function uses tanh, and the final output is
matrices with a value range of [-1,1] and a size of 64× 64.

When the discriminator is input with labeled data, each
layer in the generator adopts conditional batch normalization
(CBN) [35] to insert label y to generate a new sample of a
specific label. On the contrary, the generator inputs unlabeled
data and uses batch normalization (BN) instead of CBN. The
generator architecture is shown in Fig. 5.
The stacked discriminator is divided into unsupervised

discriminator Du and supervised discriminator Ds. The input
data of the stacked discriminator are matrices of 64 × 64
dimensions, and features are extracted through five con-
volutional layers. The size of the filters of each layer is
3× 3, the stride is 2, the activation function is Leaky ReLU
(abbreviated as LReLU), and the size of the output data is
4× 4×1024. Afterward, the middle layer output feature h(x)
of Du is obtained through the average pooling and the FC
layer with 512 neuron nodes.

In inputting the unlabeled data, the true/false and classifi-
cation information is output through the FC layer with K + 1
neuron nodes and the softmax layer. In the output K + 1 type
data ypred = {y1pred , y

2
pred , · · · , y

K+1
pred }, the first K type data

{y1pred , y
2
pred , · · · , y

K
pred } represents the predicted label, and

the K + 1 type yK+1pred represents the true or false prediction.
The proposed method only uses the true/false information at
yK+1pred to update Du and the generator G.
When the label data are used as input, the feature h(x) is

input to Ds, and the label y is inserted using the inner product
method. Then the FC layer with K + 1 neuron nodes and the
softmax layer are used to output the true/false and classifi-
cation information. The true/false information at yK+1pred and
the label information at {y1pred , y

2
pred , · · · , y

K
pred } are applied

to update the stacked discriminator D (including Du and Ds)
and the generator G.
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FIGURE 5. Architecture of the proposed generator (CBN indicates Conditional Batch Normalization).

FIGURE 6. Architecture of the proposed discriminator (SN indicates Spectral Normalization).

Spectral normalization is applied to stabilize the training
process between the layers of the stacked discriminator, s.
The discriminator architecture is illustrated in Fig. 6.

3) MODEL TRAINING PROCESS
Model training is divided into a supervised part and an unsu-
pervised part. When the labeled data are input, the random
noise z is linked with the label y, and the fake data G(z, y)
generated by the generator are input to Ds through Du with
the real data (x, y). The classified data ypred are output.
In inputting the unlabeled data, the fake data G(z) and the
real data x are inputted into Du, and the classified data ypred
are directly outputted. The generator and the discriminator are
alternately trained with the mini-batch gradient descent until
the Nash equilibrium is reached.

In the unsupervised part of this study, the loss function
proposed in the geometric GAN [36] is adopted to replace
the commonly used cross-entropy loss function. Geometric
GAN uses support vector machine to separate hyperplane to
maximize the margin between real and generated data. The
geometric GAN is derived on the basis of geometric intuition
similar to the derivation of the SVM compared with most of
the existing approaches based on a statistical design criterion,

which has more advantages. A large number of numerical
experiments show that geometric GAN has less mode col-
lapse and a more stable training process. This method is not
described in detail here because of space limitation. The loss
functions of the discriminator and the generator are shown in
the following equations,

LD = LsD + L
u
D (14)

LsD = −Ex,y∼Pdata(x,y)[logDs(h(x), y)] (15)

LuD = −{Ex∼Pdata(x)[max(0, 1− Du(x)]

+Ez∼Pz(z)[max(0, 1+ Du(G(z)))]} (16)

LG = −{αEz∼Pz(z)[Du(G(z))]

+ (1− α)Ez,y∼Pz(z,y)[Ds(G(z, y)]} (17)

whereDs(h(x), y) corresponds to the first K label information
of ypred ,Du(x) andDu(G(z)) represent the (K+1)-th true/false
information of ypred . α controls the generator input data type.
In inputting the unlabeled data, α is set to 1; otherwise, it is
set to 0.

The training parameters are as follows. In one training
epoch, the ratio of the training times of the stacked discrimi-
nator D and the generator G is 1. The size of the mini-batch
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FIGURE 7. Architecture of the proposed fault diagnosis classifier (BN indicates Batch Normalization).

is 7. Adam is used as the optimizer with learning rates of G
and D of 0.0001, and the model is trained for 300 epochs.

C. FAULT DIAGNOSIS
The fault diagnosis classifier used in this study is shown in
Fig. 7. The input of the classifier consists of the balanced
minority fault samples and majority normal samples. First,
five convolutional layers are used, with 64, 128, 256, 512,
and 1024 filters, with a filter size of 3 × 3 and a stride
of 2. Then, an average pooling layer and a FC layer with K
neuron nodes are used. Lastly, the softmax function is used
for classification. ReLU is selected as the activation function
between convolutional layers, and the mini-batch size is 50.
The Adam optimizer is utilized with the learning rate of
0.0002 to train 100 epochs.

IV. EXPERIMENT
A. BEARING DATASET FROM CWRU
1) DATASET DESCRIPTION
In this study, the bearing dataset is provided by the Case
Western Reserve University (CWRU) Bearing Data Center
[37], which is a recognized benchmark dataset in the field of
fault diagnosis. The test equipment consists of a 2 hp motor,
a load motor, a torque transducer/encoder, a power meter
and an electronic controller. An electro-discharge machining
is used to create different degrees of single point faults on
the ball, inner race and outer race of the bearing. The fault
diameters are 0.007, 0.014, 0.021, 0.028 and 0.04 inches. The
acceleration sensor is used to collect vibration signals along
the vertical direction from the housing of the fan end bearing
(FE), the drive end bearing (DE), and the base plate (BA).
These vibration signals are used as a fault diagnosis dataset.

In this study, the DE vibration signals of different fault
diameters are adopted to perform fault diagnosis on normal
condition (NC), ball fault (B), inner race fault (IR) and outer
race fault (OR). The sampling frequency is 12 kHz, the load
is 0 hp, and the selected fault diameters are 0.007, 0.014, and
0.021 inches. Therefore, 10 types of data can be obtained, and
they are labeled as NC, B007, B014, B021, IR007, IR014,
IR021, OR007, OR014, and OR021.

2) DATA PREPROCESSING
Among the 10 types of the data collected, the majority
class (NC) has about 244000 data points, and the minority
class (B, IR, and OR) has about 121000 data points. The data
points are divided with a sampling method similarly to that
in a previous study [26], [38]. In this study, a sliding win-
dow method is used to divide the one-dimensional vibration
signal. If the length of the sliding window is set too small,
it will not be able to cover a sufficient length of the vibration
signal, which will cause samples confusion and reduce diag-
nostic accuracy [39]. When the sampling frequency is 12 kHz
and the motor speed is 1797 r/min, the number of data
points corresponding to one revolution of the bearing is N =
60÷1797 (rpm)×12000 (frequency)≈400. Then, 1200 data
points (three bearing rotation cycles) are used as the slid-
ing window, and the sliding step length is 600 data points.
The first 120600 data points of the minority class and the
first 240600 data points of the majority class are intercepted.
Through the sliding window, 200 samples of the minority
class and 400 samples of the majority class can be obtained.
The vibration signal in each sample is converted into a time-
frequency image through CWT. Then, the logarithm of all
data is taken to reduce the gap between different types of
data and normalized to [-1,1]. The proposed method involves
64 × 64×1 images as input, so all wavelet transform image
sizes are converted to 64×64×1. The time-frequency images
obtained with wavelet transform are shown in Fig. 8, and
the details of the division of training set and testing set are
presented in Table 1.
According to Table 1, four training sets with different

imbalanced ratios can be obtained, and new samples are
generated by training the minority class through GAN. The
balanced minority samples are combined with the majority
samples and inputted into the fault diagnosis classifier for
classification. A total of 600 test samples are used to test the
classifier performance.

Some samples are randomly labeled from the minor-
ity training set, and the dataset is divided into labeled
and unlabeled data to further study the performance dif-
ference between different semi-supervised GAN methods.
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TABLE 1. The details of dataset.

TABLE 2. Labeled data under different imbalance ratios.

The labeling rates are 0.25, 0.5, 0.75, and 1. The details of
the labeled data are shown in Table 2.

3) DATA GENERATION AND VISUALIZED FEATURE
DISTRIBUTION
In this section, nine kinds of minority fault samples are used
to train SN-SSCGAN, and new samples are generated to
balance the dataset. The number of the generated samples
is N i

generated = NMajor -N i
labeled , where i represents the i-th

minority fault type. For example, at an imbalanced ratio of
2:1 and a labeled rate of 0.5, Fig. 9 illustrates the comparison
between original and the generated samples. It can be seen
that the generated samples learn almost the same features
from the original samples. Furthermore, t-distributed stochas-
tic neighbor embedding (t-SNE) [40] is adopted to visual-
ize the feature distribution of these samples and intuitively
understand original and generated samples. The dimension-
reduced visualization results of original and generated sam-
ples are shown in Fig. 10.

B. EXPERIMENTAL RESULTS
The proposed SN-SSCGAN is compared with the improved
semi-supervised GAN methods, namely, ACGAN [21] and
SSCGAN [22], to demonstrate the advantages of the pro-
posed method in generating data. The network architecture
of these two methods is shown in Table 3 and Table 4. The
training parameters are consistent with those of the proposed
SN-SSCGAN. These methods are also compared with the
traditional oversampling method SMOTE. The main idea of
this study is to use SN-SSCGAN, SSCGAN, ACGAN, and
SMOTE to generate new samples to balance the data, and
then input them into the same fault diagnosis classifier for
training, and test the quality of the generated data through
the evaluation indices of the testing set.

FIGURE 8. Continuous wavelet transform images of the 10 types of
samples in the bearing dataset.

For a comprehensive comparison, the four commonly
used evaluation indices for imbalanced data are as follows:
F1-measure [41], G-mean [42], AUC value, and receiver
operating characteristic (ROC) curve.

The definitions of F1-measure and G-mean are shown in
Eqs. (18) and (19), where T /F represents the actual true/false
sample, and P/N represents the predicted positive/negative
sample, which can be combined into 4 situations: TP, TN ,
FP, and FN . The larger these two values are, the better the
performance of the fault diagnosis classifier is, that is, the
more accurate the generated data are.

F1 =
2× TP

2TP+ FN + FP
(18)
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FIGURE 9. Comparison of wavelet transform images of generated
samples and original samples: (a) generated B007; (b) generated IR021;
(c) generated OR007; (d) generated OR021; (e) original B007; (f) original
IR021; (g) original OR007; (h) original OR021.

FIGURE 10. Visualized feature distribution (crosses indicate original
testing samples, dots indicate generated samples).

G− mean =

√
TP

TP+ FN
×

TN
TN + FP

(19)

The ROC is a curve with a false positive rate (FPR) and
true positive rate (TPR) as the abscissa and the ordinate,
respectively. FPR and TPR are defined as Eqs. (20) and (21),
and the AUC value is the area under the ROC curve. The
closer the ROC curve is to the upper left corner, that is,
the closer the AUC value is to 1, indicating that the higher
the quality of the generated samples is higher.

FPR =
FP

FP+ TN
(20)

TPR =
TP

TP+ FN
(21)

A total of 16 sets of data with different imbalanced
ratios and labeled rates are used for training, and the final
comparison results are obtained. All these methods are
repeated 10 trials and the mean value is taken to obtain the
final comparison result to make the results more convincing
and reduce the influence of randomness. With the space limi-
tation, the imbalance ratio is 20:1, and the labeling rate is 0.25
as a representative. The experiment is repeated 10 times to

TABLE 3. Network architecture of SSCGAN.

TABLE 4. Network architecture of ACGAN.

obtain the comparison results of different methods, as shown
in Fig. 11. The F1-measure index of the method proposed
in this study is superior to other methods. In other cases,
the comparison results of the F1-measure index, G-mean
index, and the AUC index are shown in Fig. 12, 13, and 14,
respectively. The imbalanced ratio of 20:1 and the labeled
rate of 0.25 are taken as an example to show the comparison
results of the ROC curves and make an obvious comparison
(Fig. 15).

C. RESULTS AND DISCUSSIONS
In Fig. 12, when the imbalanced ratios are 2:1 and 5:1, the
proposed method is basically the same as the results of SSC-
GAN, ACGAN, and SMOTE because the training samples
are sufficient, and the F1-measure is 1. The features of the
samples generated by the four methods are consistent with
those of the original samples. When the imbalanced ratio
is 10:1, as the number of the decrease of labeled samples
decreases, the F1-measure index gradually decreases. In com-
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FIGURE 11. F1 measure of the ten trials in testing set.

FIGURE 12. F1-measure in different methods with different imbalanced
ratios and labeled rates: (a) 2:1; (b) 5:1; (c) 10:1; (d) 20:1.

parison with SSCGAN and ACGAN, the proposed method
is significantly improved and not much different from the
SMOTE method. When the imbalanced ratio is 20:1, the data
are more imbalanced. As the number of the labeled sam-
ples decreases, the F1-measure indices of the four methods
decrease more significantly. SMOTE is no longer advan-
tageous for synthesizing data through linear interpolation,
whereas the semi-supervised GAN can make full use of unla-
beled samples to generate new samples. The F1-measure of
SN-SSCGAN is higher than that of SSCGAN and ACGAN.
The proposed SN-SSCGAN can generate samples that are
closer to the original sample features than to the other meth-
ods under the condition of the less labeled and unlabeled data.
Similarly, in Figs. 13 and 14, the proposed method is more
effective than that other methods in terms of G-mean and
AUC indices.

In Fig. 15, the ROC curve of the proposed method is closer
to the upper left part, indicating that the feature distribution
of the generated sample is closer to the real sample and
consistent with the results of other evaluation indices.

FIGURE 13. G-mean in different methods with different imbalanced
ratios and labeled rates: (a) 2:1; (b) 5:1; (c) 10:1; (d) 20:1.

FIGURE 14. AUC value in different methods with different imbalanced
ratios and labeled rates: (a) 2:1; (b) 5:1; (c) 10:1; (d) 20:1.

The confusion matrix with an imbalanced ratio of 20:1 and
a labeled rate of 0.25 is shown in Fig. 16 to illustrate the
classification of the fourmethods in detail. The abscissa of the
confusionmatrix is the predicted fault type, the ordinate is the
real fault type, diagonal elements are the percentage of correct
predictions, and the off-diagonal elements are the percentage
of prediction errors. In the case of the imbalanced data, the
confusion matrix can intuitively display the accuracy of the
classification model corresponding to each category and indi-
rectly reflect the quality of the generated data. In Fig. 16, the
performance of the proposed SN-SSCGAN is the best among
the four methods. The accuracy rates of other fault types are
above 95%, but the accuracy rate of the B014 (label 3) fault is
80%. In Fig. 16(a), SMOTEmisclassifies 1.7% samples of the
NC working condition, 15% samples of B014, 63.3% sam-
ples of IR014, and 38.3% samples of OR021. In Fig. 16(b),
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FIGURE 15. ROC curve with imbalanced ratio of 20:1 and labeled rate of
0.25.

FIGURE 16. The confusion matrixes with imbalanced ratio of 20:1 and
labeled rate of 0.25: (a) SMOTE; (b) ACGAN; (c) SSCGAN; (d) SN-SSCGAN.

ACGAN misclassifies 35% samples of B014, 30% samples
of B021, 15% samples of IR007, 68.3% samples of IR014,
18.3% samples of IR021, 41.7% samples of OR007, and 3.3%
samples of OR021. In Fig. 16(c), SSCGAN misclassifies
26.7% samples of B014, 11.7% samples of B021, 38.3%
samples of IR014, 6.7% samples of IR021, and 6.7% samples
of OR021. By contrast, the proposed SN-SSCGAN only
misclassifies 20% of the B014 faults, 3.3% of the B021 faults,
1.7% of the IR014 faults, and 1.7% of the IR021 faults. The
comparison result of confusion matrices shows that the pro-
posed SN-SSCGAN method is superior to other methods in

terms of the fault diagnosis of imbalanced data when labeled
and unlabeled samples are fewer.

V. CONCLUSION
In practical applications, bearing fault diagnosis suffers from
data imbalance. The collected fault data are limited, and the
cost of labeling all fault data is high. The accuracy and cost
of fault diagnosis must be considered simultaneously. In this
study, the proposed imbalanced fault diagnosis method called
SN-SSCGAN has a combination of spectral normalization
with an improved semi-supervised conditional GAN. Par-
tially labeled minority fault samples and sufficient unlabeled
samples are utilized to generate new samples with similar dis-
tributions, balance the dataset, and perform fault diagnosis.
Spectral normalization is applied to stabilize the adversarial
training process. The analysis of the experimental results with
other methods in the CWRU bearing dataset confirm that
the proposed method has an excellent performance in the
imbalanced fault diagnosis of rolling bearing. The obtained
conclusions are as follows:

(1) The spectral normalization method can be used to
normalize the weight matrix, limit the gradient of the dis-
criminator to a certain range, and fundamentally solve the
interference factors in the training process.

(2) The proposed method can be utilized to generate high-
quality new samples, expand the imbalanced dataset, and
further improve the performance of fault diagnosis.

(3) SN-SSCGAN has advantages over other methods
(SMOTE, ACGAN, and SSCGAN) in terms of evaluation
indices when few labeled and unlabeled samples are used.

The proposed method achieves excellent results in single
fault diagnosis. In the following work, we will consider the
problem of imbalanced composite fault diagnosis by using
fewer labeled samples, combining the method with the latest
deep neural network, and designing a new semi-supervised
GAN to enhance the methods performance.
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