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ABSTRACT Vehicular-ad hoc networks (VANETs) hold great importance because of their potentials in road
safety improvement, traffic monitoring, and in-vehicle infotainment services. Due to high mobility, sparse
connectivity, road-side obstacles, and shortage of roadside units, the links between the vehicles are subject
to frequent disconnections; consequently, routing is crucial. Recently, to achieve more efficient routing,
reinforcement learning (RL)-based routing algorithms have been investigated. RL represents a class of
artificial intelligence that implements a learning procedure based on previous experiences and provides a
better solution for future operations. RL algorithms are more favorable than other optimization techniques
owing to their modest usage of memory and computational resources. Because a VANET deals with
passenger safety, any kind of flaw is intolerable in VANET routing. Fortunately, RL-based algorithms have
the potentials to optimize the different quality-of-service parameters of VANET routing such as bandwidth,
end-to-end delay, throughput, control overhead, and packet delivery ratio. However, to the best of the authors’
knowledge, surveys on RL-based routing protocols for VANETs have not been conducted. To fulfill this gap
in the literature and to provide future research directions, it is necessary to aggregate the scattered works on
this topic. This study presents a comparative investigation of RL-based routing protocols, by considering their
working procedure, advantages, disadvantages, and applications. They are qualitatively compared in terms
of key features, characteristics, optimization criteria, performance evaluation techniques, and implemented
RL techniques. Lastly, open issues and research challenges are discussed to make RL-based VANET routing
protocols more efficient in the future.

INDEX TERMS Vehicular ad hoc network, routing protocol, reinforcement learning, Q-learning, intelligent
algorithm, quality-of-service routing, intelligent transportation system.

I. INTRODUCTION
Vehicular ad hoc networks (VANETs) are among the most
investigated topics in the field of mobile ad hoc networks
(MANETs). In VANETs, vehicles transmit information in
a multihop fashion to deliver data from the source to a
destination [1]. VANETs can be used to improve passen-
ger safety, in-vehicle infotainment, blind-spot prevention,
traffic maintenance, emergency message propagation, and
autonomous driving. Over the last decade, many researchers
have attempted to optimize the performance of routing proto-
cols for VANETs [2]. Despite their usefulness, VANETs have
limitations and challenges [3], [4]. Routing in a VANET is a

The associate editor coordinating the review of this manuscript and

approving it for publication was Asad Waqar Malik .

challenging task due to high vehicle mobility and dynamic
link connectivity.

The connection between vehicles is adversely affected by
their fragile link condition. Roads do not follow a common
paradigm [5] for urban areas, rural areas, and highway road
conditions. Moreover, roadside obstacles create a non-line-
of-sight (NLOS) situation, which increases the complexity of
routing [6]. Consequently, numerous VANET routing algo-
rithms have been reported in the literature. Popular MANET
routing protocols that have been tested for VANET include
ad-hoc on-demand distance vector (AODV) routing [7],
dynamic source routing (DSR) [8], destination-sequence dis-
tance vector (DSDV) routing [9], greedy perimeter stateless
routing (GPSR) [10], and link-state routing protocol [11].
These major routing protocols have been further modified
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FIGURE 1. A simplified example of a VANET configuration.

and implemented to improve performance in a VANET envi-
ronment [12]. Fig. 1 illustrates the basic operation and com-
munication paradigm of VANET architecture. Machines are
more capable and efficient than humans in terms of solving
problems in a controlled environment.

Machine learning (ML) algorithms can be divided into
supervised, unsupervised, and reinforcement learning (RL)
categories [13]. These subfields of ML are also used to opti-
mize the different features of the VANET architecture. The
prediction of traffic conditions, network traffic estimation,
control of traffic lights, vehicle speed suggestions, control
of network congestion, assisting in navigation, increasing
VANET security, and resource allocation [14]–[16] are exam-
ples of these features. ML algorithms are used to improve the
performance of routing protocols for VANETs [17]. These
algorithms are designed to optimize the various quality-
of-service (QoS) parameters of VANET routing algorithms
under different circumstances [18].

The RL algorithm is applied to improve the routing algo-
rithm for different ad-hoc network architectures, such as
wireless sensor networks [19], VANET [20], flying ad hoc
networks [21], and drone ad hoc networks [22]. Due to the
constrained environment and current limitations of VANETs,
RL algorithms are utilized to improve the routing perfor-
mance of the VANET architecture. RL algorithms are pri-
marily used to optimize the different QoS parameters such
as the end-to-end delay (EED), throughput, packet delivery
ratio (PDR), the number of hops (NoH), routing overhead,
and security [23], [24].

VANET is the key technology to enable intelligent trans-
portation service in smart cities. Besides entertainment ser-
vices, VANETs also deal with road safety services. As a
result, an error-prone routing protocol for VANETs will raise
a serious safety concern, and the aim of VANETs will go in
vain. The autonomous vehicles take various decisions based
on the information disseminated by other vehicles. In such
a case, errorless routing of vehicles’ data is a must. Despite
putting in a good amount of effort, the routing protocols in
VANETs are still far from perfection. RL-based algorithms
work based on experiences and only get better with time.
These algorithms have the potentials of improving the rout-
ing experiences of the VANET environment. However, more
study is needed to embed the RL concept successfully into
the routing mechanism in VANETs. In this circumstance,
a comprehensive review paper can play as a good kick-starter
for researchers interested in designing RL-based VANET
routing protocols. Nevertheless, to the best of our knowl-
edge, no survey has been conducted on this topic till date.
Apart from addressing the research gap in the literature,
a survey on RL-based VANET routing is needed to moti-
vate researchers to focus more on intelligent VANET routing
protocols.

This research presents the results of a survey on RL-
based routing protocols for the VANET architecture. To select
the existing protocols, at first, we have focused on whether
the research work is an RL-aided VANET routing proto-
col or not. We have emphasized the protocols, which include
all the aspects of a routing protocol such as route discovery,
data dissemination, route maintenance, and topology control
mechanism. All the added protocols have their unique prop-
erties, which are worth investigating for working with RL-
based VANET routing algorithms. The papers written on a
single point of view such as broadcasting mechanism [25],
[26] and aggregation mechanism[27] are excluded. However,
the protocols that are extended from other protocols and
enhanced with the RL algorithms are included. As there is no
other survey done on the topic of ‘‘RL-based VANET routing
algorithms,’’ we have not restricted the publication time of
the researches.

The searching methodology of the existing works includes
two phases. First, we have searched public domain search
sites and academic databases such as IEEE Xplore, Elsevier,
Springer, Sage, Wiley-Blackwell, and so on to find out rel-
evant research works. We have listed the papers with their
abstract to ensure the exclusion of duplication. We rigorously
searched the web result with relevant keywords, in order to
ensure the inclusion of all the RL-based VANET routing
algorithms.

The novelty of this research lies in the title of the work.
To the best of the authors’ knowledge, there exists no survey
that focuses on the RL-based VANET routing algorithms.
We have repeatedly searched the literature but could not find
any other survey paper, which shares the idea of this paper.
The qualitative comparison given in this literature is mainly
focused on the implementation of RL-techniques in VANET
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routing, which is also not witnessed in the literature so far.
The key aspects of this survey are as follows:

• In total, 26 RL-based VANET routing protocols are
surveyed in this report. The investigated routing pro-
tocols are divided into hybrid, zone-based, geographic,
topology-based, hierarchical-based, and security-based
protocols. A taxonomy is included to illustrate the cate-
gorization, as shown in Fig. 3.

• Critical analysis of the RL-based VANET routing pro-
tocols is presented by emphasizing their working proce-
dure, advantages, disadvantages, and applications.

• A comparison of the routing protocols is performed
based on their key features, optimization criteria and
techniques, performance evaluation techniques and
parameters, and performance metrics and analysis.
Given that the only way to evaluate the reliability of
the proposed theory is to examine the performance, this
report presents an in-depth review of the performance
evaluation techniques used in the literature. A thorough
discussion and the authors’ opinions are also presented
in addition to tabular comparisons.

• The composition of the RL algorithms proposed in all
the reviewed protocols is compared in tabular format.
In-depth analysis and suitable application scenarios for
the learning techniques are discussed as well.

• Open research issues and challenges are presented with
detailed descriptions, which serve as guidelines for
future researchers. Each of the given research issues
is discussed concerning the lessons learned, existing
issues, and brief recommendations.

The remainder of this report is organized as follows.
Section II describes the RL procedure. Section III elabo-
rates on the reviewed protocols with their advantages, dis-
advantages, and applications. The taxonomy of the routing
protocols is also presented. In Section IV, the comparisons
of the reviewed protocols are discussed based on optimiza-
tion criteria, innovative ideas, and performance measurement
techniques. In Section V, the implemented RL variants are
analyzed and recommendations are addressed. In Section VI,
open research issues and challenges are summarized and
discussed. Finally, the main conclusions are presented in
Section VII.

II. PRELIMINARIES ON REINFORCEMENT LEARNING
RL is a subclass of ML algorithms, in which an agent per-
ceives knowledge from the surrounding environment and
attempts to maximize a reward to reach a goal. RL is appli-
cable to moderately complex and perplexing environments.
The agent receives a reward or penalty for every action based
on its impact on the environment. The agent learns which
action should be performed to maximize the rewards and to
avoid penalties. Fig. 2 shows the basic working procedure
of the RL mechanism [28]. RL is modeled as a Markov
decision process (MDP) problem [29]. An MDP includes a
set of environments, states, actions, a probability distribution

table of actions, the reward function, and some constraints.
The probability of transition can be written as the following
equation:

Pa
(
s, s′

)
= PR

(
st+1 = s′|st = s, at = a

)
, (1)

where Pa is the probability of transition from state s to s′, PR
represents the probability distribution, st denotes the state at
time t , st+1 denotes the state at time t+1, and at is the action
performed at time t . A state is the current situation of the envi-
ronment upon which the agent acts. A single state s belongs
to a set of states S = s1, s2, s3, s4, . . . sn. Actions belong
to the set of actions denoted by A = {a1, a2, a3, a4, . . . an.
The reward can be denoted as ra

(
s, s′

)
. ra is the reward for

performing action a at time t . An agent gets the reward as
an immediate return for performing an action on a state.
The prior condition for applying the RL algorithms is that
the environment must be stochastic. RL algorithms are more
applicable to environments in which no prior information
on the environment is available, and the environment can
be simulated either via computer simulations or using test-
bed simulations. The only way to accumulate data about the
environment is to associate the environment [28]. There are
two potential approaches for the RL mechanism that can be
pursued by an agent. One approach is to find the value of
the state, and the other is to find the value of the action. The
policy of the RL algorithms states the outcome of a state and a
particular action [30]. Based on a policy, the agent determines
the action to be taken for a given state. The policy of a state
can be expressed as follows:

π (a, s) = PR (at = a|st = s) , (2)

where π is the policy and gives the probability of performing
an action a in the state s. The state value represents the long-
term return for a state after considering the discount factor.
This can be expressed using the following formula:

R =
∞∑
t=0

γ trt (3)

where R is the long-term return; γ t is the discount factor at
time t and indicates the impact of subsequent state values on
the computation of the current state value. The value of γ
differs within the range of 0 to 1 [28]. rt is the reward at time
t . The state value function represents the reward for being in
a state. The function is expressed as follows:

Vπ (s) = E

[
∞∑
t=0

γ trt |s0 = s

]
, (4)

where the expected return is denoted by E , and Vπ is the state
value function. s0 indicates the initial state. An RL algorithm
converges when it finds the optimal policy from all available
policies for a given state [28]. The optimality of the RL
algorithm can be denoted by the following formula:

V ∗ (s) = max
π

V π (s) (5)
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FIGURE 2. Basic working procedure of the RL mechanism.

where V ∗ is the optimal value function for state s, which
is achieved by applying the optimal policy. π∗ is called the
optimal policy, which is defined by the corresponding state s
and the action that returns the highest reward. V π is the state
value function for a given policy π . The RL algorithms can be
designed based on the policy iteration function or the value
iteration function. Policy iteration methodologies include
Monte Carlo [31] and temporal differencing mechanisms
[32]. In the Monte Carlo mechanism, the rewards depend on
the sampling of the states as much as possible, whereas tem-
poral difference utilizes the value returned by the immediate
state only. The Q-learning technique is the easiest and most
practiced technique, which falls under the category of value
iteration functions.

The RL algorithm can be classified based on the given
information. Model-based [33] algorithms use a probability
distribution table for every legal action in the environment.
These algorithms are not practical because of the increasing
number of states and actions. In contrast, model-free [34]
algorithms do not have such a distribution table. Instead,
these algorithms depend solely on the learning policy. Model-
free algorithms adopt a trial-and-error process to improve the
quality of the action performed on a certain state.

In total, there are four types of actions that an agent can
perform: random action [35], greedy action [36], epsilon
greedy action [37], and softmax action [38]. The exploration
and exploitation percentage depends on the type of action
an agent performs. In greedy action, no exploration is per-
formed, whereas in random action, all the actions are based
on exploration. The epsilon greedy method chooses between
exploration and exploitation based on a fixed value called
epsilon. SoftMax functions reduce the number of explo-
rations with time and increase exploitation. A task can be
categorized as an episodic or a continuing task. An episodic
task has a terminal state, but a continuing task does not have
a terminal state. To fit an RL algorithm, continuing tasks are
mostly converted into episodic tasks.

Depending on the policy, RL algorithms can be divided
into on-policy [39] and off-policy algorithms [40]. In an

on-policy algorithm, the agent learns based on the action,
whereas in the off-policy algorithm, the action is taken from
another policy that returns the obtainedmaximumvalue. Such
a policy resembles a greedy action policy.

The quality of a policy is evaluated using a policy evalua-
tion technique in which the state value of the policy is evalu-
ated based on the value of the greedy policy. However, policy
improvement enhances and updates the policy, which returns
the maximum state value. Some major RL techniques include
trust region policy optimization (TRPO) [41], proximal pol-
icy optimization (PPO) [42], Q-learning or value iteration
method [43], state-action-reward-state-action (SARSA) [44],
and deep Q network (DQN) [45] algorithm. However, Q-
learning is the most popular RL algorithm in use and practice.
There are mainly four types of RL algorithms’ variants used
in the investigated RL-based VANET routing protocols. They
are the Q-learning algorithm, policy hill climbing, SARSA(λ)
and deep RL (DRL) algorithm. Further discussion is given in
the following subsections, describing the working methodol-
ogy of the two algorithms.

A. Q LEARNING
Any process that can be modeled as an MDP model can be
solved using the Q learning approach. Q learning is a model-
free approach that can act in a stochastic environment [46].
This algorithm interacts with the environment and attempts to
maximize the reward from the current state to the goal state. Q
learning utilizes a table called the Q table to store the Q values
of a state corresponding to an action. Thus, the Q table stores
only one value per pair of states and actions. This table can be
visualized as a two-dimensional array, wherein the columns
can represent the action and the rows can represent the states.
Initially, the cells in the tables are filled with 0s [47]. This
means that for a particular state and action, a pair has not been
explored. The Q value computation is performed using the
Bellman equation, which can be expressed as follows:

Qt+1 (st , at)

=Qt (st , at)+∝
(
rt+1+γ max

a
Qt (st+1, at)− Qt (st , at)

)
,

(6)

where ∝ is the learning factor, Qt is the Q value of an action
a at time t , and Qt+1 is the Q value at time t + 1. at is the
action a performed at time t , st denotes the state at time t ,
St+1 represents the state at time t + 1, and rt+1 is the reward
at time t + 1 . The parameter ∝ varies between 0 and 1.
The higher the value ∝, the lesser the time required for the
algorithm to converge. However, the likelihood of premature
convergence increases. The lower the parameter ∝, the more
the time required by the algorithm for convergence [47].

B. SARSA (λ)
SARSA is an RL algorithm and it stands for state,
action, reward, state, and action. This is represented
with (St ,At ,Rt+1, St+1,At+1). It is an on-policy algorithm.
Q-learning can learn only one step at a time whereas the
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SARSA can relate its own experience with other state expe-
rience, by following the same policy. Q-value update is done
in SARSA based on the following equation

Qt+1 (st , at)

= Qt (st , at)+ ∝ (rt+1 + γQt (st+1, at+1)− Qt (st , at)) .

(7)

In Q-learning, when we compute the value of an action,
we don’t compute the value of the next states. We only take
the maximum available value on the next state and update
the Q-value of the current state. SARSA is considered as
less optimistic in comparison to the Q-learning procedure,
as SARSA does not always take the best available value.
For n-step look-ahead policy, the SARSA(λ) method is used.
SARSA(λ) algorithm uses an additional data structure called
the eligibility trace. The eligibility trace is similar to the
Q-table data structure. The eligibility trace records the whole
path to the destination or looks ahead limitation. For the most
recent state, the eligibility is assumed as 1. In every time step,
the eligibility reduces λ amount. SARSA(λ) can be shown
as the connection between the Monte-Carlo method and the
temporal difference mechanism. SARSA(λ) is simply the
eligibility trace enabled version of the SARSA algorithm. The
traces of all state-action pairs are stored inside the eligibility
trace. Traces can be of three types and they are: accumulating,
replace, or dutch. The main drawback of the SARSA(λ) algo-
rithm is known as the temporal credit assignment problem.
This is a problem that indicates the reward assigning issue
when multiple states are being considered.

C. DEEP REINFORCEMENT LEARNING (DRL)
Deep reinforcement learning (DRL) is an improved ver-
sion of RL which showed great achievements in different
research works [48] by combining RL and deep learning
[49]. Q-learning has some limitations in maintaining Q-table
values. When the state and action spaces become large, the
Q-table becomes intractably large. As the agent has to tra-
verse all the possible states, the algorithm may not reach
convergence. In DRL, a class of deep neural networks is
used known as deep Q network (DQN) for approximating
the Q values [50]. DRL takes the advantage of deep learning
for taking the raw sensory data as input from the observed
environment, and then return output based on the approxi-
mation. Unlike RL, DRL uses a replay memory to store the
results. In the replay memory, all the experiences of the DRL
agent are kept as a tuple in the form of {st , at , rt , st+1}.
Here, at is the action taken in state st at time t and rt is the
reward DRL agent received upon the action then passed to
the next state st+1. From the replay memory, a mini-batch
is randomly chosen to train the DQN. The size of the mini-
batch has an impact on the performance of the algorithm,
which needs to be chosen carefully [51]. The weights of the
DQN is updated in every iteration. In order to stabilize the
learning process of DQN, an additional neural network called
the target network can be used. In that case, the DQN can

update the weights after several time periods which reduces
the correlations between the target and estimated outputs.
This type of DQN is called double DQN and the approach
is known as double DRL.

D. POLICY HILL CLIMBING (PHC)
In the action value-based RL-procedure, at first, the optimal
action-value pair is derived. Then, from the optimal action-
value pair, the optimal policy is determined. The action value-
based procedure follows a tabular mechanism, where the
values are stored against an action. The highest value for
an action from a state is the optimal value. However, for a
small state space, the tabular mechanism works fine but, with
the increasing number of state spaces, the memory problems
begin [52]. This problem can be easily solved by implement-
ing a policy-based solution. Rather than learning action value,
a policy-based method learns the optimal policy directly.
The most straightforward policy-based algorithm is the pol-
icy hill-climbing algorithm. In the hill-climbing algorithm,
the optimal weights of a policy can be found. The agent tends
to improve the weight of the policy over time by interacting
with the environment. The weights are evaluated based on
their return. Some initial guesses are taken at first. Later on,
the weights are updated by interacting with the environment.
The weights obtained from an episode are degraded with
some added noise, in order to get newer weights. For every
iteration, the best weight is taken to search for a new policy
where newer best weights will be found.

III. RL-BASED ROUTING PROTOCOLS FOR VANETS
In this section, RL-based VANET routing algorithms are
discussed and analyzed in terms of their working proce-
dure, advantages, disadvantages, and best-suited applica-
tions. These routing algorithms are categorized into hybrid,
position-based, topology-based, hierarchical, and security
categories. Fig. 3 shows the taxonomy of the investigated
routing protocols.

A. HYBRID ROUTING PROTOCOLS
In the hybrid routing protocols, traits are inherited from
reactive and proactive routing protocols. Some of the hybrid
routing protocols analyze the traffic and mobility conditions.
Based on the results, the protocols switch their type of
operation. Other types of hybrid routing algorithms define
zones or clusters. These protocols maintain tables differ-
ently for in-zone members and out-zone members. They are
mostly designed to be proactive in the case of zone members
and reactive for in-case transmission of packets to other
zones or cluster members [53].

1) RL-BASED HYBRID ROUTING ALGORITHM (RHR)
Ji et al. proposed an RHR routing protocol [54] for the
VANET paradigm, which updates the freshest path informa-
tion using an RL technique. The authors noted that the blind
path problem occurs frequently in traditional VANET routing
algorithms. Due to the high mobility, a valid path from a
source to a destination can be broken before the path expires.

27556 VOLUME 9, 2021



R. A. Nazib, S. Moh: RL-Based Routing Protocols for VANETs: A Comparative Survey

This situation is described as the blind path problem. Due
to this problem, the number of successful packet deliveries
decreases, and packet loss increases. Rather than depending
on a single path, RHR explores multiple paths. Based on a
packet-carry-on feedback system, RHR assigns rewards to
certain paths and also penalizes certain paths. Fig. 4 illustrates
the blind path problem in the VANET. In the figure, at t0,
the destination Dv is within the communication range of the
source Sv. However, at t1, due to high mobility, Dv goes out
of the range of N1. Therefore, the path from Sv toDv becomes
a blind path. The application of RHR always updates the
freshest path, and the data route will be continued through
Sv−N2−N5−Dv and Sv−N3−N4−N5−Dv. The routing
algorithm penalizes a certain path wherein the number of
control packets is relatively high and packet drops occur
frequently. In addition, it assigns rewards to those paths that
can improve the packet forwarding mechanism. Based on the
data mined from the packet received, the routing algorithm
updates its forwarding table and chooses the best forwarding
path from the table. This calculation occurs when there is
no path to forward the data packet towards the destination.
To minimize the routing overhead, a conditional routing
technique is utilized in RHR. Depending on the neighboring
states, an agent may need to evaluate many states, which
increases the routing overhead of the RHR algorithm. Tomin-
imize the overhead of the RHR, it selects only a fixed number
of states. The vehicles only save information about the fixed
number of neighboring states. A vehicle also considers the
number of neighboring nodes before rebroadcasting.

Advantages: To mitigate a broadcast storm, the protocol
uses an adaptive broadcasting technique that predicts the
future position of vehicles. The authors have previously stated
that to predict the correct movement of the vehicle, the time
interval of the broadcast must increase. The time to live
(TTL) value of a broadcast packet is also kept at a minimum
compared to the TTL value of the data packet.

Disadvantage: The protocol does not state how it selects a
fixed number of neighbors among the available neighboring
protocols. Moreover, the receipt of a broadcast control packet
from a specific path does not necessarily mean that the path
is bad compared to other paths that contain only data packets.

Application: The protocol does not require assistance from
the RSU; therefore, RHR is also applicable to the rural sce-
nario. In addition, the protocol does not state any mechanism
about the recovery policy, which may return a bad result in
the sparse network condition.

2) Q-LEARNING AND GRID-BASED ROUTING PROTOCOL
FOR VEHICULAR AD HOC NETWORKS (QGRID)
Li et al. proposed a Q-learning-based VANET routing pro-
tocol QGRID [55]. This routing protocol considers the rout-
ing decision from two viewpoints. One is macroscopic, and
the other is microscopic. The total geographic region is
divided into grids to conceptualize the learning environment
of the routing protocol. The macroscopic decision process is
responsible for choosing the best next routing grid, whereas

FIGURE 3. Taxonomy of RL-based routing protocols for VANETs.

the microscopic decision-making process is responsible for
choosing the exact vehicle in the chosen next-hop grid. For a
given destination, Q-values are calculated for the grids based
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on the movement paradigm of the vehicles. The selection of
the next hop for the data forward mechanism is performed in
two ways. In the first process, the vehicles greedily select the
next hop that is geographically closer to the destination. In the
second process, the sender vehicles forward their data to the
vehicle with the highest probability of moving to the calcu-
lated next best zone based on the second-order Markov chain.
The authors stated that in the VANET scenario, the reward
cannot be calculated until a message is delivered to the des-
tination. As a result, the environment model in QGRID is
assumed to be a modeless environment. The QGRID routing
protocol aims to select the grid with the highest vehicle den-
sity, to reach a destination. Fig. 5 shows the grid system used
in the QGRID routing protocol. The source vehicle is in grid
S4, and the destination vehicle is in grid S3. All the arrows and
the corresponding values inside the rectangular box represent
the Q-value for exiting or entering a corresponding grid.
The simulation is performed based on a true dataset from
taxies in Shanghai. The dataset includes the directions, time
signatures, longitudes, latitudes, and unique IDs of taxies.
The dataset shows a specific pattern in the movement of the
taxies. Based on this pattern, the authors calculated the data
in an offline manner. The grids were assumed to be square-
shaped geographical areas.

Advantages: The Q-learning algorithm is run on historical
data from the city of Shanghai. This decreases the possibility
of a broadcast storm. By following this procedure, the con-
vergence speed also decreased.

Disadvantages: The routing protocol works only in an
offline manner. The dataset is also created based on the
collected data from the taxies, which can vary due to irregular
situations or accidents. The routing protocol will not be func-
tional or can be erroneous in such cases. It should be noted
that the primary function of VANET is to provide emergency
information to vehicles to enhance security.

Application: This routing algorithm requires historical data
to operate. Therefore, the prerequisite is to gather the vehi-
cle movements and establish a centralized data collection
scheme. An application without such a facility will yield an
erroneous result.

3) RL ASSISTED ZONE BASED VANET ROUTING PROTOCOL
(RLZRP)
Tamsui et al. proposed RLZRP, which implements the RL
technique to train the routing table [56]. The routing table
is trained to identify a suitable hop to deliver packets to
the destined zone. This mechanism enables the protocol to
increase the link stability of the discovered link to the des-
tination node, and it also reduces the number of instances
of packet elimination and path recalculation. This algorithm
attempts to adopt the functionality of switching. In a switch,
the packets are forwarded based on the MAC address and
the specific port number. Inside a switch, there is a table
that stores the MAC address of a device and its correspond-
ing port number. Thus, the switch can forward the correct
packet to the appropriate user. In RLZRP, this mechanism

FIGURE 4. Visualization of blind path communication between nodes.

FIGURE 5. Illustration of grid-based Q-value system implemented in
QGRID.

is mimicked and implemented for the delivery of the data
packet to the destination address. RLZRP stores a pair of
values that represent the ‘‘Junction’s’’ and ‘‘Vehicle’s’’ IDs.
A hello packet also contains the same information while
receiving this data. The vehicle updates its routing table with
the corresponding freshest value obtained from the received
packet. This information is taken into consideration to route a
packet to its destination. In some common routing protocols,
when the desired next hop is not within the limit of the current
hop, the packet is discarded. However, RLZRP delivers the
packet greedily, which increases the chance of successful
transmission.
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Advantages: In the case of unavailability of the next hop of
the routing table, the packet is greedily forwarded to the next
hop, which reduces delay, avoids unnecessary searching, and
increases the PDR.

Disadvantages: Even though there is a chance that for-
warding a packet greedily may reduce the delay, the actual
result might vary. Greedy transmission might fail because
of the unavailability of the next hop. However, due to the
unavailability of the required information, the source node
delays the search for a new route. Thus, there is an increase
in the delay as well as the network congestion because of the
greedy forwarding technique. Subsequent packets could also
use the discovered route and bypass the delay.

Application: This is a general routing algorithm for
VANETs and applies to sparse or dense areas.

4) ADAPTIVE DATA COLLECTION PROTOCOL USING RL
(ADOPEL)
Soua et al. proposed ADOPEL and utilized a distributed
Q-learning algorithm to establish a routing protocol that is
more adaptive to the vehicle’s mobility and change in topol-
ogy [57]. The Q-learning technique is applied based on the
delay of the links and the number of aggregable data packets.
ADOPEL uses information from the global positioning sys-
tem (GPS) location services. This routing protocol controls
the type of control messages it utilizes. ADOPEL only uses
two types of messages. One is beaconmessages, and the other
is the event-driven messages that carry information based on
the different information in the routing process. The beacon
file includes vehicle-specific information such as velocity,
position, and direction. The beacon packets are transmitted
regularly, whereas the event-driven message is transmitted
only when there is a need to gather traffic information. This
routing protocol assumes a new kind of infrastructure that is
similar to RSU and is called the traffic control center (TCC).
According to the description, vehicles collect traffic data and
transmit them to the TCC. Thus, the TCC obtains a global
vision of the traffic throughout the network. To enable the dis-
tributed learning mechanism, the vehicles interact with each
other and exchange information. The aggregation process is
modeled as the MDP process with the objective of utilizing
the RL algorithm to address the routing issue. ADOPEL has
been used to apply the Q-learning algorithm to all the RL
algorithms by utilizing its model-free nature. The reward
function is designed based on a vehicle’s neighboring nodes
and the propagation delay with data aggregation. The utilized
reward function can be described by the following equation:

r =


β∗

(
1−

1
neighbornumber(i)

)
+(1−β)∗

(
adv (ij)
adv (i)avg

)
τ1 if next hop is the destination
−τ 1 if the node doesn′t have any neighbors

(8)

where the benefits of a node i to node j are denoted as
adv(ij), and adv (i)avg refers to the advantages of node i to

the destination vehicle D. β is the normalized factor that bal-
ances the weight between the two parameters. τ1 is a positive
reward. neighbornumber(i) represents the number of neighbors
of node i. To handle the link stability, ADOPEL has adopted
the variable discount factor. When a node receives a relay
request, it first collects information from its neighborhood.
The priority of the neighboring node is given based on the
node degree and the distance from the destination. The second
classification is performed by choosing the relaying node
according to the Q-value stored in the Q-table.

Advantages: Information collection is limited by introduc-
ing a parameter, dcollect . This parameter represents the intra-
vehicular distance that can initiate the information-gathering
process. This technique is similar to the zone concept that
is widely used in VANETs. This algorithm also adopts a
strategy to address the void problem. If neighbor vehicles
are not available, the reward is negative and avoided as an
intermediary node.

Disadvantages: The existence of the TCC is a strong
assumption, and the highways do not have such infrastructure
in reality. However, the assumed functionalities can be given
inside the RSU, and only then will ADOPEL achieve feasi-
bility for practical implementation. The biggest disadvantage
lies in the simulation setup of the ADOPEL. A single grid
simulation area in which all the vehicles start at the same time
creates a generic simulation scenario and is not aligned with
real-life road conditions.

Application: ADOPEL is applicable in the highway envi-
ronment, and the description presented in this report also
supports the analogy.

5) VANET ROUTING USING DEEP RL TECHNIQUE (VRDRT)
Saravanan et al. proposed VRDRT [58], in which they used
deep reinforcement learning (DRL) algorithms to predict the
movements of vehicles in a road segment. The authors argued
that to reduce the store carry forward (SCF) mechanism,
a routing algorithm should predict the densest road segment.
Due to the high-mobility, the traffic conditions of the roads
change frequently. Thus, the authors proposed a VRDRT
routing algorithm that uses the DRL technique to predict
the traffic conditions of a road segment at a given time.
According to VRDRT, every RSU collects and maintains
the vehicle’s information on the road segment and runs the
DRL algorithm to predict the traffic condition. Along with
the traffic condition, the DRL technique is also used to cal-
culate the transmission delay and the destination position,
which yields a significant improvement in the performance
of VRDRT. In this routing algorithm, the roads are segmented
intomultiple clusters based on the density of the vehicles. The
density is calculated for a specific time in a given region by
comparison of the total number of vehicles in the topology.
Based on the transmission probability, VRDRT utilizes one
transmission matrix to determine the best available route. The
authors in [58]argued that due to the high speed, obtaining
the exact GPS value of a vehicle is difficult in the VANET
scenario. The working procedure of VRDRT is divided into
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two phases: the route selection phase (RSP) and the route
establishment phase (REP). REP is responsible for finding
the route, whereas RSP is responsible for searching for the
optimal route based on the discovered routes. Both phases
use the DRL technique to achieve the desired outcome. In the
REP phase, the vehicles broadcast hello messages to inform
their neighbors about their current situation, which includes
the density, distance from the RSU, position, and delay for a
particular area.When a packet arrives at a destination vehicle,
the reward is a constant value; otherwise, the reward for
the intermediary nodes is selected by the transition function.
Based on the distance and density level, a vehicle node
accepts or rejects data packets from a specific route. At the
end of the REP phase, the RSP phase starts with the aim
of selecting the optimal next-hop neighboring vehicles. The
RSP operation is divided into equal time divisions. The opti-
mal path selection is performed by the DRL agent based on
the previous experience; thus, the approach can be regarded
as supervised learning.

Advantages: VRDRT applies the learning technique on top
of the traditional routing algorithm, which ensures a better
routing performance compared to traditional routing.

Disadvantages: The process of calculating the vehicle den-
sity in the case of VRDRT only reveals the relative density of
the vehicles on a road segment. The result shows which road
is denser but does not reveal whether the density is sufficient
for the propagation of data. It may be that other road segments
are also capable of routing the data successfully, but VRDRT
does not consider these road segments.

Application: It is previously indicated in this report that
the protocol is tested in an urban area. Moreover, VRDRT
depends heavily on the RSU functionalities. Therefore,
a good infrastructure environment is necessary, which is often
unavailable in highways or urban areas.

B. GEOGRAPHIC ROUTING PROTOCOLS
The geographic routing protocols are aided by geographic
information from the location that provides the services.
Based on this information, the vehicles take the routing deci-
sion. Geographic position-based routing algorithms use GPS
values to locate the destination and suitable intermediary
nodes [59].

1) Q-LEARNING BASED TRAFFIC-AWARE ROUTING
PROTOCOL (QTAR)
WU et al. proposed a Q-learning-based traffic-aware routing
protocol called QTAR [60]. The algorithm takes advantage
of the benefits of the geographic routing paradigm and also
successfully utilizes the RSU to deliver the routing packet
to the destination. The Q-learning algorithm is implemented
in QTAR for the vehicle-to-vehicle (V2V) and RSU-to-
RSU (R2R) data transmissions. For V2V routing in QTAR,
the packets are assumed to be the agents, and the vehicles are
assumed to be the states. For R2R routing, the hello packets
are also considered as the agents, and the neighboring RSUs
are considered as the states. Fig. 6 describes the fields of

the hello packets used in the QTAR routing algorithm. Two
different types of hello packets are used for V2V communi-
cation and R2R communication. In the V2V communication,
the hello packets include the RSU’s or vehicle’s unique ID,
timestamp of the packet, x- and y-axes value, velocity of the
node, and the entering and upcoming intersection addresses.
QMAX represents the maximum Q value of the RSU required
to reach the next hop, and NH simply denotes the next hop.
In the R2R hello packet, the ID of the RSU is included
with the timestamp, QMAX values, and the QMAX values’
count. A QMAX field contains the destination RSU ID as
RSUDest, corresponding Q value, and the id of the next RSU
as RSUNext.

To determine the Q value of a state, high connection reli-
ability, and minimization of the EED are considered. The
protocol assumes that most of the road segments are occupied
by one RSU, which can partially communicate with the adja-
cent road segment. The algorithm used in this investigation
shows that the vehicles use an SCFmechanism in the event of
unavailability of the next hop to transmit the data. The algo-
rithm utilizes specially formatted hello packets to determine
the Q-value of a state. QTAR is a traffic-aware urban routing
protocol that considers road intersections.

Advantages: The implementation of Q-learning for the
selection of the next hop increases the throughput and PDR.

Disadvantages: QTAR does not estimate the vehicle’s
direction, which will impair the performance of the protocol
in real life.

Application: The protocol assumes the existence of anRSU
in every road segment. This assumption renders the protocol
applicable to only urban areas.

2) POSITION-BASED Q-LEARNING ROUTING (PBQR)
Sun et al. proposed an RL-assisted position-based routing
technique for the VANET paradigm called PbQR [61] The
reliability and stability of the link serve as selection param-
eters to choose the next-hop node for transmitting data to
the destination. PbQR considers the vehicles as states in the
formulation of the RL algorithm. The combination of all the
vehicles in the networks constitutes the state space of the
RL algorithm. Periodic Hello messages are used in PbQR to
exchange information about neighboring nodes. According
to the Q-learning algorithm used in PbQR, the agent always
performs a greedy action. Greedy action in Q-learning means
that the agent always performs the best available action in
the Q-table. PbQR calculates the stability factor and the
continuity factor to evaluate the link quality for the selection
of the next-hop node. The links with short periods tend to fail
more often compared to links with long periods. The stability
factor of the PbQR algorithm can be evaluated as follows:

SF t (c, x)

=

1−
|Dt (c, x)−Dt−1 (c, x)|

TR
|Dt (c, x)−Dt−1 (c, x)|≤TR

0 otherwise
(9)
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FIGURE 6. V2V and R2R hello packet structure used in QTAR.

where the stability factor for nodes x and c at time t is
SF t (c, x). Dt and Dt−1 represent the Euclidian distances
between two nodes at time t and t − 1, respectively. TR
represents the transmission range of the vehicles. The value
of SF varies between 0 and 1. The greater the value of SF, the
better the link quality between the examining nodes. PbQR
considers another important factor, that is, the node degree.
If this factor is not considered, the transmitting nodes select
the next hop in situations when nodes are not available. The
continuity factor used in PbQR indicates the node degree of
the neighboring nodes. The continuity factor can be calcu-
lated based on the following equation:

CF (c, x) =
NUM x

NUMmax
(10)

where NUMX indicates the node degree of node X. CF is
the continuity factor of node c. NUMmax is the maximum
node degree based on an examination of node c. The reward
function is the summation of the continuity factor and the
stability factor of a node. The distance factor is used to
determine the distance relationship between the source and
destination nodes. The discount factor needed for Q-learning
is implemented using this distant factor.

Advantages: PbQR considers SF as one of the deciding
factors for the selection of the next-hop node. The routing
algorithm also applies a mechanism to avoid the bias of the
parameter by adding weighting factors for two consecutive
times. The bias can be caused by the relative distance as a

result of acceleration or deceleration. The same mechanism
is also applied for the continuity factor.

Disadvantages: The Q-learning algorithm adopts a greedy
approach for the selection of Q values from the Q-table.

Application: The routing algorithm is applicable in
general-purpose situations. The absence of a recovery model,
RSU dependency, and traffic light considerations render the
algorithm suitable for only dense regions.

3) Q-LEARNING BASED LOAD BALANCING ROUTING
(Q-LBR)
Roh et al. has proposed a load balancing routing protocol
for VANET called Q-LBR [62]. This routing protocol is
assisted with UAV to enable NLOS communication for the
ground vehicles. The load balancing mechanism in Q-LBR
is established in three main ways. First, the authors proposed
an overhead optimized ground vehicles’ load estimation tech-
nique with the help of the UAV. In this technique, based on
the broadcast messages, the UAV gets to know the queue
size of the ground vehicles. This is executable because the
UAV has the ability to create an NLOS communication with
the vehicles. Second, the Q-learning technique is applied for
establishing the load balancing data communication by defin-
ing the UAV routing policy area (URPA). Finally, a reward
function is specially designed for quicker convergence. Q-
LBR defines three types of packets. They are urgent ser-
vice messages, real-time service, and connection-oriented
protocol which have the highest, medium, and low priority,
respectively.

The working procedure of Q-LBR is divided into two
phases. In the first phase, the UAV collects the ground vehi-
cles’ congestion conditions by hearing the broadcast mes-
sages, and then detect the congestion level. The information
about the URPA is broadcasted in the second phase. The
broadcasting information contains the ground nodes’ conges-
tion information and also the UAV’s congestion information
if the UAV is used as the relay node. The path discovery pro-
cess in Q-LBR is similar to the reactive routing protocols such
as AODV and DSR. The RREP packet is sent back in all the
paths which include the optimal and near-optimal solutions.
The replied packet has all the paths which also have paths
including the UAV. When the best route is unavailable, other
routes can be chosen. The queuing load can be calculated
based on the following equation:

qgroundi(t) =
AQLi (t)
MQLi

(11)

where MQLi and AQLi are the maximum and average queue
length for a vehicle i at time t , respectively. The objective of
the learning procedure is to find a suitable URPA that will
keep the congestion level as close as to the threshold limit.
Q-LBR adopts a quick convergence technique, which ensures
a better outcome as the environment is dynamic.

Advantages: Q-LBR has multipath support, which ensures
less route discovery packets to be transmitted. The learn-
ing process is triggered only when both the ground nodes’
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congestion threshold and the UAVs’ threshold are not met.
This procedure also reduces the number of broadcast mes-
sages.

Disadvantages: The addition of UAV is a bottleneck of
the proposed Q-LBR. A UAV-aided routing algorithm raises
questions such as optimal deployment, height optimization,
and the number of UAVs. None of the above scenarios is taken
into assumption.

Application: This routing protocol takes assistance from
UAV. The UAV is an easily deployable and replaceable unit.
Q-LBR will be especially acceptable in the areas that the
amount of generated data is large as in the urban area. How-
ever, in the disastrous area, Q-LBR will also be operable
because of the easy deployment of UAV.

C. REACTIVE ROUTING PROTOCOLS
Reactive routing protocols determine the route when a node
needs to transmit data. This routing protocol conserves the
bandwidth of the network and is applicable to the high-speed
mobility scenario. However, the delay is higher compared to
proactive routing [63].

1) POINT TO POINT AD-HOC ON-DEMAND VECTOR
(PP-AODV)
Valantina et al. proposed a fuzzy constraint Q-learning-based
routing algorithm called point-to-point ad-hoc on-demand
vector (PP-AODV) [64]. The routing algorithm is a mod-
ified version of the well-known AODV routing algorithm
with integrated intelligence based on the implementation of
learning techniques. The original algorithm is modified so
that it more suitable for the VANET environment. PP-AODV
considers multiple parameters for the optimization process.
These parameters include the bandwidth of the link, delay
performance of a link, and the probability of packet col-
lision. The protocol is assisted by the mobility pattern of
the neighboring vehicle, even when positional information
is unavailable. The rest of the routing mechanisms are kept
similar to the original AODV routing protocol. To start a
transmission, a route request (RREQ) packet is generated by
a source to find the destination. The Q-values in the Q-tables
is maintained using the RREQ message. To send the route
reply (RREP) message to the source, the destination node
utilizes its Q-tables. The best node is selected according to
the Q-values as the next hop for sending the RREP message
to the source node.

Advantages: The protocol can estimate the movement of
other vehicles without the need for any positioning technol-
ogy such as GPS.

Disadvantages: The protocol does not state anymechanism
in the case of data failure or unavailability of the neighboring
node. In the case of a sparse network, this routing algorithm
does not perform according to expectations.

Application: Without any recovery policy, the algorithm
performance is similar to that of the original AODV, and no
performance improvement is observed. As a result, the appli-

FIGURE 7. Fuzzy logic-assisted route-selection mechanism in PFQ-AODV.

cability remains the same as that of the original AODV in
urban or highway areas.

2) PORTABLE FUZZY CONSTRAINTS Q- LEARNING AODV
(PFQ-AODV)
Wu et al. proposed a modified version of the AODV routing
protocol called PFQ-AODV [65]. In this modified approach,
VANET learns to transmit data packets through the opti-
mal route using a fuzzy constraint and Q-learning algo-
rithm. The direct transmission link is evaluated using fuzzy
logic, whereas the multi-hop links are evaluated based on
the Q-learning algorithm. The routing algorithm attempts to
determine the optimal route in terms of the bandwidth of
the link, the present link quality, and the change in the vehi-
cle’s direction and speed. Fig. 7 describes the route selection
procedure based on fuzzy logic constraints and Q-learning
mechanisms. The RREQ packet was used to evaluate the
parameters of the links. Based on the received hello packets
from the neighboring nodes, the vehicles predict their future
position. First, the protocol broadcasts the RREQ message to
the neighbors, who in turn rebroadcast the RREQ message.
When a destination node receives the same RREQ packet,
it compares the old path with the new path. It should be men-
tioned that PFQ-AODV maintains two-hop neighbor infor-
mation inside its neighbor table. The mobility of a node is
calculated based on the relative position change information
of the vehicles or by evaluating the stored information from
the two-hop neighbor table. Each vehicle in the network has a
Q table wherein the Q-values are stored and range from 0 to 1.
A vehicle stores three types of Q values. The first Q value is
stored for the one-hop neighbor, the second Q value is stored
for the second hop neighbor, and the third Q value is stored
for the source node that generates the traffic. The Q-value
of a vehicle is broadcasted using hello messages among the
neighbors. Thus, the size of the hello message is dependent
on the cardinality of the neighboring vehicles. In PFQ-AODV,
the RREP packet mechanism works in the same way as in the
original AODV. In the case of choosing the best next hop,
the current vehicle chooses the best node with the highest
Q-value from its table.
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Advantages: The performance of the PFQ-AODV is eval-
uated and tested in a real-life environment, which validates
the protocol’s performance. This protocol has no dependency
on the lower stack of the networking layers. PFQ-AODV can
also calculate themobility factor without the need for position
information.

Disadvantages: No broadcast mitigation technique is
adopted. With the increase in the number of neighboring
nodes, the broadcast storm might be a regular incident in the
PFQ-AODV. The routing delay is a major issue in this routing
protocol in an obstacle area.

Application Scenario: In the highway scenario, the routing
protocol is better aligned. There is a possibility of a broadcast
storm in the network, and no recovery policy is stated. There-
fore, a limited but reasonable number of vehicles is required
to effectively run this routing protocol.

3) ADAPTIVE ROUTING PROTOCOL BASED ON RL (ARPRL)
Wu et al. proposed an RL-based mobility-aware VANET
routing algorithm called ARPRL [66]. Using periodic hello
packets, ARPRL only maintains the freshest valid path in
its routing table. The routing table applies a distributed
Q-learning technique to learn about the freshest link for
multihop communication. While updating the Q-values of
the neighboring vehicles, the host vehicle also transmits its
mobility information. Thus, a vehicle can learn about the
sender vehicle’s mobility model. This protocol uses a feed-
back mechanism for the packet loss information from the
MAC layer, which causes the Q-learning technique to be
better adapted to the VANET environment. To learn about the
nodes’ mobility model, ARPRL utilizes a vehicle’s positional
information such as the current position, the direction of
travel, and the speed. Due to the high-mobility, the control
packet is frequently exchanged to keep the Q-table updated.
To learn about the breakage of the link, data packets are
used in ARPRL. Both temporal difference and the Monte
Carlo technique are used to obtain the optimal value func-
tion. ARPRL maintains two distinct tables: a Q-table or a
routing table and a neighbor table. Using the hello timer,
the arrival or exit event of a neighbor node is detected. Along
with the vehicle’s position, speed, and direction, additional
information extracted from the Q table is also added inside
the hello packet. To route a packet towards a destination,
the vehicles first examine their Q-table. If no suitable next
hop is found, the vehicle initiates a route probe request that
is similar to the RREQ packet of the AODV routing proto-
col. To facilitate faster convergence, the algorithm initially
implements a proactive learning procedure. Route looping is
reduced using a modified version of the hello packets. The
position of a vehicle, timestamp, and Q-values are inside the
hello packet. The information from the Q table is broadcasted
to the neighboring vehicles to keep the Q tables updated after
every hello packet interval. In addition to LPREQ, LPREP
also contributes to the update of the Q table.

Advantages: The cost of feedback from the MAC layer is
negligible compared to that of updating the Q table.

Disadvantages: The size of the hello packets increases
significantly. Given that the packets carry the maximum
Q-values from the nodes, the size increases significantly with
the increment in the number of intermediate hops. Another
major disadvantage of the proposed routing protocol is that it
does not consider the movement direction and velocity of the
nodes.

Application: To maintain the good performance of APRL,
a large number of vehicles is needed. The protocol did not
consider the SCF mechanism or the presence of the RSU;
therefore, packet drop has a normal ratio in the case of a
sparse network.

4) RELIABLE SELF-ADAPTIVE ROUTING ALGORITHM (RSAR)
RSAR identifies and analyzes the various reasons for link
disconnection between vehicles to provide a QoS-optimized
routing experience [2]. This routing utilizes link lifetime
prediction, which helps the nodes to choose the best nodes
for routing data. The Q-learning RL algorithm is applied
to address the ever-changing VANET environment. RSAR
assumes that the vehicles are distributed according to a log-
normal distribution on a single line highway. This routing
algorithm considers the direction of the vehicle to estimate
the duration of the link. It is a practical assumption that
vehiclesmoving in the opposite direction have a shorter valid-
link duration, whereas the link duration is higher for vehicles
moving in the same direction. The distance after a certain time
can be calculated using the following equation:

δi,j =

{
1j(t)+1i(t)+ δ0 same direction
1j(t)−1i(t)+ δ0 opposite direction

(12)

where δi,j is the distance at time t between node i and node j,
and δ0 is the initial distance between nodes i and j at time t0.
1j(t) is the displacement of node j at time t , and 1i(t) is the
displacement of a node i at time t . The link is valid as long
as δi,j is less than the communication range. RSAR considers
two types of link disconnection scenarios, as shown in Fig. 8.

RSAR stores only one-hop neighbor information inside its
Q-table. The first column of the Q-table contains the IDs of
all neighboring nodes, and the first row contains the IDs of
the destination nodes. The size of the table depends solely on
the number of neighboring vehicles. Nodes gather informa-
tion about the neighboring node using beacon packets. The
learning process occurs in a distributed manner, which causes
the algorithm to converge faster. Along with the position,
velocity, and direction, the source node assumes the existence
of maximum Q values of a node inside the beacon packet.
At the start of the routing process, the source node first checks
the destination node. If the destination node is available,
the node with the maximum Q-value is selected as the next
hop. If the destination node is not available in the Q table
of the source node, the source node starts a route discovery
process. The request beacons include the node information
that is passed along the route. Upon receiving the first packet,
the destination node replies with another control packet. The
intermediary nodes modify the next-hop information, and a
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FIGURE 8. Link disconnection scenario: (a) vehicle in the same direction
and (b) vehicle in opposite directions.

single-hop broadcast occurs. The receiving nodes update the
Q-table value and discard the packet. When the source node
receives the packet, a route is identified, and theQ-table is fur-
ther updated for the source node. To keep the Q-table updated,
the nodes periodically broadcast a route-update hello packet.
The transmission delay is chosen to be a random number from
0.5 to 1.

Advantages: Every Q-value of a corresponding destination
node has a timer. This helps the vehicle to update the Q-values
of the node, and the freshest path is included. As a result, the
packet drop ratio is dramatically decreased.

Disadvantages: Even for a single-hop broadcast of the
RREP packet, the control packet overhead increases signifi-
cantly. In aVANET scenario, control overhead is an important
issue to be prioritized.

Application: The single-hop broadcast mechanism renders
this routing algorithm more appropriate in a dense network
topology.

5) Q-LEARNING-BASED AODV FOR VANET (QLAODV)
Wu et al. proposed a distributed RL-based vehicular routing
technique called QLAODV [67]. This protocol is especially
applicable to high-speed mobility scenarios. QLAODV uti-
lizes the Q-learning technique to predict vehicular informa-
tion and utilizes control packet unicasting to adapt to the
dynamic scenario. QLAODV also considers the dynamic
changing topology of the VANET scenario by implement-
ing rapid action in the event of topology changes. At the
beginning of routing a packet, QLAODV operates as a simple
reactive routing protocol and looks for the destination node
entry inside its routing table. In the case of the unavailability
of the destination node, the source node initiates the discovery

process to establish the route. Link state information is sep-
arately predicted by the Q-learning algorithm in QLAODV
for all the vehicles. The vehicles act as agents in the RL
environment. The Q-learning model takes the hop count, link
lifetime, and data rate of a link as the selection parameters.
The neighbors are considered as the states, and the state’s
transition is the packet transition from one vehicle to another.
The authors in [67] contend that due to the absence of a global
view, the centralized approach is not suitable for the VANET
scenario. The reward mechanism is such that a node obtains a
full reward when a packet reaches the destination. In contrast,
if a node receives a hello packet from a destination, it also
receives a reward of 1; otherwise, the reward is 0. QLAODV
uses a dynamic Q-table, wherein the size is dependent on
not only the neighbor node but also the destination vehi-
cles. Upon receiving hello messages, the nodes update the
Q-values inside the Q-tables. This approach for exploration
based on the hello messaging system allows QLAODV to uti-
lize greedy approaches while routing the data packet. Every
node derives and utilizes a mobility factor to calculate its
stability. The mobility factor can be calculated based on the
following equation:

MFx =


√∣∣Nx ∩ N p

x
∣∣∣∣Nx ∪ N p

x
∣∣ , if Nx ∪ N

p
x 6= ∅

0, otherwise

(13)

whereMFx is the mobility factor of a node x, the set of neigh-
bor nodes is denoted as Nx , and the set of neighbors when the
last hello messages are sent is represented by N p

x for node x.
The bandwidth factor is another important parameter used in
the Q-learning process of the QLAODV routing algorithm.
The bandwidth factor can be written as follows:

BFx =
Available bandwidth of x
Maximum bandwidth of x

(14)

where BFx is the bandwidth factor of a node. The hello
messages include the bandwidth factor, mobility factor,
and maximum Q-value inside it. The intermediary route
change mechanism in QLAODV uses the RCNG-REQ con-
trol packet. If any intermediary node finds a better route,
it immediately starts forwarding the data packet via the route.

Advantages: The utilized Q-learning algorithm imple-
ments a multi-parameter-based variable discount factor. The
hop count, link condition, and free bandwidth of a link are
taken as relevant parameters to derive the value of the dis-
count factor. After propagating through a link, the value is
discounted based on the experience of the bandwidth and link
condition.

Disadvantages: The RL works best if the feedback mech-
anism is performed immediately, but in QLAODV, the
feedback mechanism is enabled using the periodic hello mes-
sages. However, this mechanism results in a reduction in the
number of control packets. The mobility factor calculation
yields a relative result and not the exact mobility of the exam-
ining node. The use of RCNG-REQ and RCNG-REP control
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packets potentially exacerbates the control packet overhead
problem.

Application: QLAODV is utilized in both the urban envi-
ronment and freeways. The simulation is performed for both
environments for a variable velocity, which validates the
performance of the protocol in both cases.

6) PRACTICAL AND INTELLIGENT ROUTING PROTOCOL FOR
VANET (PIRP)
Wu et al. proposed PIRP [68], a routing protocol for VANET
architecture. To propose the routing protocol, the authors
went through some experimental analysis and tried to find
out the major flaws in the existing research works. As a
result, they showed that the packet reception ratio depends
on the size of the hello packets, the number of available
nodes, and the distance between sender and receiver. Thus,
the use of hello packets to indicate link quality might return
an erroneous result. The Q-learning algorithm is used to find
out the best modulation coding scheme so that the reception
ratio is increased. In this learning phase, the network is the
environment, each vehicle is an agent, and the reception ratio
of the hello packet is the state. The state is discredited with
an interval of 100. Selecting a modulation coding scheme is
the action in this learning procedure. The ε−greedy is taken
to set the balance between exploration and exploitation.

The transfer learning technique is used to share knowl-
edge among the vehicles and to speed up the convergence
of the learning procedure. The knowledge transfer proce-
dure starts when a node enters the region. A learned node
requests the transfer process. The lifetime of these learned
values is disproportional to the distance. In order to make a
routing decision, PIRP uses both fuzzy logic and Q-learning
mechanism. For a point-to-point connection, the fuzzy logic
is used; otherwise, the assistance from Q-learning is taken.
In the implementation of theQ-learning algorithm, theAODV
is assumed to be the niche algorithm. Transmission rate,
vehicles’ mobility, the number of hops are taken to rank the
discovered route with the help of RREQ and RREP packets.
Indirectly, the vehicle’s relative movement is also taken into
consideration, as the hello packet reception ratio changes
drastically in case of higher relative mobility. The link sta-
bility is calculated based on the following equation:

ST (c, x) = (1− α)× STi−1 (c, x)+ α

× |HRRi (c, x)− HRRi−1 (c, x) | (15)

where the hello reception ratio is denoted with HRR, i indi-
cates the time, c and x denote the examining neighboring
node, and α denotes the learning rate. In the routing proce-
dure, exploration and exploitation do not conflict with each
other. All the sending nodes get the prior information about
the links with the help of hello packets. As a result, the sender
can choose the next hop greedily from the Q table.

Advantages: A modified procedure is used to determine
the hello packet reception ratio. The packets are sent based
on a fixed time window. In the receiver end, the reception

ratio is set based on the last ten messages received. After
the route discovery phase, the Q-table is updated based on
the route switching in the route maintenance phase. This
mechanism will, however, reduce the number of exchanged
control packets.

Disadvantages: According to the analysis of link quality in
the paper, the authors stated that hello packets can be erro-
neous. However, in order to use hello packet reception ratio
as an indication of the link quality, the parameters (distance,
packet size, and the number of hops) can be normalized for
the calculation.

Application: Multi-modulation scheme learning procedure
will help the routing protocol to adapt in a densely deployed
environment.

7) HEURISTIC Q-LEARNING BASED VANET ROUTING (HQVR)
Yang et al. proposed HQVR [69], a routing algorithm for
VANET architecture. The algorithm selects intermediate hop
based on link reliability. The general implementation of the
Q-learning algorithm is slow and tends to consume a good
number of control packets. The heuristic procedure is used
to speed up the convergence rate of the Q-learning algorithm.
HQVR is a distributed algorithm and the learning procedure is
carried out based on the information gathered by exchanging
the beacon packets. To design the HQVR algorithm, the width
of the road is not considered. The distribution of the vehicles
is assumed as the log-normal distribution. According to the
mobility pattern adopted in the paper, the link between two
nodes can be broken in case they run in the same direction
with different velocity or they run in a different direction.
The maximum link maintenance time between two vehicles
running in the same direction is denoted by the following
equation:

ti,j =
−un −

√
u2n − 2an (R+ S0)

an
(16)

where the an and un is the acceleration and initial speed
difference between node i and j, respectively. S0 is the initial
distance between the examining node and R is the transmis-
sion range. The maximum link maintenance time between
two vehicles forwarding to the opposite direction can be given
as:

ti,j =
−un −

√
u2n − 2an(R− S0)
an

(17)

HQVR routing algorithm is a modified version over
QLAODV, which is also described separately in [69]. The
authors stated that the convergence of the Q-learning algo-
rithm in VANETs depends on the rate of beacon messages,
which mainly makes the convergence slower. In HQVR,
the link duration ratio is considered as the learning rate.
According to the functionality of the Q-learning procedure,
the learning rate determines the amount of convergence.
So, with a better-quality link, the necessity for exploration
decreases. Different from the original QLAODV, HQVR
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implements a strategy to implement the exploration tech-
nique. The packets store the delay information. When a node
finds that the new delay is better than the previous delay,
the node simply switches to the new route. The feedbackmes-
sages travel through multiple paths to reach the destination.
Thus, the source has the flexibility to choose the best route
over the multiple routes.

Advantage: The special design of the learning rate will
reduce the impact of the node’s mobility on the data deliv-
ery rate. The learning rate depends on link quality. As a
result, when the agent finds a node with better link quality
immediately decreases the convergence time. The quicker the
convergence is, the lesser the impact of the node’s mobility is.

Disadvantages: The exploration technique adopted in
HQVR is based on a specific probability value. This assump-
tion is not better as there can be a better exploration strat-
egy and the minimization of exploration probability with
the increasing amount of time. The packets store the delay
information in every intermediary node and, thus, the size of
the packets will vary depending on the size of the multi-hop
nodes.

Application: There is no dependency shown in HQVR on
the static infrastructure. However, the algorithm does not have
any recovery policy. Adding the SCF mechanism will help
HQVR to be operable in the sparse road condition area.

D. HIERARCHICAL ROUTING PROTOCOLS
In hierarchical routing protocols, the responsibility of the
nodes is distributed at different hierarchal levels. The clus-
tering algorithm is a type of hierarchical algorithm in which
the cluster head (CH) selects the route with other CHs. When
a cluster member (CM) needs to transmit data, they are sent
to the corresponding CH, which then sends the data to the CH
of the receiver. Finally, the receiver’s CH sends the data to the
original receiver [70].

1) AGENT LEARNING-BASED CLUSTERING VANET ROUTING
ALGORITHM (ALCA)
Kumar et al. proposed a cluster-based routing protocol called
ALCA [71]. The routing algorithm utilizes an RL technique
to form a cluster among the vehicles on the road. Vehicle
mobility is taken into consideration during the training of the
agent to implement the clustering and routing mechanisms.
The agent is used to learn the optimal path; then, the infor-
mation is shared with other vehicles, which allows the sender
vehicle to propagate information along an optimal path. The
agent is also used by vehicles to learn about the density of the
road segments, resulting in better routing decisions. The CHs
monitor and maintain information about the surroundings.
Along with mobility and density considerations, the trust
score is taken into consideration when selecting CHs. The
agents are deployed to learn the traffic condition and the vehi-
cle direction for different road segments. The agents are also
able to communicate among themselves, which facilitates the
enhancement of their learning experience. The rewarding and
penalization schemes of the agent continue until the agent

reaches an ultimate point. Four types of agents are considered
in ALCA. They are the requested launcher agent (RLA), data
update agent (DUA), zone selection agent (ZSA), and speed
control agent (SCA). The RLA must initialize the request
for finding the best route for a mobile vehicle. DUA takes
the request generated by RLA and forwards it to ZSA. Zone
detection is performed by the ZSA. The zone identified by
the ZSA is then passed to the SCA using DUA. The SCA
is responsible for calculating the traffic flow values. The
data representation of the SCA agent also shows the mobility
information and the volume of the vehicles in the respective
zones. Fig. 9 shows the communication among the agents.
It should be noted that all the interactions are bidirectional.

Advantages: The trust score for the selection of the CH
adds security features in the ALCA.

Disadvantages: The agents are not fully defined. The def-
inition of a zone is also not clear. The one-hop approach for
long-distance delivery is not practical.

Application: This protocol will perform better in a region
with short road segments and high vehicle density.

2) CONTEXT-AWARE UNIFIED ROUTING FOR VANETS
(CURV)
Wu et al. proposed an RL-based VANET routing protocol
called CURV [72], which attempts to optimize the transmis-
sion paradigm and the size of the packet QoS parameter. The
transmission paradigm can be categorized into two types:
unicast and broadcast. CURV utilizes a clustering technique
to limit the hop count of exchanged control packets. Con-
trol packets are exchanged among only one-hop members
for intra-cluster communication. Improvement of CH-to-CH
communication is achieved using the RL algorithm. Themain
goal of CURV is to improve the performance of the VANET
routing using clustering andRL algorithmswhilemaintaining
the routing overhead. CURV assumes that all vehicles are
equipped with a GPS module. The beacon period is set to
a 1-s interval. The vehicles obtain information about their
neighboring vehicle using this periodical beacon. The authors
contend that even though only two contexts are considered,
the number and types of contexts can be increased in the
future. Packet type and size information are propagated from
the lower network stack to the network layer to improve the
decision-making process. Different sizes of hello messages
are used in CURV. After experimenting with a 100-s interval,
CURV selects the appropriate size of the packet length and
can use multiple packets to deliver data if the payload does
not match the size of the selected packet. The link condition
is updated for every hello packet received from a vehicle.
For each payload size, all the nodes store the timestamp,
average packet reception value, and inter-vehicular distance
information, which is used later to relay data. On average,
four intermediary nodes are considered while estimating the
reception probability for data. To minimize the CH selection
count, CRUV sets a higher probability for relatively slower
vehicles that travel in the same direction with good link con-
ditions. Fuzzy logic is used to perform a clustering decision
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FIGURE 9. Internal communication paradigm of agents in ALCA.

based on the aforementioned parameters. The CH selection
algorithm used in CRUV is a distributed clustering algorithm.
The velocity factor was calculated based on the following
formula:

VF (s, x) =
|v(x)| − min

y∈Ns
|v(y)|

max
y∈Ns
|v(y)|

(18)

where VF (s, x) indicates the velocity factor of node x from
node s, Ns is the set of neighbors of the node s being exam-
ined, v(x) is the velocity of node x, and v(y) is the velocity
of node y. The channel condition factor is another important
parameter that is derived based on the reception ratio of the
hello packets. CURV uses a Q-learning algorithm to improve
the first two-hop and last two-hop nodes based on the link
condition parameters. Fig 10 depicts the two-hop optimiza-
tion process. In this figure, the source did not choose the
nearer CH to propagate its data; rather, it forwarded the data
to vehicle F1. At the destination end, the CH forwards the
data to F2, whereas F2 forwards the data to the destination.

Advantages: The test-bed experiment is performed based
on IEEE 802.11 b/g/n to examine the packet receiving ratio
by varying the size of the payload. This is at the core of the
design of CURV.

Disadvantages: On average, the reception probability is
assumed to be four, but the authors did not mention the impact
of this assumption for different intermediary nodes. The clus-
ter selectionmechanism is context-dependent in CURV. It has
been previously stated that the context consists of the packet
size and packet type. In the protocol, the effect of the packet
size context parameter on the cluster selection technique and
performance is not clear. From a general perspective, it can
be predicted that a vehicle with a good link quality will be
able to successfully forward all packets of different sizes,
whereas a vehicle with a bad connection will experience an

FIGURE 10. Two-hop optimization used in CURV.

increase in the packet drop ratio. The packet size does not
affect performance.

Application: CRUV is a well-defined hierarchical rout-
ing protocol that is compatible with both dense and sparse
networks. In particular, dense conditions are treated more
carefully, and the data flow is hazardless in such a situation.

3) REINFORCEMENT LEARNING-BASED ROUTING
PROTOCOL FOR CLUSTERED VANETS (RLRC)
Bi et al. proposed a VANET routing algorithm RLRC [73],
especially for electric vehicles. Due to the shortage of electric
vehicles, the authors segmented the total network into mul-
tiple clusters. An improved version of K-Harmonic Means
(KHM) is used to form the cluster among the vehicles.
To decrease the learning time, RLRC uses SARSA(λ) RL
algorithm. Electric vehicles are powered by batteries. Electric
vehicles show greater trends towards automation and need to
exchange a lot of packets. As RLRC forms clusters to reduce
the number of state spaces, the CH will have to exchange a
lot of data packets with other CHs and own cluster’s CMs.
Thus, RLRC considers the energy parameter of the vehicles
for CH selection. To enable smooth connectivity, bandwidth
is selected as the second parameter for electing the CH.

From a given road segment, RLRC first determines the
number of clusters. The KHM is a variant of the K-Means
clustering procedure. However, the biggest difference is that
the algorithm replaces the minimum value with the harmonic
mean. At first, the best positions for the centroid are cal-
culated based on the partial derivatives. In each iteration,
the value of the centroid is being improved. Based on the
relative distance, the least distance node is selected as the CH.
The nodes that are not selected as the CH obtains the min-
imum distance with all the CHs and joins as CM. Lastly,
the average distance is calculated to remove the nodes having
a significant amount of fluctuation. This ensures the longest
lifetime of the clusters. The SARSA(λ) model is used to
optimize the routing process in the RLRC procedure. In this
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algorithm, the entire clustered VANET scenario is considered
as the environment, and the CHs are considered as the agent.
The Q-values are updated with the help of hello packets. The
hello packets are sent periodically. The reward function is
generated based on the next-hop link status.

ls (c, x) =
(Bwmax − Bwhello)

Bwmax
× e−ILD(c,x) (19)

where ls is the link status, ILD (c, x) is the inverse link dura-
tion between node c and node x,Bwmax is themaximum band-
width, and Bwhello is the bandwidth needed for hello packet
exchanging. RLRC considers the hop count, the condition of
the link, and the available bandwidth to compute the Q-value.

Advantages: By forming clusters, RLRC reduces the size
of the state space. As a result, the convergence time is faster
compared to the protocols that every node is a state. The
average distance is considered while forming the clusters.
This mechanism will increase the lifetime of the clusters.

Disadvantages: The hello packets are sent periodically.
This will consume a significant amount of bandwidth, which
will have an adverse effect on the throughput. However, it is
a good practice that only CHs exchange this packet, which
will reduce this adverse impact. The initial values are set as
0, leading to a longer time before convergence. Moreover,
RLRC does not mention how to get the optimum value of
the cluster.

Application: This algorithm does not consider the relative
direction among the vehicles. This leaves the algorithmwork-
able only for a single direction road segment. The simulation
considers the traffic light scenario, which proves the compat-
ibility for the urban road structure.

4) RL AND GAME THEORY BASED VANET ROUTING (RGVR)
Wu et al. proposed RGVR [74], a routing algorithm for
VANET architecture. RGVR implements a fuzzy-logic sys-
tem to form stable clusters and game-theory principles to take
the decision whether to join in a cluster or not. To form stable
clusters, multiple parameters are taken into consideration
such as the velocity of the vehicles, the movement pattern of
the vehicles, and the link quality based on the received signal.
The route selection mechanism is aided with an RL algorithm
and game theory mechanism to improve the performance.

The vehicles are location aided and every vehicle knows
about neighbors’ information with the help of the hello pack-
ets. The interval of hello packets is set to be 1 second.
The major responsibility of the CH is to distribute the data
received fromRSU.AnRSUdelivers its payoffs only to a CH.
Based on the channel condition with the neighbors, neigh-
boring degree, and the relative motion of the neighboring
vehicles, the CHs are elected by implementing fuzzy logic.
After receiving a hello packet from a node m, the mobility
factor of a node s is determined with the following equation:

MF (s,m) =
|v (m)| − min

y∈NS
|v(y)|

max
y∈NS
|v(y)|

(20)

where the set of neighboring vehicles is denoted with Ns
for a node s, m represents the hello packet receiving node,
and v denotes the velocity. The CHs intends to deliver the
payoffs received from the RSU in a multihop manner to the
destination. To accomplish this goal, RGVR forms a coali-
tion game based on the collision probability. The multihop
decision is taken based on a Q-learning technique in RGVR.
The Q-table is maintained by each RSU. Each entry in the
Q-table represents a value for taking an intermediary node to
reach the RSU. The Q-values are updated with hello packets.
Q-values are attached inside the hello packet.

Advantages: To form the clusters, the velocity of the vehi-
cles is considered. This mechanism will increase the stability
of the clusters. Besides, the topology changes of the net-
work will be also minimized. The clustering process does
not involve the exchange of extra control packets. Thus,
the amount of control overhead will be minimized in the
RGVR.

Disadvantages: The optimization of multi-hop routing is
conducted from the transport layer and the MAC layer per-
spectives. As the main drawback, the Q-value mechanism
consumes a lot of control packets. In RGVR, the Q-learning
mechanism is used twice but no performance evaluation for
routing overhead is given.

Application: The protocol is mainly focused on data dis-
semination among vehicles and RSUs. A good infrastructure
environment is necessary to implement the algorithm in a
real-life scenario.

5) REINFORCEMENT ROUTING IN SOFTWARE DEFINED
VEHICULAR ROUTING (RL-SDVN)
Nahar et al. proposed RL-SDVN [75], an SDN based routing
protocol for VANET architecture. In RL-SDVN, vehicles are
grouped into clusters and assist each other within a cluster
to find out the optimal route. RL-SDVN mostly focuses on
the optimal clustering process. In order to do so, the authors
used the Gaussian mixture model (GMM) and RL techniques
together to predict a vehicle’s mobility pattern such as speed
and direction. To derive the features and fitness values, a clas-
sifier is designed. The packet forwarding decision is handled
by the Q-values. A unique traffic flow model is introduced in
this paper. The traffic flowmodel is constituted with the vehi-
cle density, speed, and direction considering space and time.
In RL-SDVN, the anomaly of vehicle movement is derived
by the second-order differentiation of the displacement of
the vehicles. Every vehicle transmits a safety message in
every 100–300 seconds. This message contains information
such as the current location of the vehicles, upcoming traffic
signals, direction-changing information, and road condition.
With the help of the GMM procedure, the clusters are formed
by using a probability distribution. In the GMM procedure, a
vehicle is selected for an arbitrary cluster. Then, based on the
expected maximization procedure, the vehicle is assigned to
every cluster and the values are examined.

The self-learning mechanism utilizes the information from
the beacon message received every 100 ms. An adjacency
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matrix is used to determine the number of neighboring nodes.
Each vehicle is enabled with dedicated short-range communi-
cation (DSRC) system. And the last parameter used is known
as Queue occupancy. To be elected as CH, a node should
have a high neighborhood and a low number of packets in the
queue. After forming the clusters, the routing process begins.
The SDN controller derives the optimal route based on the
location information. The learning process takes place in
every intermediary hop of the journey, from the source to the
destination. The SDN controller runs the Q-learning mech-
anism to compute the route based on the stored information
in the vehicles. The vehicles store information up to two-hop
neighbors. Before sending a packet to the destination, a node
checks the Q-value inside the packet. If a vehicle is able
to forward the packet to the next-hop destination, a positive
reward is given. On the other hand, a negative reward is added
if no path is available. To compute the Q-value, the distance
with the destination and the delay is taken into designing
consideration.

Advantages: RL-SDVN is heavily dependent on the clus-
tering process. The probabilistic clustering process can be
tuned and a near-optimal solution can be accepted anytime
based on the requirement. In such cases, tradeoffs can be done
based on the available bandwidth of the links. However, this
measurement is not taken into consideration in the routing
protocol.

Disadvantages: The clustering mechanism will work best
in a centralized manner and the SDN’s controller mecha-
nism also supports such architecture. However, RL-SDVN is
designed to work in a distributed manner, which will increase
the number of the exchanged control packets. The 100 ms
timer for receiving a beacon packet will consume a high
amount of bandwidth.

Application: Designing the SDN controller is the key factor
of the application area of this routing algorithm. In several
studies, a flying unit is formulated as the RSU. The normal
designing factor considers the RSU as the local controller.
Hence, considering the flying unit as the RSUwill enable this
routing protocol to be implemented in an infrastructure-less
environment; otherwise, this protocol is only applicable to the
urban area.

E. SECURITY-BASED ROUTING PROTOCOLS
These routing algorithms offer secure data communication
between nodes. The trust score evaluation of vehicles before
sending and receiving amessage is one of the popular security
features of the routing protocols [76].

1) TRUST-BASED DEEP RL-BASED VANET ROUTING
PROTOCOL (TDDRL)
Zhang et al. proposed a DRL-aided trust-based VANET
routing algorithm TDDRL, which is designed for the SDN
network paradigm [77]. The SDN paradigm used in TDDRL
is logically centralized, meaning that the data from one layer
of this SDN architecture are abstracted from those of other
layers. In TDDRL, the SDN controllers are used to learn the

optimal path for routing. These controllers implement a deep
neural network (DNN) to learn the optimal path from the
source to the destination. The security feature is implemented
by utilizing the trust score to choose the neighboring node
for selection as a next-hop member. To formulate the DRL
problem, TDRRL assumes that the network infrastructure has
an SDN architecture environment and the control layer is the
agent. This routing protocol assumes that the combination of
the location and forwarding ratio of the vehicle serves as the
state for the DRLmechanism. The state transition probability
is given as follows:

p (st |st+1) =
N∏
n=0

p
mnm′n
n mn, m′n ∈ 1, 2, . . . , k, (21)

where p (st |st+1) is the probability of transition p from state
st to the next state st+1. p

mnm′n
n denotes the probability that a

vehicle n changes state fromm tom′ . The action is defined as
the forwarding capability of the vehicle to any other vehicle
in its vicinity. The trust value of a vehicle is considered to be
the reward of the formulated DRL problem in TDDRL. Trust
is computed using the following equation:

Vij (t) = ϕ1VTCij (t)+ ϕ2VT
D
ij (t) , (22)

where the trust value of a vehicle is denoted as Vij . Vij is
calculated based on the trust value acquired from the control
packet VTCij from node i to node j, and the trust value acquired
from the data packet is denoted as VTDij . ϕ1 and ϕ2 are the
weighting factors used to derive the trust value. The control
packets used in this protocol are kept the same as those in the
AODV routing protocol, which includes RREQ, RREP, and
RRER messages.

Advantages: The utilization of DQN in the VANET sce-
nario will solve the state space-related problems that arise
with Q learning approaches.

Disadvantages: The TDDRL assumes that the trust value of
the sender vehicle will always be 1. This is a major security
flaw that renders the horizon susceptible to receiving mali-
cious messages from an intruder vehicle. Only the forwarding
ratio is considered as the vehicle’s trust value, However, jus-
tification of the inability of the node to change the forwarding
ratio is not provided.

Application: SDN requires a continuous connection with
the controller to forward the packet. Therefore, TDDRL is
not functional in an infrastructure-less environment.

2) SECURED VANET ROUTING WITH BLOCKCHAIN (SVRB)
Dai et al. presented SVRB [78], a secured routing protocol
for VANET architecture. In SVRB, each vehicle is equipped
with a trust evaluation technique. Blockchain technology is
applied to prevent informationmanipulation in the transmitter
end. The RL algorithm decides whether to choose a vehicle
as the next hop or not after the evaluation of the trust score.
To ensure fast convergence in the case of a new entry to the
network, a hot booting technique is also applied. Originally
this protocol is designed by taking the highway environment
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in mind. SVRB conceptualizes the arrival of communication
request based on the poison distribution. A vehicle tries to
deliver the data directly to the RSU. In case of the unavail-
ability of the RSU, an OBU opts for multi-hop transmission
to deliver the data to the RSU. SVRB gives protection against
three kinds of attacks. They are eavesdropping, jamming, and
spoofing. The malicious node creates such a wireless signal,
which creates noise and jams the original signal. A vehicle
can act as a real relay node and simply drop the message
after receiving it. In the worst case, a relay that is intended
to deliver the message, may not deliver at all.

With the help of beaconmessages, a vehicle determines the
channel gain of the neighboring vehicle. If the channel gain is
within a threshold, SVRB considers the connection between
the corresponding nodes as successful. High trust value is
assigned to a vehicle that tends to relay the message of a node
with high trust and does not intends to transmit the message
of a vehicle with low trust. According to the blockchain
mechanism, every vehicle forms a block that monitors the
neighboring vehicles’ activities and stores them in memory.
A Merkle tree contains the trust values in the form of the
hash values in the form of the leaves. Upon the creation of
a new block, a vehicle informs the information to the other
vehicles. Thus, each vehicle assists other vehicles in the trust
management procedure. Before forming the chain, a block
needs to be verified by the majority of the users. When the
consistency of the trust does not match with previous blocks,
the block is simply dropped.

Advantages: SVRB is a truly distributed secured rout-
ing protocol, which formulates the vehicles as the block to
enable the blockchain technology. Compared to the SDN-
based security protocol, this protocol does not depend on the
RSU or any other third-party trust management system to
enable the security for data dissemination.

Disadvantages: The routing protocol does not try to
improve other routing performances such as throughput and
PDR. Adding such capacity before data transmission will be
good for future implementation.

Application: The routing protocol is truly distributed and
will be applicable to most of the scenarios. However, it should
be noted that the link quality, mobility, and direction are not
taken into design consideration.

3) RL-BASED ANTI-JAMMING VANET ROUTING PROTOCOL
(RAVR)
Xiao et al. proposed RAVR [79], a routing protocol to enable
protection against jamming for VANET architecture. The
architecture is aided with a UAV, which works as the RL-
agent to take the right action to protect the data packet from
malicious nodes. The jammer ormalicious node is assumed to
have smart power management capability, to effectively jam
the transmission of the UAV. The UAV receives data from
the vehicles and acts as a relay to deliver the message to the
right RSU. A game is formulated between the UAV and the
jammer to take the routing decision of the OBU’s message.
By finding out the Nash equilibria of the game, the opti-

FIGURE 11. Communication mechanism in RAVR.

mal strategy of the relay strategy is selected. Policy hill
climbing (PHC) based solution is given to take and change
the relay strategy adaptively. The PHC strategy does not
require any jamming or channel model to take optimal routing
strategy.

As shown in Fig. 11, the OBUs try to send the data to
the server. OBU3 first uploads the message to the RSU1.
The same message is also received by the UAV. The UAV
designs the game and makes the decision whether to relay
the message to RSU2 or not. Based on the bit error rate of the
received message from RSU1 to the UAV and from OBU3 to
the UAV, the UAV decides whether to relay the message or
not. However, the jammer is equipped with a smart jamming
mechanism and can tune to the control frequency of the
OBUs’ transmission. The interactions between the jammer
and theUAV are the anti-jamming game and the final decision
is made based on the received message quality such as SINR
and BER. The jamming action taken by the jammer can be
modeled as the MDP model. The PHC based hot booting
technique is used to initialize the relay strategy.

Advantages: Implementation of the policy-based RL solu-
tion enables the UAV to take secured routing decisions. The
UAV does not need to have any knowledge about the prior
jamming model, and a hot booting model is used to initialize
the system with a sub-optimal solution.

Disadvantages: Introducing special equipment (UAV) to
enable routing security might not be a feasible option for
implementation. The packets might be directly delivered
to the RSU2 in a multihop manner with other OBUs,
instead of delivering to RSU1, which still raise the security
vulnerability.

Application: UAVs and RSUs are mandatory to implement
RAVR. Thus, the application scenario is limited to URBAN
areas only. This routing protocol can be applied on top of a
general routing protocol where the security ismore important.
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4) SOFTWARE-DEFINED TRUST-BASED DEEP
REINFORCEMENT LEARNING ROUTING PROTOCOL
(TDRL-RP)
Zhang et al. proposed TDRL-RP [80], a DRL assisted secured
routing protocol for VANETs. The algorithm exploits the
convolution neural network (CNN) in the SDN controller in
order to find out the most suitable routing path. A trust model
is proposed to evaluate the neighboring behavior before the
routing decision is made.While selecting a vehicle as a neigh-
bor, the trust value is also taken into consideration along with
the speed and direction of a vehicle. In this routing algorithm,
the network infrastructures are taken as the environment and
the controllers work as the agent for theDRLmechanism. The
DRL technique is used to discover the path from the source to
the destination and to make the packet disseminating decision
as well. The DRL agent needs a vehicle’s current position and
the delivery ratio for the route decision making process.

TDRL-RP forms two distinct matrices consisting of the
vehicle’s position and forwarding ratio. The action of the
controller is to pick the right vehicle for data transmission.
The reward is given based on the trust value of the selected
neighbor. The trust value is updated after a specific time limit.
By this mechanism, the trust value of a node keeps changing
and a trusted vehicle can become an untrusted vehicle and an
untrusted vehicle can become a trusted vehicle based on the
behavior. The control packets are used to determine the trust
value of the vehicles. The trust value can be computed based
on the following equation:

NTij (t) = ω1CTij (t)+ ω2DTij(t) (23)

where the direct trust of the control packets is indicated
with CTij, the trust with the data packet is indicated with
DTij between the vehicles i and j, and ω1 and ω2 are the
normalizing weighting factors. In TDRL-RP, the values of
the weighting factors are kept equal. Based on the link con-
dition, a source discovers the path, and the trust value of
the computed path is checked by the centralized controller.
The rectifier nonlinearity activation (ReLU) is used as the
activation function in the DQN.

Advantages: The centralized mechanism enables the con-
troller to have an eagle’s eye view of the entire topology.
This mechanism will help the vehicle to take the best route
decision.

Disadvantages: The route discovery process is kept as sim-
ilar to the reactive protocols such as AODV. However, if the
vehicles are connectedwith the centralized server, only giving
the routing information to the controller would be enough.
The centralized server would have computed the route and
send back to the vehicle. By computing the route with the
central server would save a good amount of bandwidth.

Application: There is no recovery process involved, and
the proposed protocol is based on the centralized controller.
To enable the security feature of TDRL-RP, the infrastructure
is a must to present. However, the niche algorithm of TDRL-
RP is AODV, which can be operated in a distributed manner.

5) BLOCKCHAIN AND RL BASED VANET ROUTING
PROTOCOL (BRL-RP)
Zhang et al. proposed BRL-RP [81], a secured routing proto-
col for VANET architecture. The security feature in BRL-RP
is implemented via cutting edge blockchain technology. The
authors stated that SDN technology can increase the security
of VANET architecture vastly but, due to the less infrastruc-
ture in the roadside region, a VANET suffers from security
threats. An optimization problem is developed concerning
the trust features, computational capability, and the degree of
consensus node. The optimization model mimics the famous
MDP model. With the help of dueling DQL (DDQL), the
optimization problem is solved. According to the DDQL,
the vehicles deliver the trust scores to the area controller,
and the area controller delivers the message to the domain
controller. The blockchain is interfaced with the domain
control layer, and the proposed consensus protocol is liable
for information collection and synchronization among the
different controllers. The entire architecture can be divided
into the three layers of device, area, and domain. The area
controller collects the data from the device controller. The
domain controller interacts with the blockchain services, and
the trust values are sent back to the vehicles again. The
training procedure in the controllers is a continuous process,
and the throughput gets increased with time.

To compute the trust, the previous interactions among the
vehicles are considered. The vehicles assess the trust of the
intermediary hop by the data sending behavior of the vehicles.
A data packet used in the BRL-RP uses the sequence number
to justify the lifetime of the packet. The header of a data
packet includes neighbors’ ID, vehicles’ position, velocity,
available throughput, trust value, last sequence number, and
packet buffer. The neighboring table is formulated based on
the received hello messages, and the trust values are stored
for a corresponding neighboring node. Direct trust that is the
trust attained by the direct interaction with the neighbor is
derived using the following equation:

Tvbv′b (t) =
f Cvbv′b

(t)

fvbv′b (t)
, t ≤ W (24)

where direct trust is expressed with Tvbv′b for a vehicle vb for
its neighbor vb′ , the number of totals sent packet at time t
is denoted with fvbv′b , and the number of packets which are
forwarded correctly is denoted with f Cvbv′b

. The correctness of
a packet is judged based on the sequence number within a
time window t that must be equal or smaller to the window
threshold W . A packet that is forwarded properly from a
sender increases its direct trust value. The trust value of a
node varies from 0 to 1, where 0 means malicious node and
1 means fully trusted node.

Advantages: Blockchain is creating a new era of security
enhancement. Including blockchain in VANETs will ensure
secure data delivery. SDN has a global view of the network,
so implementing such security in the SDN controller will not
create any extra burden on the vehicles. Local trust value
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computation will also benefit when the controllers will not
present.

Disadvantages: Even though blockchain is a distributed
mechanism and removes the problem of central dependency,
the integration of the SDN mechanism brought back the
problem of central dependency.

Application: A good infrastructure area where enough end-
points will be present to act as the area controller will only be
suitable to run this routing protocol.

F. DTN-BASED ROUTING PROTOCOLS
In delay-tolerant networking (DTN), the connectivity from
the source to the destination is not ensured. In VANETs,
the SCF mechanism is used to design a routing protocol for
the DTN scenario [82]. Road segments with a small number
of vehicles or RSUs raise such a situation in VANETs.

1) Q-LEARNING BASED VANET DELAY TOLERANT ROUTING
PROTOCOL (QVDRP)
Wu et al. proposed a Q-learning based delay-tolerant rout-
ing protocol called QVDRP for VANETs [83]. This rout-
ing protocol is especially applicable for delivering VANET’s
data from the source to the cloud destination through multi-
ple gateways. The routing technique implements a position
prediction technique for the availability of the destination.
This enables QVDRP to adopt an adaptive data duplication
technique. QVDRP utilizes RSU as gateways to commu-
nicate with the cloud servers. Thus, this routing algorithm
differs from the traditional VANET routing algorithms and
it aims to only disseminate the vehicle-generated data to
the RSUs. While keeping the delay under a threshold level,
the QVDRP tries to maximize the packet delivery probability.
The authors in [66] argued that the generated data in VANETs
are incomplete due to the fragile communication among the
vehicles and thus Q-learning is suitable for routing. QVDRP
assumes the network as the environment and the vehicles as
the agents. The learning process involves exchanging data
with other nodes in the network. Next-hop selection works
as the action for the Q-learning agent in QVDRP. Each
node maintains a Q-table where the Q-values of other nodes
are stored. Updating Q-table in the learning process is an
important task. This routing algorithm adopts two different
approaches to complete the task. In the case of connectivity,
the nodes exchange periodic hello messages to update the
Q-table whereas, in the case of a neighbor-less situation,
the Q-table is updated after every 10 minutes. Like most of
the routing protocols, reward 1 is given if the sending vehicle
is directly connected to the destination vehicle. If a node gets
to hear from a node before a threshold time, the nodes get
a discounted positive reward; otherwise, the Q-value is set
to the default value of 0.75. Encounter probability uses the
inbound and outbound direction prediction technique for each
road segment. This encounter probability plays an important
role to reduce packet duplications.

Advantages: QVDRP tries to minimize the number
of duplicate copies, which is a mandatory characteristic

of delay-tolerant protocols. To implement these features,
QVDRP considers the Q-value and the relative velocity.

Disadvantages: This algorithm follows a greedy state
selection technique based on the current Q-values stored in
the node. For this reason, the algorithm might converge into
local optima.

Application: This routing protocol is especially applicable
for post-disaster areas. In such areas, the network infras-
tructures usually get destroyed. So, delay-tolerant routing
protocols like QVDRP can play a good role to collect data
for future uses.

IV. COMPARISON
In this section, we present three comparison tables for the
investigated routing protocols from different perspectives.
A critical analysis and discussion of each table are also
presented.

A. KEY FEATURES OF RL-BASED ROUTING PROTOCOLS
Table 1 presents the key features of the reviewed articles. The
particular properties that are highlighted in this table are the
main performance-controlling features of the routing proto-
cols. According to the special feature of the QTAR algorithm,
we can infer that with the increment of time, the performance
of the routing algorithm improves. After a specific time dur-
ing which learning is completed, QTAR begins to perform
better than the underlying geographic routing algorithms.
RHRusesmodified and improved hello packet structures; this
facilitates the acquisition of information about the available
links. However, extra information requires extra bandwidth.
RHR should adopt a special broadcasting technique to con-
serve as much bandwidth as possible. Communication chan-
nel measurement and consideration of the vehicle’s direction
lead to a positive impact of PFQ-AODV on the performance
metrics. QGRID uses historical data based on taxies in Shang-
hai. Since the implementation is offline, the routing algorithm
will have a pre-converged condition; thus, an initial learning
time is not necessary. For a specific region, an offline learning
algorithm is ready to launch beforehand. ALCA implements
hierarchical routing by forming clusters among the vehicles,
which reduces the state-space size. Multiple parameters are
chosen for the selection of the next hop in the PP-AODV
algorithm. This ensures the minimum standard for all per-
formance metrics related to the parameters. The greedy for-
warding technique used in RLZRP increases the probability
of successful packet transmission in the case of the breakage
of the pre-calculated route. The ARPRL algorithm ensures
that there are no broadcast storms, owing to the innovative
features mentioned in Table 1. Parameter dueling ensures
that TDRRL chooses the appropriate next state, which is an
outcome of the innovative idea presented in Table 1.

Hierarchical routing algorithms tend to form clusters
among the vehicles and the CHs are selected as the agent
mostly. RLRC and RL-SDVN both try to elongate the life-
time of the clusters in different ways, mentioned in Table 1.
Increasing the clusters’ lifetime will reduce the number
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TABLE 1. Summary of key features of RL-based routing protocols.

of exchanged control packets. The backpropagation of the
reward value is one of the main challenges in RL-based rout-

TABLE 1. (Continued.) Summary of key features of RL-based routing
protocols.

ing protocol. HQVR tries to optimize the reward propagation
by storing the values inside the intermediary vehicles. RL has
the potentials to establish an effective multiple QoS routing
mechanism. However, only Q-LBR explicitly implemented
such technology. SDN-based architecture is mostly central-
ized. The SDN-based secured protocols have the potentials to
give superior security mechanisms. BRL-RP and TDRL-RP
are such protocols where the security is maintained centrally.
However, in such a protocol, the infrastructure should be
ensured. The blockchain-based solutions have the mecha-
nisms to implement a distributed trust management system.
Such a technique is adopted in SVRB. RAVR implements the
security mechanism with a game-theoretic approach, and the
agent is the UAV. For a tactical region, this protocol has the
potentials to serve the military needs.

B. APPLIED OPTIMIZATION CRITERIA AND ADOPTED
TECHNIQUEs
The investigated RL-based VANET routing protocols are
intended to optimize the performance from different per-
spectives. Given that the optimization criteria have trade-
offs, a routing protocol should attempt to maximize the
outcome of the expected performance metrics while also
minimizing the negative impact on other performance met-
rics. In Table 2, the intended optimization criteria are
highlighted. They are also described in detail in this
subsection.

EED optimization of a routing protocol ensures message
delivery from a source node to a destination node in the mini-
mum time [84]. From Table 2, it is evident that QTAR, RHR,
PP-AODV, and RLZRP protocols have adopted special tech-
niques to optimize the EED performance metrics. However,
the optimization of EED depends on the total number of links
and the total delay of the network. The quality of a particular
link depends on its availability, longevity, and bandwidth. The
various types of delays include propagation, queuing, and
internal processing delays. Thus, the EED can be optimized
based on any of the variables on which it is dependent. The
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TABLE 2. Comparison of Optimization criteria and techniques used in RL-based routing protocols.

routing protocols tend to optimize these variables to obtain a
better EED outcome.

The identification of reliable connections will have posi-
tive impacts on almost every performancemetric [85]. QTAR,
RHR, PFQ-AODV,RAVR, PIRP, HQVR,RLRC, andRLZRP
routing protocols have adopted techniques to obtain reli-
able connections before transmitting data via a link. This
optimization technique is mainly focused on the rewarding
mechanism of RL algorithms. However, the identification of
a reliable connection can result in the use of more control
packets. These phenomena lead to a poor result for the con-
trol packet overhead of the routing protocols. However, a
reliable connection can be accessed by multiple nodes for
the transmission of their data towards the destination [86].
This will increase link-sharing among multiple nodes, and
consequently, the propagation delay will increase. This can

also lead to data collision among the transmitted data at the
receiver end.

SCF techniques are used as recovery processes in the
routing algorithm of the VANET architecture. In the case of
the unavailability of the next-hop node for transmitting data,
the host vehicle carries the information for a limited time
before discarding the data [87]. Even though SCF techniques
are used in QTAR and RLZRP routing algorithms, the quality
of the SCF mechanisms is not optimized. The SCF mecha-
nism can be improved by implementing an adaptive TTL for
themessage system, considering the destination, and utilizing
the vehicle’s direction and position. A good SCF mechanism
will have a positive impact on the PDR performance metric.

Road-intersections play a vital role in VANET architecture,
and by considering the intersections, the performance of the
routing algorithm can be improved to a significant level.
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Usually, the vehicle density is relatively higher at intersec-
tions [88]. The possibility of interference and network con-
gestion also increases at intersections. Moreover, the chance
of NLOS increases when the carrying vehicle transmits a
message to a vehicle in another segment. This NLOS problem
can be solved if the vehicle gives preference to the vehicle
near the intersection. Among the reviewed routing protocols,
QTAR and ALCA consider the intersection, especially in
terms of the routing decision.

The broadcast storm is a trivial problem in VANET archi-
tecture. Reactive routing protocols frequently discover a rout-
ing path based on hello packet broadcasting [89]. Thus,
the probability of a broadcast storm is higher in such routing
protocols. Surprisingly, among the discussed routing proto-
cols, only RHR, PIRP, Q-LBR, and QGRID have explicitly
adopted broadcast-storm mitigation techniques. The broad-
cast storm results in high usage of the bandwidth of the
network, which leads to the poor performance of the routing
algorithm.

The existence of RSUs is logical only if the application
scenario is an urban area. SDN-based routing protocols such
as TDRRL depend on the RSUs, which can be a bottleneck of
the routing algorithms [90]. In addition to considering RSUs,
a superior routing algorithm should adopt recovery policies
in the case of the unavailability of the RSUs. Among the
discussed routing protocols, QTAR, ALCA, RAVR, BRL-RP,
TDRL-RP, RGVR, Q-LBR, RL-SDVN, and TDRRL algo-
rithms utilize the RSU and are thus meant only for urban
implementation.

The freshest path consideration involves checking for a
new path and examining the preexisting paths after a specific
time interval [91]. This technique improves the quality of
PDR, EED, and throughput but also increases the chance
of control packet usage [92]. The utilization of the control
packet should be maintained and kept below a threshold value
to avoid any negative impact on the available bandwidth for
data transmission. Among the proposed routing algorithms
TDRL-RP, RGVR, PIRP, HQVR, and RHR consider the
freshest path before data transmission.

For successful data transmission, vehicle position predic-
tion is important for both sparse and dense conditions [93].
In the case of this optimization criterion, the vehicles have
prior knowledge of the future position of the destination
node as well as the intermediary next hop. As a result,
the chance of data failure is significantly reduced. PFQ-
AODV, QGRID, SVRB, TDRL-RP, RGVR, PIRP, and ALCA
algorithms implement these techniques.

Among the algorithms reviewed in this survey RAVR,
SVRB, BRL-RP, TDRL-RP, ALCA, and TDRRL have secu-
rity features. These protocols mostly implement trust-based
security features [94]. In addition to the aforementioned rout-
ing protocols, some other data dissemination mechanisms
have been proposed for VANETs, which mostly focus on RL-
aided blockchain-based solutions. Blockchain technology has
opened a new horizon to implement the distributed trust man-
agement system in VANET architecture. SDN-based security

might ensure a superior trust management system with the
help of third-party services but, for an infrastructure-less sce-
nario, the study of distributed architecture is more important.

For a general-purpose VANET routing, the consideration
of mobility variation, routing loop avoidance, node degree
evaluation, and multipath routing are important factors. The
multipath routing and load balancing mechanism will reduce
the number of route discovery process initiations. The route
discovery process is one of the major reasons for increasing
routing overhead. The RL algorithm has the potentials to
implement an efficient multipath routing algorithm, as multi-
ple routes are being evaluated before selecting the best route.
However, only PIRP implemented such a routing mechanism.

The QoS-based routing protocols increases the chance of
a routing loop. None of the routing protocols except ARPRL
have adopted the loop avoidance technique. Ensuring QoS is
the main goal behind implementing the RL algorithm in the
routing protocol. Thus, RL-based VANET routing algorithms
should care for this problem, and the performance evaluation
should also reflect this optimization.

C. PERFORMANCE EVALUATION TECHNIQUES
Table 3 lists the simulation-related parameters used in the
protocols investigated in this research.

From this table, it is evident that most of the protocols
use well-known simulators, including NS-2, NS-3, QualNet,
and OPNET [95]. Among them, QualNet and OPNET are
available as paid versions only whereas NS-2 and NS-3 are
freely available. Topology refers to the street layout used for
the simulations.

The topology is one of the most important factors in
VANET simulation [96]. The simplest topologies are grid-
based ones for which the road segments intersect with each
other, and the length of the segments is mostly fixed. Realistic
topologies include the geographical position of the snippet
from a real-world map. An open-street map is a type of
geographic information system (GIS) wherein a real-life road
topology can be generated [97]. In the discussed protocols,
QTAR uses random and grid point topologies, whereas RHR
uses OpenStreetMap for topology generation. PFQ-AODV
uses the Midtown Manhattan map. QGRID uses data gen-
erated in Shanghai city, and QualNet uses the Manhattan
grid scenario. The Manhattan street grid [98] is an imaginary
road topology created by the Greenwich village. It consists
of 155 cross streets. However, ALCA, PP-AODV, RLZRP,
and TDRRL did not employ any road topology. Real-life
geolocation-based simulations are more practical, and the
output can also be mapped to real-life locations. Q- LBR used
the riverbed modeler from the OPNET simulator. This is a
well-accepted model not only in literature but also for the
industry.

One of the main differences between WSN and VANET
is mobility. In the case of simulations, mobility generation
is an important task that is often difficult [99]. SUMO is an
excellent vehicle mobility generator that is used in several
studies on VANET. Among the compared protocols, RHR
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TABLE 3. Comparison of performance evaluation parameters and techniques.
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TABLE 3. (Continued.) Comparison of performance evaluation parameters and techniques.

and RLZRP use the SUMO mobility generator. ALCA and
ARPRL use VANET mobisim [100]which is also a well-
known mobility generator. TDRRL, BRL-RP, and TDRL-RP
uses static mobility, which is not recommended. PFQ-AODV
uses a mobility model from [101] which is improved and
specially designed for the VANET. Given that QGRID uses
historical data to train its model, the mobility model does not
apply to the protocol.

The simulation area and vehicle number [102] are related
to each other. A large simulation area and a small number of
vehicles are indicative of a sparse VANET network. A routing
algorithm that yields superior results in these cases will also
yield better results in a real-life scenario. Among the com-
pared protocols, TDRRL uses the highest region of interest
(ROI) but the least number of vehicles. Given that TDRRL
uses a static mobility model, there is no opportunity to create
any variation in the intra-vehicular distance. Most of the
protocols simulate their models for an area between 1000 m
× 1000 m and 3000 m × 3000 m. The ROIs mostly have
a square shape, whereas PP-AODV and RHR use unequal
numbers for the length and breadth. However, this should
not impact the result. A test-bed solution is done for the
PIRP algorithm, which ensures the real-life performance of
the routing protocol.

Simulation time is important for routing protocols that
apply online learning techniques. Likely, the initial time of
simulation will not show a good result as long as the RL
algorithm converges. The learning factor is directly related
to the optimal simulation time [103]. For QTAR, RHR, PFQ-
AODV, and QGRID, the learning factors are 0.1–1, 0.2, 0.7,
and 0.8, respectively. Therefore, the convergence time as well
as the simulation time may be a minimum for QGRID and
PFQ-AODV routing protocols with a chance of premature
convergence. However, other parameters such as the state
space or action space must be the same for all the cases being
compared.

Velocity is the most important factor for link breakage
among the vehicles [104]. High-velocity vehicles in a two-
way road segment are prone to frequent link disconnections.
In the case of vehicles that travel in opposite directions,

the message transmission window is smaller [105]. The com-
munication range is also an important factor in the lifetime of
a link between two vehicles, regardless of the direction of the
vehicles [106]. QTAR exhibits acceptable performance with
a reasonable area parameter and velocity section. The higher
the speed used in the simulation, the higher the credibility of
the protocol. RLZRP is simulated using a vehicle speed of 0–
16.7 m/s, which is not compatible with a real-life highway
scenario.

For a robust simulation, the speed should be varied from
the lowest to the highest value. The lower the vehicle’s speed,
the higher the chances of link disconnection [107]. However,
the higher the number of vehicles in the same area, the higher
the chance of network interference and packet collision. From
this perspective, QTAR utilizes the most widely accepted
velocity for the simulation. RHR and ARPRL also adopt
an acceptable range for the number of vehicles to test the
performance of the protocol.

Most of the protocols use the 802.11p MAC protocol,
except for TDRRL. TDRRL uses the IEEE 802.11a MAC
protocol. However, 802.11p is a well-acceptedMAC protocol
among VANET researchers [108].

The learning rate and the discount factor are among the key
parameters for the simulation of an RL algorithm. The num-
ber of convergences depends on the learning rate, and the dis-
count factor determines the look-ahead reward for computing
the reward for the current state and the corresponding action
[109]. QTAR shows the best result. It varies the learning
rate and the discount factor and measures the performance.
However, the exact values of these two parameters are not
mentioned in the reviewed paper. The BRL-RP algorithm
expressed the discount factor in the Hz unit, which is different
and interesting as well compared to other algorithms.

The protocols should also indicate the road topology of the
network [96]. The length of the road segment and the inter-
section count should be given. In VANETs, intersections and
traffic signals significantly affect the performance. Therefore,
the exact number of intersections and traffic signals should
also be indicated in addition to the other aforementioned
simulation parameters. Among the discussed protocols, only
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QGRID utilizes the road segment length. Some protocols
indicate the path-loss or propagation model that is used.
QTAR uses the street microcell/LOS propagation model,
PFQ-AODV uses the Nakagami model, and APRL uses a
two-ray model. The indication of the path-loss or the prop-
agation model improves the utility of the simulation in the
research community [110].

Additionally, the validation of a routing algorithm should
be done by comparing the protocol with well-defined and
widely-accepted protocols. However, this is massively miss-
ing, in the case of a trust-based protocol such as RAVR,
SVRB, and BRL-RP. A protocol can produce different out-
puts with different PPS. The indication of this parameter is
also important. Among the reviewed protocols, the PPS value
is indicated for only RHR and QGRID.

V. RECOMMENDATIONS
In table IV, the building blocks of RL designs in the discussed
routing protocols are given. Building blocks refer to the state,
agent, action, and reward parameters of the RL algorithms. In
this section, the RL algorithms used in the reviewed routing
protocols are critically analyzed based on the design of their
RL building blocks. After that, the authors’ recommendation
on the configuration of the parameters is addressed. In the last
subsection, the learning techniques are analyzed in terms of
the application scenario under different conditions.

A. ANALYSIS OF THE ROUTING PROTOCOLS BASED ON RL
PARAMETERS
In the case of the formation of state and action, QTAR [56]
follows the common paradigm, where the state space con-
tains the neighboring vehicles and the action is defined as
forwarding packet to the next available vehicle. However,
the design of the reward function is interesting. They have
considered link quality, link expiration time, and delay as the
reward calculation matrix. The reward function also has some
weighting factors and, thus, can be tuned according to the
need and environments.

RHR [49] uses next-hop neighbors as the available states
which ensure the limited size of the Q-table. However, in this
research, other parameters are not stated properly. PFQ-
AODV [60] uses an idle time ratio to calculate the bandwidth
factor, which is more practical compared to the process where
the available bandwidth is calculated based on one-time data
only.

QGRID [51] is a grid-based protocol and the grids are
considered as the states for the implemented Q-learning pro-
cedure. Even though the agent is mentioned as the concep-
tualized virtual agent, the vehicles themselves work as the
agents according to the working procedure. However, a better
grid is chosen with the help of a cleverly designed discounted
factor.

ALCA [64] considers speed and angle to evaluate the value
of traffic flow. Four virtualized agents (i.e., DUA, RLA, ZSA,
and SCA) are conceptualized in this protocol. The working
procedure of the agents is given in Section III. The learning

factor is calculated for each agent. They learn by interactive
actions among themselves based on the positive and negative
rewards they receive. In ALCA, the state, reward, and actions
are not mentioned explicitly. Hence, the values in the table
are given based on the authors’ inference.

Like ALCA, RL parameters are not precisely given in PP-
AODV [59]. However, the parameters for learning are men-
tioned. Even though RLZRP [52] implements a zone-based
routing protocol, less information is given in the literature.
The assumptions for ARPRL [61] on states, agent, and action
is trivial and similar to other approaches. However, ARPRL
is a proactive routing protocol. The mechanism for updating
Q-value is not suitable for a high-speed scenario like VANET.
It could have employed advantages from the dynamic dis-
count factor but, according to the protocol, it is fixed and the
value is 1. TDRRL [67] uses a centralmechanism and exploits
the mechanism of DRL. In a central control-based situation,
DRL will perform better than the normal RL procedure.
ADOPEL [53] considers the neighboring degree for deriving
the reward. This approach will reduce the amount of data to
be transmitted over links. Furthermore, the same strategy can
also be used to select CHs.

In RSAR [2], the usage of the bandwidth factor is shown
differently. However, the parameter is affected by the imme-
diate reward and forces the algorithm to update the link entry
with a better bandwidth. The PbQR routing algorithm [57]
considers the computational capacity of the node as the agent.
However, according to the procedure, this is just another way
of mentioning the decision-making capacity of the vehicles.

QVDRP [69] uses a reward system where, if the forwarder
is connected to any gateway (RSU), the sender gets an imme-
diate reward of 1; otherwise, 0. A node that is not directly con-
nected to the RSU gets a discounted reward from the directly
connected vehicle. The Q-value is updated every 10 minutes,
which is not feasible, as the distance and connection directly
depend on the distance only. This might decrease the number
of control packet exchanges but it is not an efficient way to
update the Q-values. If a node wants to update its Q value of
an RSU, the value should be updated based on the distance
rather than time only.

VRDRT [54] uses the RL technique to predict the vehicle
density in the road. The DRL algorithms run in RSUs. As the
RSUs are fixed, the prediction can be propagated to vehi-
cles. On the other hand, RSUs can be easily equipped with
more computational power. Besides, they are also connected
through wires with each other. Road segment vehicle’s den-
sity prediction with each other will help the entire network
to choose the intermediate road junction. The DRL technique
used in VRDRT is a spatiotemporal solution and the imple-
mentation feasibility is also higher.

In QLAODV [62], the RL design is a little tricky. This
design implements the mobility factor and bandwidth factor
to determine the discount factor, which practically works as
the reward function, as shown for other protocols. However,
the design needs to exchange periodic hello packets. This will
create an adverse effect on the bandwidth, and this is not
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TABLE 4. Comparison of RL algorithm parameters.
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TABLE 4. (Continued.) Comparison of RL algorithm parameters.

a characteristic of the reactive routing protocol. CURV [65]
also uses the discount factor similar to QLAODV. This design
also ensures the least number of hops.

RAVR [79] uses UAV as the RL agent. It is a secured rout-
ing protocol proposed for VANET architecture. The message
evaluation technique depends on the SINR and BER values.
Thus, the RL tries to switch to a better state by selecting the
next node where better SINR and BER values will be found.
The reward is the channel power gain. However, this is a
clever design, as a greater channel gainwill ensure better BER
and SINR values.

SVRB [78] implements the RL mechanism in the
blockchain environment. Thus, it is legit that the vehicles are
designed as the agents and the tuple of reputation, and vehi-
cles’ positional information is used as the states. The agent
gets penalized when it faces any attack. BRL-RP [81] and
TDRL-RP [80] follow the same RL design. As they follow
logically central architecture, DRL is a suitable form of RL
technique for both approaches. However, the main difference
is in the reward mechanism. BRL-RP focuses on the network
performance parameter whereas TDRL-RP focuses on the
trust value. From this analysis, we can say that BRL-RP will
perform better if wemeasure the performances from a routing
perspective.

Sarsa(λ)-learning technique is used in the RLRC routing
algorithm. The TD(λ) based solution raises a propagation
delay problem. However, RLRC optimizes the problem by
forming clusters.

Both RGVR [74] and RL-SDVN [75] assume the static
infrastructure as the agent. They give the routing protocol the
freedom of putting more computation power. Though RL-
SDVN will learn about the routes with lesser distance and
delay due to the special design of the reward function.

B. RECOMMENDATION ON RL PARAMETERS
To compare the foundation block of the RL procedure,
it can be seen that most of the protocols assume the next-
hop neighbors as the available states. Hence, delivering the
packet to the available states becomes the action. There are
some differences that can be seen in the assumptions of the
agent. Some of the protocols conceptualize the packets as
the agent whereas the vehicle is considered as the agent for

most of the protocols. This definition might raise ambiguity.
For a centralized architecture, however, the formulation of
the agent is easier and the controllers fulfill the duties. The
main controlling parameter is the reward function and the
discount factor. The routing protocols find the optimality of
the protocols based on the tuning parameters. Link quality,
delay, link expiration time, traffic flows, available bandwidth,
neighbor degree, link stability factor, and last listening time
are used as the parameters for both reward and discount factor
mechanism [111]. The fixed discount factor does not help
to choose a better link for next-hop neighbors. However,
to deploy some sort of parameter optimization, there is a
chance to increase the number of exchanged control packets.

C. SUITABLE APPLICATION SCENARIO AND
RECOMMENDATION ON THE LEARNING TECHNIQUES
From Table 4 , we can observe that mostly two types of
RL algorithms of Q-learning and DRL are utilized to design
VANET routing protocols. From the definition, we can say
that Q-learning is a distributed algorithm. The design of
state, action, and the agent is relatively easier [112] com-
pared to other forms of RL variants. Because Q-learning
is a model-free learning algorithm, it does not require any
prior knowledge about the environment. However, for this
reason, the consumption of control packets is higher [113].
The design and implementation of DRL in the VANET envi-
ronment are more interesting. In the case of the high-speed
mobility scenario, however, the Q-learning algorithm will
have to go for a higher learning rate. More importantly,
designing the building blocks such as state, action, and the
agent is a tough task. Any kind of extra information sharing
means the exchange of extra packet transmission [114]. Thus,
a vanilla Q-learning approach might create an adverse effect
before optimizing any intended QoS parameters.

The SDN-based centralized routing protocols implement
DRL-based prediction in RSUs. This is a cost-effective solu-
tion [115]. According to the working nature of the DRL
algorithm, they are computation-resource-hungry procedure.
However, as RSUs are fixed and the number of RSUs is
less than the number of vehicles on the road, implementing
DRL in the RSUs are more practical. DRL approach is more
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of an offline-based learning technique, and it is suitable for
scenarios where the number of states is large.

The action value-based solutions need to store a large
number of values. To use such techniques, the routing pro-
tocols need to define the states carefully. A protocol that
conceptualizes the controllers or the CHs as the state might be
a good scenario, where this tabular solution can be applied.
However, for a continuous state, the policy-based solutions
are much preferable. The PHC algorithm can find the optimal
policy within a shorter amount of time. PHC or other policy-
based solutions can be used for learning purposes where each
vehicle is conceptualized as the state.

The end-to-end delay is a major factor for the high mobil-
ity scenarios like VANETs. The TD(λ) based solutions opt
for multiple future rewards. This increases the propagation
delay, and the feedback mechanism also gets complicated
as well. Thus, TD(λ) based solution such as SARSA(λ) is
not appropriate for high mobility scenarios. However, if the
states are the static infrastructures such as RSU or central
controller or even a special unit like UAV, careful design can
bring out efficient routing performance [44].

A superior routing performance can be ensured if a routing
protocol implements both DRL prediction in the RSU end
and the Q-learning based distributed algorithm in the vehicle
end. The convergence time and buffer condition analysis
should also be a design consideration for the RL based routing
algorithms.

VI. OPEN RESEARCH ISSUES AND CHALLENGES
Open research issues and challenges are discussed in this
section. These are important for future researchers since they
serve as initial points for new research ideas. The highlighted
challenges are still under investigation and are important
in VANET research. Every issue mentioned in the section
contains three different parts: lessons learned, limitations and
challenges, and future direction and recommendation.

A. OVERHEAD CONTROL MECHANISM
Routing overhead refers to the extra burden that the routing
protocols create over the wireless links by exchanging rela-
tively smaller control packets to establish and maintain the
routes [116].

1) LESSONS LEARNED
To update the routing table, the Q-learning-based routing
algorithms require a feedbackmechanism for the QoS param-
eters. For example, a protocol can consider the delay, link
quality, distance, and energy as the parameters to be opti-
mized using the Q-learning algorithm.

2) LIMITATIONS AND CHALLENGES
The feedback mechanism often leads to an increase in net-
work overhead. Due to the narrow bandwidth, the overhead
limits the channel capacity for the transmission of data pack-
ets, resulting in poor routing performance [117].

3) FUTURE DIRECTION AND RECOMMENDATION
To enable an RL-based routing protocol, a feedback mech-
anism is necessary. However, different parameters such as
available bandwidth, link condition, mobility information,
link quality factor, and neighboring degree can be taken
into consideration based on different inference or prediction
mechanism. Specialized hierarchical routing can limit the
consumption of control packets to some extent. Transmission
circle for neighbor discovery can also be reduced in order to
suppress the control overheads.

B. STATE LIMITATION PROBLEM
According to the original definition of the RL paradigm,
a state represents the current situation of the environment that
the agent is acting upon [118].

1) LESSONS LEARNED
The investigated routing algorithms in this survey formulate
the states differently. Most of the RL-based routing protocols
assume that the vehicles are states. The number of states
depends on the number of neighboring vehicles on the road
in a specific period [119].

2) LIMITATIONS AND CHALLENGES
With the increase in the number of vehicles, the number
of states also increases and, thus, the exploration time is
increased to determine the best possible states. The algo-
rithms discussed in this survey reduce the number of states
based on a random choice using a static threshold. This mech-
anism can lead to convergence to a local optimum, in which
the best neighboring states may remain hidden.

3) FUTURE DIRECTION AND RECOMMENDATION
In the case of a large state space, the optimality can be com-
promised for time-constrained operation. Other approaches
can include a threshold-based solution. In such a solution,
after reaching the threshold value, an agent might not explore
any more. This approach will also bring positive results in
terms of control overhead.

C. Q-TABLE MAINTENANCE
The Q-Learning algorithm stores the Q-values inside a table
called Q-table. In a traditional Q-table, the rows contain the
states and the columns contain actions. Each cell contains
the corresponding Q-value for a specific state for taking the
specific action [120].

1) LESSONS LEARNED
A routing protocol may contain multiple destinations for a
single source. However, in the routing protocols investigated
in this survey, any specific criteria to control the size of the
Q-table have not been mentioned.

2) LIMITATIONS AND CHALLENGES
With a larger Q-table, more control packets and longer delays
are needed to maintain the Q-table. With the increase in the
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number of states in the case of multiple destinations, the size
of the Q-table increases exponentially. The minimization of
the Q-table length and the identification of the best route for
a specific destination are additional challenges [24].

3) FUTURE DIRECTION AND RECOMMENDATION
The number of states is directly related to the size of the
Q-table. One way to keep the Q-table shorter is to keep the
number of states low. In case of the necessity of keeping a
large Q-table, an efficient updating procedure is a must. To
reduce this problem, DQN is introduced through DQN is a
computation hungry algorithm.

D. TRAFFIC PREDICTION FOR ONLINE APPLICATIONS
Traffic prediction includes the prediction of vehicles at a
specific time in a road segment.

1) LESSONS LEARNED
An SDN-based routing algorithm, TDRRL, has shown the
primary implementation of traffic density prediction proce-
dure. Other protocols do not take any assistance from any kind
of traffic prediction mechanism.

2) LIMITATIONS AND CHALLENGES
Traffic prediction can actively save a lot of bandwidth of the
fragile wireless links in VANETs. Even though TDRRL has
shown the primary implementation of the prediction mech-
anism, but none of the algorithms have implemented any
distributed prediction system.

3) FUTURE DIRECTION AND RECOMMENDATION
The algorithms discussed in this survey try to realize the
traffic condition based on instant broadcasting by filling out
the routing learning table. In online learning mechanisms,
the routing algorithms learn a route based on QoS parameters
for a specific moment in order to deliver the routing packet to
the destination [121]. Given that a VANET is implemented
in a highly dynamic environment, traffic depends on time,
road segments, environment, and geographical infrastructure.
An accurate prediction of traffic for a specific geographical
environment will lead to faster convergence and superior QoS
optimization [122]. Besides the unsupervised learning algo-
rithm, the supervised learning algorithms can be implemented
in a distributed manner to enable the prediction for both urban
and rural areas.

E. ONLINE AND OFFLINE LEARNING
Online learning refers to the learning mechanism, where the
agent learns actively based on the current interaction and
no historical data is fed into the learning system. However,
offline learning involves some pre-knowledge assistance for
taking any decision.

1) LESSONS LEARNED
Several routing protocols implement learning procedure
based on historical data, which can be described as offline

learning. However, we have not found any solution which
works both online and offline.

2) LIMITATIONS AND CHALLENGES
Although this type of learning is very helpful in network
channel utilization, unpredictable roadside events can lead to
poor routing performance.

3) FUTURE DIRECTION AND RECOMMENDATION
To improve performance, online and offline learning is nec-
essary for VANET scenarios. The offline-based solution can
be implemented in the infrastructures such as RSU, and the
vehicle can implement online-based solutions.

F. CONVERGENCE TIME
The convergence time refers to the iteration count that an
algorithm takes to find out the optimal solution. It should be
kept in mind that a sub-optimal solution does not necessarily
mean a bad solution [123]. Considering other parameters such
as time and energy constraints, a sub-optimal solution can
also be a desirable solution.

1) LESSONS LEARNED
The investigated online-based RL routing algorithm in this
survey opted for optimal solutions. However, some algo-
rithms aim to use the greedy solution by keeping aside the
exploration capability.

2) LIMITATIONS AND CHALLENGES
None of the routing protocols showed any tradeoffs between
optimality and sub-optimality by considering different situa-
tions. Reward tuning mechanisms are available in some algo-
rithms such as QTAR, but the weighting factor assignments
are not done dynamically based on situation analysis.

3) FUTURE DIRECTION AND RECOMMENDATION
In the case of online learning, routing packets need to be
sent within a minimum time interval. If the convergence
time is long, there is a possibility that the states will change
their position and the selected hops will yield relatively poor
results. In Q-learning, the appropriate estimation of the learn-
ing rate is required to reduce the convergence time [48]. Con-
sidering sub-optimal solutions can be a great feature when a
critical situation arises, such as delivering warning messages.

G. FIXING EXPLORATION AND EXPLOITATION STRATEGY
In Q-learning-based solutions, exploration means taking an
action from a state, for which the Q-value is unknown. The
exploitation is such a scenario where the agent acts on the
already evaluated actions and does not search for the Q-value
of other non-evaluated actions.

1) LESSONS LEARNED
In the investigated routing protocols, a mixture of exploration
and exploitation was witnessed. The balance is brought with
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the help of the learning rate. A higher learning rate means
quick convergence with a chance of premature convergence
whereas a lower learning rate means a greater time before
convergence and more exploration.

2) LIMITATIONS AND CHALLENGES
For a highly dynamic scenario, the environment of a
VANET system changes rapidly, which can invalidate the pre-
calculation of the previous-hop result [124]. The exploitation
mechanism is as important as the exploration strategy, espe-
cially for the VANET environment. The optimality and trade-
offs between exploration and exploitation should be further
investigated for such a dynamic environment.

3) FUTURE DIRECTION AND RECOMMENDATION
Depending on the need, situation, and packet type, the routing
protocols can select a variable learning rate. The generated
message can be categorized into multiple types. Based on the
requirement, the route discovery process time can be fixed.
The velocity and relative velocity should also be kept in mind
before selecting the learning rate for the next route searching
process.

H. SECURITY
Security in VANET routing involves message spoofing,
replay attack, integrity attack, impersonation attack, and
denial of service [125].

1) LESSONS LEARNED
The Q-value mechanism depends on the sent information
from neighbors. Any node can easily provoke the sender
by advertising a higher Q-value, where breaching security
becomes easier for intruder nodes. None of the investigating
protocols takes any extra precaution to measure the security.

2) LIMITATIONS AND CHALLENGES
Security is one of the most important concerns for any
network system. In VANETs, fake and selfish nodes can be
easily implemented, which may exhibit greater QoS privi-
leges and can be chosen by the sender as the intermediary
nodes [126].

3) FUTURE DIRECTION AND RECOMMENDATION
Trust management can be utilized to enhance the security
measure of the general-purpose RL routing protocols for
VANETs. Moreover, there should be a greater emphasis
on the implementation of a robust RL-based routing proto-
col [127].

I. QoS BALANCE
The main purpose of the RL-based VANET routing protocol
is to meet the QoS requirements. The QoS requirements
include PDR, EED, throughput, jitter, and priority [128].

1) LESSONS LEARNED
Different QoS parameters are considered for the investigated
routing protocols presented in this survey. Most of the proto-
cols aim to optimize a single QoS parameter of the routing
mechanism.

2) LIMITATIONS AND CHALLENGES
The QoS parameters have tradeoffs and sometimes contradict
each other [129]. Even though most of the protocols aim
to optimize one or multiple performance metrics, but only
QTAR has the flexibility to balance the weight based on the
need.

3) FUTURE DIRECTION AND RECOMMENDATION
Depending on the environment and requirements, QoS
parameter considerations should be carefully handled to
obtain an optimum routing result. Message priority selection
can help to determine which parameter should be given more
priority over others.

J. POSITION PREDICTION
Position prediction explains a prediction mechanism, where
an intelligent agent can predict the position of a vehicle in a
near future [130].

1) LESSONS LEARNED
The DRL-based solution and offline solution have some
supervised knowledge about the road condition. However,
none of the protocols have implemented any mechanism to
predict the near future location of the destination or interme-
diary nodes of the selected route.

2) LIMITATIONS AND CHALLENGES
Vehicle position prediction leads to an improved result in the
delivery of data to the destination node. Given that the nodes
are highly mobile and the topology of the road structures
might cause problems in the propagation line, predicting the
destination vehicle’s position in addition to the intermediary
vehicles’ position leads to the improved results and faster
convergence.

3) FUTURE DIRECTION AND RECOMMENDATION
For the simplest solution, a spatiotemporal prediction can
be brought based on the vehicle’s current position, velocity,
direction, and vehicle type. A complex solution may intro-
duce a Markovian chain-based solution.

K. ROAD TOPOLOGY-AWARE ROUTING
Road topology knowledge includes information about the
road segments, roadside obstacles, intersections, traffic
lights, zebra crossing, and lane numbers. An effective ver-
sion may include information about bus stoppages and
timing [131].
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1) LESSONS LEARNED
Though the investigated protocols only assume some sort of
roadside infrastructures such as RSUs, they do not take any
assistance from the road topology information.

2) LIMITATIONS AND CHALLENGES
The topological information about roads can drastically aid
the learning mechanism, especially the traffic light, vehi-
cle density, and intersection-aware protocols. Some common
inferences can be drawn based on the information about road-
side obstacles. As an example, if there is a school ahead,
a vehicle will likely reduce the speed limit.

3) FUTURE DIRECTION AND RECOMMENDATION
Most protocols are applied to urban road topology. However,
other topologies such as highways and rural roads should be
considered. The traffic condition, sparse road condition, zone
disconnection, RSU unavailability, and intersection or junc-
tion should be considered in future designs to achieve the
improved performance of RL-based VANET routing algo-
rithms.

L. TEST-BED EXPERIMENTS
Test-bed experiments refer to the paradigm of the experiment,
where the proposed method is validated by collecting data
with a real-life setup[132]

1) LESSONS LEARNED
In none of the RL-based routing protocols discussed in this
survey, no test-bed experiment was conducted.

2) LIMITATIONS AND CHALLENGES
The VANET simulators have gone through a lot of advance-
ments and also mimics the natural environment. However,
real-life road condition changes based on countless variables.

3) FUTURE DIRECTION AND RECOMMENDATION
The first validation should be done by the simulators. How-
ever, for an industry-grade protocol, the protocol should be
validated with test-bed experiments. As none of the RL-
based VANET routing protocols have done test-bed exper-
iments so far, the test-bed experiment is more vital to this
paradigm.

M. ADAPTIVE HELLO INTERVAL
Starting from the process of route discovery to route recovery,
the routing protocols take the help of hello packets. The hello
packets are smaller compared to data packets [133].

1) LESSONS LEARNED
Among the investigating protocols, only QVDRP uses two
types of hello intervals.

2) LIMITATIONS AND CHALLENGES
Adaptive hello interval can play a major role to maintain the
QoS parameters of VANET routing. The RL routing protocols
use hello packets to maintain the neighboring information.

Without an adaptive interval, the vehicles will keep receiving
and transmitting such packets, resulting in huge consumption
of the limited wireless bandwidth.

3) FUTURE DIRECTION AND RECOMMENDATION
The vehicles working as the agent should adopt an adaptive
hello-interval time. The time interval can be processed based
on the requirements, neighboring mobility, relative direction,
message types, and priority.

VII. CONCLUSION
Increasing the efficiency of the VANET routing algorithm is
one of the core concerns of researchers. The RL algorithm
is the only branch of ML wherein the efficiency of a certain
system continues to increase with time. The most significant
difference between RL algorithms and other AI algorithms is
that with more experience, RL algorithms can continuously
improve performance, whereas other paradigms are limited
by the given information. In this report, we surveyed the
VANET routing protocol, which is proposed based on RL
algorithms. The routing algorithms are discussed in addition
to their advantages, disadvantages, and the most suitable
applications. The algorithms are also critically compared by
discussing their optimization criteria and core principles in
a tabular format. The impact of the optimization criteria is
also outlined, and the opinion of the authors is presented.
We show that the applicability, validity, and acceptance of a
proposed protocol depend on the validation policy. For con-
venience, the simulation environment and other parameters
are presented in a tabular format, and they are subsequently
discussed. For future researchers, the research gaps and the
areas that require critical improvement are emphasized as
open research issues. By critically analyzing the core ideas
and performances of the protocols presented in the reviewed
papers, this report undertakes a comprehensive survey of RL-
based VANET routing algorithms. The analysis, discussion,
comparison, and future research direction highlighted in this
investigation will provide VANET researchers with an in-
depth overview of existing RL-based VANETs. Thus, this
survey will play a crucial role in future studies in related
fields.
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