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ABSTRACT The trade-off between feature representation capability and spatial positioning accuracy is
crucial to dense classification or semantic segmentation of remote sensing images. In order to better balance
the low-level spatial details in the shallow network and the high-level abstract semantics in the deep network,
the bilateral attention refinement lightweight network BARNet is introduced. In this way, we can use the
fine-grained features in the shallow layer to further supplement and capture the deeper information of the
high-level semantic features. The network employs an asymmetric encoder decoder architecture for the task
of real-time semantic segmentation. Encoder part proposes a lightweight network residual unit with the split,
concatenate and split bottleneck structure to achieve more light weighted, effificient and powerful feature
extraction. In the decoding section, we propose an adaptive method to enhance feature representation in local
attention enhancement module. In addition, the global context embedding module is introduced to divide the
high-level features into two branches. One branch gets the weight vector to guide the low-level learning, and
the other branch will get a semantic vector, which is used to calculate the multi-label category loss
and further introduce into the overall loss function to regulate the training process better. The effectiveness
and efficiency of the network are verified on ISPRS Potsdam data set and CCF data set, respectively. The
results show that the models using these strategies outperform the baseline network on MIoU, PA and F1,
which increase by 18.86%, 16.21% and 15.64% on the Potsdam dataset; 10.51%, 6.53% and 8.19% on the
CCF dataset.

INDEX TERMS Remote sensing image, real-time semantic segmentation, local attention enhancement
module, global context embedding module, multi-label category loss.

I. INTRODUCTION
The dense classification or semantic segmentation of remote
sensing images (RSIs) is a critical step in the automatic
analysis of remote sensing data, which is widely used in
railway track risk assessment, land planning, environmen-
tal monitoring, and urban planning, etc. In recent years,
with the development of convolutional neural networks,

The associate editor coordinating the review of this manuscript and

approving it for publication was Weipeng Jing .

the accuracy of semantic segmentation on RSIs has been dra-
matically improved. In 2014, Fully Convolutional Network
(FCN) [1] is proposed. FCN replaced the fully connected
layer of the network with convolution. But the pooling oper-
ation in the network would reduce the resolution and thus
weaken the location information. In order to solve this prob-
lem, the encoder-decoder framework is proposed [2]. In the
encoder part, pooling gradually reduces the spatial dimen-
sion, while the decoder part gradually recovers the spatial
dimension and detailed information. In order to effectively
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restore spatial information, U-net [3] adds a cross-layer con-
nection. Later, DeeplabsV3 [4] and PSPNet [5] respectively
extend the global average pool to the Atrous Spatial Pyramid
Pooling and Spatial Pyramid Pooling.

However, the establishment of deeper and larger con-
volutional neural networks has also increased the running
time of the network. Some existing semantic segmentation
models have improved inference speed to a certain extent,
at the expense of low-level details and channel capacity,
resulting in a sharp decline in accuracy. Therefore, designing
a network with high efficiency, small parameter capacity
and high accuracy has become a challenging problem at
present.

In order to overcome the problem that the platform’s
energy overhead and memory capacity limit the execu-
tion efficiency of semantic segmentation tasks, a variety of
lightweight networks are built. For example, to solve a large
number of floating-point operations in the network, a new and
effective deep lightweight neural network ENet [6] is pro-
posed. This network reduces the parameters by compressing
the channel, but the spatial information will be destroyed,
and the accuracy can’t be improved. ICNet [7] introduces
the cascaded feature fusion module based on PSPNet to
realize a fast and high-quality segmentation model. ICNet
accelerates the capture of semantics through low resolution,
acquires details through high resolution, and merges features
through cascaded networks. To accelerate the speed, the exist-
ing methods often adopt the method of losing the spatial
resolution, which results in a severe decrease in precision.
To maintain the accuracy, a new bidirectional segmentation
network BiSeNet [8] appeared, which designs spatial paths
and semantic paths to obtain spatial location information and
semantic information. Finally, a new feature fusion module
is introduced to combine the two feature maps to achieve a
balance of speed and precision.

We believe that all levels of features contribute to seman-
tic segmentation. High-level semantic features can better
identify region categories, while low-level features can cap-
ture clearer and more detailed boundary textures. Therefore,
we propose a bilateral attention refinement network BARNet,
which extracts spatial details and classification semantics
separately to enhance the receiving domain and capture rich
contextual information.

In a nutshell, the main contributions of this article are as
follows:
(1) A local attention enhancement module (LAEM) is pro-

posed, which extracts scene information from local
patches. This module can capture long-range depen-
dencies and further reconstruct the feature maps for
better representation.

(2) A global context embedding module (GCEM) is
proposed to enhance the semantic representation
of low-level features by introducing the atten-
tion of high-level features, and merge refined
low-level features with high-level features to improve
the rough representation of high-level features.

Moreover, the introduction of semantic multi-label
category loss can better standardize the training
process.

(3) On the basis of the above twomodules, a novel bilateral
attention refinement network (BARNet) is proposed,
which can better balance feature representation ability
and spatial positioning accuracy from the perspective
of space and channel.

The remainder of this article is organized as follows.
Section 2 introduces the related works on semantic segmen-
tation tasks. The proposed method is discussed in Section 3.
Experimental data sets and evaluations are described in
Section 4. Experimental results and discussions are presented
in Section 5. As a final point, our work and future work are
discussed in Section 6.

II. RELATED WORK
A. REAL-TIME SEMANTIC SEGMENTATION
Real-time semantic segmentation algorithms generate
high-quality predictions with limited computations, which
are usually executed under resource constraints or mobile
applications [9]. Current real-time semantic segmentation
models can be generally divided into two types [10]–[16].
The first one uses the existing lightweight backbone to extract
features efficiently. For example, based on Xception [17]
and MobileNet [18], [19] backbone networks, some effec-
tive feature aggregation or multi-branch modules are used
to merge the low-level feature with the high-level feature.
ICNet takes multi-scale images as input and introduces a cas-
cade network. DFANet aggregates discriminative functions
through sub-network and sub-stage cascade, respectively.
BiSeNet designs two branches to deal with spatial details and
categorical semantics separately. These models can achieve
high accuracy.

The second is designed with valid modules that use meth-
ods such as convolutional solution and dilated convolution
to reduce the computation and expand the acceptance field,
and these modules are reused throughout the network to
extract features. ENet [6] is the first real-time lightweight
network proposed, which reduces the amount of calcula-
tion by decreasing the number of downsampling or the
number of filters. ESPNet [20], [21] adopts an efficient
spatial pyramid module to improve performance. Simulta-
neously, ERFNet [22] designs a non-bottleneck 1D mod-
ule with residual connection and decomposition convolution
to obtain excellent accuracy while maintaining high effi-
ciency. In this article, we design a feature extraction unit
using convolutional solution and depth separable convolu-
tion, by downsampling and repeatedly superimposing these
units to construct a lightweight and efficient encoder.

B. ATTENTION MECHANISM
In vision tasks, attention mechanism first computes the atten-
tion weights that represent the degree of importance of fea-
tures, and then the weight value is used to capture more
informative features from the input feature maps [23].
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In SENet [24], the squeeze-and-excitation (SE) block is put
forward, which uses global-pooling to generate channel atten-
tion. In SCAttNet [25] and CBAM [26], based on an effective
architecture, both spatial attention and channel attention are
used, and the average pool and maximum pool functions are
used in the two modules to increase the network’s presenta-
tion ability. CCNet [27] harvests the contextual information
of all the positions by stacking two serial crisis-cross atten-
tion modules. DANet [28] employs similar two modules to
learn the information of all pixels and channel dependence.
EncNet [29] introduces a context encoding module at the
end of the network to encode global contextual information
and re-weight the extracted features for discriminative repre-
sentations. ACFNet [30] proposes a module based on atten-
tion category features to improve classification efficiency.
HMANet [31] proposes a category-enhanced attention mod-
ule, which can better distinguish the corresponding category
through the category correlation between pixels. The cate-
gory channel attention module is also embedded to re-weight
category level and channel correlation.

In this article, the attention mechanism will be applied
to the spatial dimension without increasing the amount of
calculation. Inspired by the global attention upsamplingmod-
ule [32], we introduce a global context embedding mod-
ule (GCEM) to embed the semantic information in high-level
features into low-level features.

C. DEPTHWISE SEPARABLE CONVOLUTION
Depthwise separable convolution operation can reduce
the computational cost and the number of parameters
while maintaining similar (or slightly better) performance.
MobileNet [19] convolves each input channel with the cor-
responding kernel channel. Then, a 1 × 1 kernel is used to
perform point-wise convolution to project the output of the
deep convolution into a new channel space. Inspired by it,
this paper proposes a Local Attention Enhancement Mod-
ule (LAEM) that reduces parameters through deep separable
convolution, which can greatly reduce network parameters
and contribute to the scalability of the network.

D. AUXILIARY LOSS
In recent years, some related studies have tried to use the aux-
iliary loss to optimize the segmentation model. PSPNet [5]
proposes an additional loss to generate the results of each
module. In the main network ResNet101 [33] model, in addi-
tion to training the final classifier on themain branch by using
softmax loss, another loss is applied after the fourth stage
to optimize the training process of the network. So this arti-
cle also introduces auxiliary loss to standardize the network
training process.

III. PROPOSED METHODS
A. OVERVIEW OF THE PROPOSED BARNet
As shown in Figure 1, for the input remote sensing image,
firstly, the backbone network is used for feature extraction.
Then the feature maps extracted from the shallow layer and
deep layer are fed into the attention enhancement module to

FIGURE 1. The architecture of the bilateral attention refinement network
BARNet: (a) Lightweight encoder, which is constructed by superposition
of scs-bt modules. (B) Local Attention Enhancement Module (LAEM),
Which uses channel attention mechanism to learn the weight of
important information to further enhance its feature representation.
(C) The Global Context Embedding Module (GCEM), which embeds
high-level information into the low-level and guides the low-level
learning. (D) After GCEM processing, low-level features are semantically
enriched, which is conducive to the prediction of pixel categories. The
upper layer is upsampled and then merged with the lower layer to
generate the final result.

refine the features in channels, and the refined channel feature
maps are fed into the global embedded module. Secondly,
the extended loss function with additional consideration of
global significance can better normalize the network to per-
ceive context information and further maintain the accuracy
of the model. The final results are produced by fusing the
features from both branches.

B. MODULE WITH SPLIT, CONCATENATE AND SPLIT
OPERATIONS
Taking advantage of the channel separation and shuffling
module, we propose a lightweight network residual unit,
which is called the split, concatenate and split bottleneck
structure (SCS-bt). The recent years have witnessed mul-
tiple successful instances of a lightweight residual layer,
such as bottleneck unit (Figure 2(a)) [6], ShuffleNet unit
(Figure 2(b)) [34] and SS-nbt module (Figure 2(c)) [35].
The point-by-point convolution in Figure 2(a) reduces many
parameters, which is disadvantageous for the network model.
The Shuffle Net unit in Figure 2(b) uses dense 1 × 1 point-
by-point group convolution, which will affect the communi-
cation between channels. Figure 2(c) uses the classic channel
split and shuffling operations to reduce computational com-
plexity while also improving efficiency. Nevertheless, too
many branches in this module will cause network discomfort.

To balance performance and efficiency under a lim-
ited budget, we introduce the asymmetric residual unit of
the upper and lower streams(as shown in Figure 2(d)).
At the beginning of each unit, the input is split into two
lower-dimensional branches, where each one has half the
channels of the input. First, the input channel of the left
branch starts to convolve. The first step is to replace the
point-by-point group convolution [36] with 1 × 1 convolu-
tion, because the channel split is equivalent to the grouping
operation in disguised form. In the second step, a 3× 3 depth
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FIGURE 2. Comparison of different residual layer modules. (a) bottleneck,
(b) ShuffleNet block, (c) SS-nbt block, (d) SCS-bt block.

separable convolution is used, instead of 3×3 ordinary convo-
lution, which can save 8 to 9 times the amount of calculation;
In the third step, we still adopt 1 × 1 convolution to recover
the number of channels to cascade the information of the
right branch. The module employs a channel cascade instead
of element-by-element addition, which expands the channel
and reduces the calculation cost. Then the result of the cas-
cade is subjected to a second channel separation, and the
input channel of the right branch starts to convolve. Because
one-dimensional convolution can better extract features with
less spatial information, the two-dimensional convolution
(3 × 3) is converted into two one-dimensional convolutions
(1 × 3 and 3 × 1) [37], and the convolution outputs of two
branches are combined by concatenation, while keeping the
same number of input and output channels. Finally, the shuf-
fling operation is used to communicate information between
channels, which can efficiently calculate all the features in all
channels.

The designed SCS-bt adopts an asymmetric structure to
make the network lighter and more efficient. In each SCS-bt
unit, the merged feature channels are randomly shuffled and
then join into the next unit. This can be regarded as a kind
of feature reuse, to some extent, which enlarges network
capacity without significantly increasing complexity.

As shown in Figure 3, inspired by Wang Yu et al [35],
a 512×512×3 picture is input into the network. Firstly, per-
form downsampling by stacking parallel outputs of a single
3 × 3 convolution (for batch specification and Relu nonlin-
ear processing) and max-pooling. After downsampling, two
residual blocks SCS-bt are superimposed to extract 1/2 fea-
ture map, and the feature map is a low-level detail branch
containing more spatial details. Secondly, after the same con-
volution and down-sampling processing, three SCS-bt blocks
are superimposed to extract a 1/4 feature map, which is called
a transition branch. Finally, 1/8 of the feature map is extracted
by superimposing eight SCS-bts, which is a high-level seman-
tic branch with more abstract semantics. In these eight SCS-
bt layers, we adopt dilated convolution [20], [38], [39] to
collect more contexts. Using different dilation rates can
increase the receptive field and collect different long-distance
features.

FIGURE 3. Lightweight encoder, which is constructed by superposition of
scs-bt modules.

FIGURE 4. Detailed design of LAEM. From averaging pools to assigning
attention weights to aggregate contextual information.

C. LOCAL ATTENTION ENHANCEMENT MODULE
Semantic segmentation of RSIs suffers greatly from the prob-
lem of intra-class inconsistency, since the distinction of object
categories and the relationship between semantics cannot be
obtained only from the appearance of the object, and needs
to be obtained from nearby image data, image tags and other
contextual information [40]. The reasonable use of contex-
tual information can help us better accomplish tasks, but it
also brings a big problem. As the amount of data increases
or the correlation between images increases, it makes the
scalability of the model relatively poor. The combined use of
multiple contextual information can indeed get more accurate
results. But the parameters for combination different levels of
information are also very large. Therefore, how to design a
model that can better combine multiple contextual informa-
tion and developmore efficient algorithms is a research focus.
In order to solve the problems of inconsistency within the
class and large amount of contextual information parameters,
we propose a Local Attention EnhancementModule (LAEM)
to enhance the aggregation of contextual information in the
extracted features.

The structure of the proposed LAEM module is shown
in Figure 4. This module is inspired by SE-block’s
squeeze-Excitation module [24]. To solve the problem of a
large amount of context information parameters, we perform
a 3 × 3 depth separable convolution [13], [18], [41] at the
beginning of the module. The depth separable convolution,
which is proposed by MobileNet, is made up of two layers:
depthwise convolutions and pointwise convolutions. We use
depthwise convolutions to apply a single filter per each input
channel (input depth). Pointwise convolution, a simple 1× 1
convolution, is then used to create a linear combination of
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depth layer outputs. Depthwise convolutionwith one filter per
input channel (input depth) can be written as:

Fs,t,m =
∑
i,j

Si,j,m · Gs+i−1,t+j−1,m (1)

where S is a depthwise convolutional kernel with the size of
3×3×1, andG represents an input feature map with a size of
W×H×C, and the mth filter in S is applied to the mth channel
in G to Produce the mth channel of the filtered output feature
map F .
Since the first step only generates independent channel

features, an additional layer that computes a linear combi-
nation of the output of depthwise convolution via 1 × 1
convolution is needed to generate these new features. The
1 × 1 point-by-point convolution in this step can be written
as:

Dw,h,C =
∑
m

V1×1,m,C · Fw,h,m (2)

where V is a 1× 1×M convolution kernel, the i and j pixels
of the mth channel in F are convolved and summed with the
pixels on the mth channel in V to obtain a number, the feature
map D is obtained by convolution of C convolution kernels
V with the feature map F .
While SE-block transfers the converted features to the

squeeze operation, it introduces global average pooling to
generate one descriptor for each feature channel, thereby
allowing information from the global receptive domain of the
network to be used by all its layers. Nevertheless, our purpose
is to extract local regional features, so regional average pool-
ing (the size of pooling is Size = W /2, whereW is the width
of the input feature map of the layer, and the size of the input
feature map is W×H×C) is used to get the local feature map
of each channel, so that each channel contains local context
information. Then the average pooling calculation for the Cth
channel is:

AC =
1

S · S

S∑
i,j=1

DC (i, j), S = W/2 (3)

where S is the size of the pooling window, Dc denotes a
pixel at Cth channel, and the local information Ac of the Cth
channel can be generated by formula 3. In order to apply the
useful information summarized in the compression operation
and capture the correlation between channels, we took the
following actions:

ac = Up {δ · Cu [βCd (λβAc)]} (4)

where λ, β and δ denote respectively ReLU function,
BatchNormal and Sigmoid function, Cd represents a 1 ×
1 dimension-reduction convolution with a reduction ratio
of r (r generally takes 2), Cu represents the 1 × 1
dimension-increased convolution that restores the number of
channels to C , and Up is the upsampling operation, Thus
attention weight ac is generated.

The attention weight is multiplied by the input feature, and
then the result is summed with the input feature pixel by

FIGURE 5. The architecture of the Global Context Embedded Module
(GCEM). The high-level feature map and the low-level feature map
respectively represent the semantic path and the detailed path enhanced
by LAEM. C represents the number of categories.

pixel to achieve the purpose of enhancement. This step can
be expressed as:

O = λ (G+ ac · G) (5)

D. GLOBAL CONTEXT EMBEDDED MODULE
The network proposed in this paper is a three-stage style
encoder constructed by superposition of SCS-bt modules.
According to our observation, the different stages have differ-
ent cognitive abilities resulting in diverse consistency perfor-
mance. In the lower stage, the spatial information of network
coding is more refined. However, it has poor semantic con-
sistency due to the small reception field and no guidance of
spatial context. While in the high stage, it has strong semantic
consistency because of the large acceptance field, but the
prediction is spatially coarse. Generally speaking, the lower
stage makes more accurate spatial predictions, while the
semantic prediction in the higher stage is more accurate.
So we propose a global context embedding module (GCEM),
which embeds the weight vectors learned in high-level output
into low-level features, and the learned weight vector is used
to emphasize important details of low-level features. This
information will increase the limits of the acceptance domain,
while retaining low-level spatial information.

As shown in Figure 5, the module is divided into two
branches, one branch is designed to change the weights of
the features on each stage to enhance the consistency, and
the weight vector is weighted to the low-level features to
get the refined feature map. The other branch is used to
generate semantic vector, which is used to calculate the loss
of semantic multi-label category and further optimize the
network.

As shown in formula 6, where the enhanced semantic path
is subjected to depth separable convolution to obtain feature
map D, and G represents global average pooling, and R rep-
resents reshape size of the feature map after global pooling.
Next, we adopt the reduced dimensionality convolution C1
compression channel, divide the compressed feature map into
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FIGURE 6. The average IOU of all categories of the proposed method on
the Potsdam dataset.

FIGURE 7. Qualitative visual results of our proposed methods on the
Potsdam test set. Improved areas are marked with dashed boxes
(zoomed-in view for more details).

two branches and perform an increased dimensionality con-
volution C2 respectively, δ represents the Sigmoid function,
Up represents the upsampling operation, finally the weight
vector γw is obtained, the same method is applied to obtain
the semantic vector γs of another branch.
Since the learned weight vector is used to guide the low-

level learning, The designed residual structure is used to
refine the low-level L. The enhanced and refined low-level
function A is obtained by formula 7:

γw = Up {δC2 {C1 [R (G · D)]}} (6)

A = L + γ1 · L (7)

E. LOSS FUNCTION
To better regulate the training process, a loss function cov-
ering the entire module should be designed. Besides, the

traditional loss lm and the multi-label category loss la pro-
posed by thismodule are complementary to each other. On the
one hand, lm measures local pixel-wise training errors. On the
other hand, la measures an overall loss.
Another branch of GCEM module obtains the semantic

vector γs, which is used to calculate the semantic multi-label
category loss la, and calculated by the following formula:

la = −
C∑
i=1

Wi log
(
γs(i)

)
(8)

where C represents the number of categories, Wi repre-
sents the category one-hot code calculated by the multi-label
vector, and γs is the learned semantic vector of 1× 1× C.

In this paper, we also adopt the traditional category cross-
entropy loss [40], which is widely used in semantic segmen-
tation. According to the traditional method, we define it as
follows:

lm = −
W∑
i=1

H∑
j=1

C∑
m=1

y (i, j,m) log (p (i, j,m)) (9)

where C represents the number of categories, W and H rep-
resent width and height, respectively. p (i, j,m) and y (i, j,m)
represent the predicted value and the ground truth value.
Throughout the training process, we take ρ as a hyperparam-
eter to weigh the relationship between the main loss and the
auxiliary loss, so the formula for the total loss L is as follows:

L = lm + ρla (10)

IV. EXPERIMENTAL DATA SET AND EVALUATION
The experimental data includes two public data sets: Ultra-
high resolution aerial images ISPRS Potsdam data set [42],
Medium-resolution aerial images CCF data set [43]. In our
experiments, we use three different criteria for quantitative
assessment according to the data set guidelines, such as per-
class average pixel-wise accuracy (Mean IoU), F1 score,
and pixel accuracy (PA). In this section, we provide a brief
description of both data sets and then present the design to
provide experimental evaluation.

A. POTSDAM DATA SET
The Potsdam data set consists of 38 true ortho photos (TOP)
and corresponding DSMs. These DSMs are collected from
historical cities with large amounts of building blocks. There
are four spectral bands in each TOP image (red, green, blue,
and near-infrared) and one band in each DSM. The size of
all images is 6000 × 6000 pixels, and the ground sampling
distance (GSD) of this data set is 5 cm. The reference data
are labeled according to six land-cover types: background,
impervious surfaces, building, car, low vegetation and tree.

In our experiment, 10 pictures out of 16 available data
blocks are used as training set and 6 pictures are used
as validation set. Since the resolution cannot be too high
during the training process, the large image is cropped
into 512 × 512 color blocks, which enables the network
to be trained in batches and saves computational costs.
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Among them, 1500 patches are used to train the network, and
the other patches are used to verify the proposed Module.

B. CCF DATA SET
The CCF data set is captured by a team in South China
through drones, where containing four medium-resolution
remote sensing images and their corresponding ground truths.
There are four high-resolution images in the CCF data set:
two with a resolution of 7969 × 7939, one with a resolution
of 5664×5142, and the other with a resolution of 4011×2470.
These images have 5 classes of high-quality pixel pole labels:
background, water, road, vegetation, and building.

In our experiments, this data set also needs to be cut to
obtain 512×512 small patches. We use 2390 patches to train
the network and 783 patches to verify the proposed module.

C. EVALUATION
In this paper, we employ three different criteria for quanti-
tative evaluation, such as F1 score, Mean Intersection over
Union(MIoU) and pixel Accuracy (PA). The F1 score is a
measure of the classification task, which is defined as the
harmonic mean of precision and recall, and the maximum
value is 1 and the minimum value is 0. Precision refers to the
proportion of individuals whose prediction results belong to
a certain category. Recall rate is the ratio between the number
of individuals correctly predicted as a category and the total
number of individuals of that category in the data set. The
formulas for Precision, Recall and F1 score are as follows:

Precision =
TP

TP+ FP
(11)

Recall =
TP

TP+ FN
(12)

F1 = 2 ·
Precision · Recall
Precision+ Recall

(13)

where TP represents the number of true positives, TN repre-
sents the number of true negatives, FP represents the number
of false positives, and FN represents the number of false
negatives. For quantitative evaluation, we use MIoU as a
measure of accuracy, which refers to the ratio of intersection
and union of each category, and MIoU is the average IoU of
all categories. Pixel accuracy PA is the simplest evaluation
index for semantic segmentation, that is, the ratio of correctly
predicted pixels to total pixels. The formula for the average
MIoU and PA is as follows:

MIoU =
TP

TP+ FP+ FN
(14)

PA =

∑n
i TPi∑n

i (TPi + FPi)
(15)

where n is the number of target categories. i is the index of
the target category.

V. EXPERIMENTAL DESIGN AND RESULTS
All implementations were trained on multiple Nvidia
GeForce GTX 1080 Ti (11 GB) servers with CUDA 10.2,
CUDNN 7.6.5, and GTX 1660Ti is used in the evaluation
phase. Inspired by the previous works, we adopt the Adam

optimizer [44] to optimize network, where the initial learning
rate is set to 0.001 for each data set. In addition, the auxiliary
loss function is a binary classification cross entropy loss
function based on multi-label. The auxiliary loss function
comprehensively considers the pixel level cross entropy and
global level semantic information, so as to better optimize the
whole segmentation model. In the training phase, the mini-
batch gradient descent with the training batch size set to
2 [45], and all experiments were trained for 500 epochs. Batch
normalization [46] is applied before each convolutional layer
to prevent the gradient disappearing and exploding. In order
to avoid overfitting, common data enhancements are applied
before training the model, such as translation, rotation, noise
increase, affine transformation, etc.

In this section, we show the numerical and visual results
of our methods with different strategies on the Potsdam data
set and CCF data set and compare them with other advanced
technologies in the previous literature. The impact of each
proposed strategy on the data set is quantitatively analyzed,
and then the qualitative results of the test patches on the data
set are displayed. More details reflected in the experimen-
tal results show that our proposed strategy can improve the
accuracy of segmentation.

A. ABLATION EXPERIMENT ON POTSDAM DATA SET
This section gradually checks the effectiveness of each com-
ponent in the network. In the following experiments, we take
the lightweight encoder as the basic network for extracting
features, which forms the baseline of the encoding-decoding
form. We quantitatively evaluate the performance of the
benchmark on the Potsdam data set. Table 1 shows the abla-
tion experiments on the Potsdam data set, including the aver-
age IoU, pixel accuracy, and average metric of all categories.
As shown in Figure 6, the MIoU of each category of each
proposed strategy on the Potsdam data set is quantitatively
analyzed in the form of a line chart. Figure 7 shows six
visually segmented samples of each method for qualitative
observation.

1) ABLATION STUDY FOR SCS-BT
The proposed SCS-bt block applies one-dimensional convo-
lution pair and depth separable convolution to implement a
lightweight feature extraction network. Our baseline network
uses lightweight encoder as the fundamental network for
extracting features, and the decoding part directly adopts
progressive up-sampling for fusion output. We replace the
designed SCS-bt block with the SS-nbt block in the baseline
network to form Lightweight encoder(SCS-bt)(abbreviated
as LE-SCS). It can be seen from Table 1 that in addition
to trees and cars, other types of IoU have improved, and
MIoU, PA, and F1s have increased by 6.2%, 7.57%, and
5.63%, respectively. Figure 6 shows that, except for cars,
the average IoU of other categories obtained by LE-SCS
on the Potsdam data set is higher than the average IoU
obtained by Lightweight encoder. From the fourth column
in Figure 7, it can be seen that compared to the baseline

VOLUME 9, 2021 28355



J. Cai et al.: Real-Time Semantic Segmentation of Remote Sensing Images Based on Bilateral Attention Refined Network

TABLE 1. Performance comparison between SCS-bt, LAEM and GCEM. Concerning IoU for each class, mIoU, precision and F1. Highest score is marked
with bold.

TABLE 2. Performance comparison between SCS-bt, LAEM and GCEM. Concerning IoU for each class, mIoU, precision and F1. Highest score is marked
with bold.

network, the boundary part is improved, which shows that the
dilated convolution used when extracting features increases
the receptive field and makes the extraction of details better.

2) ABLATION STUDY FOR LAEM.
The second experiment studies the contribution of the LAEM
module to the segmentation effect, and LAEM is used to
enhance extracted low and high-level feature representa-
tions. The LAEM module is added based on LE-SCS to
form a LE-SCS+LAEM (abbreviated as LE-SCS-L). It can
be seen from the Table 1 that after adding this module,
theMIoU increases from 58.71% to 64.38%, the PA and F1 of
LE-SCS-L are better than the first two ablation experiments.
Figure 6 shows that the average IoU of buildings, background
and low vegetation categories obtained by LE-SCS-L on the
Potsdam data set is lower than the average IoU obtained by
LE-SCS. From the fifth column in Figure 7, it can be seen
that the network can distinguish small objects (trees, cars) and
impervious surfaces well, and the segmentation of easily con-
fused areas is improved. This shows that the added module
dramatically enhances the representation ability of low-level
features to understand detailed information better. Since high-
level layers already have relatively large receptive field before
using the LAEM, the enhancement effect is not apparent.

3) ABLATION STUDY FOR GCEM
We propose GCEM for two purposes. One is to embed high-
level weight vectors into the low-level to guide low-level
learning, and the other is to optimize the training network
by calculating semantic multi-label category loss and tradi-
tional cross-entropy loss. The GCEM module is added based
on LE-SCS-L to form a LE-SCS-L+GCEM (abbreviated as
LE-SCS-L-G). Table 1 and Figure 6 show that the average
IoU of all categories obtained by LE-SCS-L-G on the Pots-
dam data set is higher than the average IoU obtained by
LE-SCS-L. From the sixth column in Figure 7, it can be
seen that the boundary part has been optimized, and it is
more accurate in recognition of large objects, which is enough
to prove that the weight vector of the module allows the
low-level features to learn more emphasized details, which
is helpful for boundary extraction. To effectively merge,

FIGURE 8. The average IOU of all categories of the proposed method on
the CCF dataset.

make the fine-grained features in the shallow layer can per-
fectly capture the abstract features obtained by the high-level
semantics, which is conducive to the understanding of the
semantic context, so that the distinction of large objects is
improved.

B. ABLATION EXPERIMENT ON CCF DATA SET
This section gradually checks the effectiveness of each com-
ponent in the network. In the following experiments, we take
the lightweight encoder as the basic network for extracting
features, which forms the baseline of the encoding-decoding
form. We quantitatively evaluate the performance of the
benchmark on the CCF data set. Table 2 shows the ablation
experiments on the CCF data set, including the average IoU,
pixel accuracy, and averagemetric of all categories. As shown
in Figure 8, the MIoU of each category on the CCF data set of
each proposed strategy is quantitatively analyzed in the form
of a line chart. Figure 9 shows six visually segmented samples
of each method for qualitative observation.

1) ABLATION STUDY FOR SCS-BT
The designed SCS-bt block uses one-dimensional convolu-
tion pair and depth separable convolution to implement a
lightweight feature extraction network. Our baseline network
uses lightweight encoder as the fundamental network for
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FIGURE 9. Qualitative visual results of our proposed methods on the CCF
test set. Improved areas are marked with dashed boxes (zoomed-in view
for more details).

extracting features, and the decoding part directly adopts
progressive up-sampling for fusion output. We replace the
designed SCS-bt block with the SS-nbt block in the baseline
network to form Lightweight encoder(SCS-bt)(abbreviated
as LE-SCS). It can be seen from Table 2 that in addition to the
background, other types of IoU have improved, and MIoU,
PA, and F1s have increased by 4.72%, 2.84%, and 3.78%,
respectively. Figure 8 shows that, except for the background,
the average IoU of other categories obtained by LE-SCS on
the CCF dataset is higher than the average IOU obtained
by lightweight encoder. The third and fourth columns in
Figure 9 show that compared to the baseline network, the
LE-SCS network has better feature extraction capabilities and
more accurate segmentation.

2) ABLATION STUDY FOR LAEM
We also studied the contribution of the LAEM module
to the segmentation effect. LAEM is used to enhance the
extracted low-level and high-level feature representation.
The LAEM module is added based on LE-SCS to form a
LE-SCS+LAEM (abbreviated as LE-SCS-L). It can be seen
from Table 2 that after adding this module, the IOU increases
from 57.83% to 62.55%, the PA and F1 of LE-SCS-L are
excellent in the first two ablation experiments. Figure 8
shows that the average IOU of all categories obtained by
LE-SCS-L on the CCF data set is higher than the average
IOU obtained by LE-SCS. As shown in the fifth column
in Figure 9, the network can distinguish water and build-
ings well. However, it is not well recognized on vegetation
and background in large areas. This shows that the added
module dramatically enhances the representation ability

of low-level features to understand detailed information
better.

3) ABLATION STUDY FOR GCEM
We propose GCEM for two purposes. One is to embed high-
level weight vectors into the low-level to guide low-level
learning, and the other is to optimize the training network
by calculating semantic multi-label category loss and tradi-
tional cross-entropy loss. The GCEM module is added based
on LE-SCS-L to form a LE-SCS-L+GCEM (abbreviated as
LE-SCS-L-G). It can be seen fromTable 2 that themIOU, PA,
F1s (68.34%, 87.11%, 80.37%) with this module are better
than the mIOU, PA, F1s (67.46%, 86.55%, 79.76%) of the
previous experiment. Figure 8 shows that the average IOU of
all categories obtained by LE-SCS-L-G on the CCF data set
is higher than the average IOU obtained by LE-SCS-L. From
the sixth column of 9, it can be seen that the boundary part
has been optimized, and it is more accurate in recognition of
large objects, and it is enough to prove that the weight vector
of the module allows the low-level features to learn more
emphasized details, which are helpful for boundary extrac-
tion. To effectively merge, make the fine-grained features in
the shallow layer perfect the abstract features obtained by the
high-level semantics, which is conducive to the understand-
ing of the semantic context so that the distinction of large
objects is improved.

C. COMPARISON WITH STATE-OF-THE-ART
The proposed method is compared with 4 models (including
ICNet, LEDNet, BiseNet, and U-Net) on two data sets, and
the comparison is made through the IoU, MIoU, parameters
and time of each category.

Tables 3 and 4 report the quantitative results on the Pots-
dam data set and the CCF data set, respectively. Remark-
ably, Table 3 shows that on the Potsdam dataset, BARNet
achieves 71.37% in mIoU. Compared with the other four
methods, the mIoU increases by 11.39%, 9.59%, 4.49% and
2.35%, respectively. Table 4 shows that on the CCF data
set, BARNet achieves 68.34% in mIoU. Compared with the
other four methods, the mIoU increases by 8.39%, 5.02%,
3.6%, and 4.24%, respectively. As shown in Table 3, ICNet
and LEDNet have good segmentation effect on building,
low vegetation and impervious surface. ICNet accelerates
the capture of semantics through low resolution, acquires
details through high resolution, and merges features through
cascaded networks. LEDNet adopts lightweight encoder for
feature extraction, and the attention pyramid network is intro-
duced in the decoding part to further improve the feature
selection ability of the network. LEDNet is better than ICNet
in the recognition of small objects (trees and cars), but both
of them need to be strengthened in the segmentation of small
objects. Compared with BiseNet, which is also a bilateral
network, BARNet has less false alarms in the surrounding
areas of buildings, which can be attributed to the embedding
of contextual information. Meanwhile, the segmentation of
small objects (cars, tree) is more accurate, which is due to
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TABLE 3. Quantitative comparison with 4 latest technologies on the Potsdam test set.

TABLE 4. Quantitative comparison with 4 latest technologies on the CCF test set.

FIGURE 10. Qualitative visual comparison of the four latest methods (ICNet, LEDNet, BiseNet, U-Net) and the proposed BARNet on the
Potsdam data set.

FIGURE 11. Qualitative visual comparison of the four latest methods (ICNet, LEDNet, BiseNet, U-Net) and the proposed BARNet on the
CCF data set.

the incorporation of enhanced low level features. This points
out that the proposed method improves both the discrimi-
nation of critical categories and the preservation of spatial
details.

Simultaneously, the parameters and prediction time of our
network are significantly reduced, which means that the pro-
cessing speed of the model is faster. Figure 10 and Figure 11
show the intuitive comparison of the segmentation results of
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BARNet and other models on the two data, respectively. The
last line visually illustrates the difference between ground
truth and prediction. The smaller the difference is, the better
the segmentation effect is.

VI. CONCLUSION
We observe that the semantic segmentation task requires both
low-level details and high-level semantics. We propose a new
network architecture to deal with spatial details and categor-
ical semantics separately, which is termed Bilateral Atten-
tion Refinement Network (BARNet). Firstly, the asymmetric
SCS-bt unit realizes the lightweight and efficient feature
extraction function. Secondly, we apply the local attention
enhancement module (LAEM) to capture the detailed fea-
tures and semantic features of remote sensing images to
enhance their feature representation. Finally, to effectively
integrate different levels of functions, this paper introduces
the global context embedding module GCEM, which embeds
attention from high-level layers into low-level ones to enrich
their semantic information. Besides, the semantic vector
obtained from the module is used to calculate the multi-label
category loss, which is regarded as the auxiliary loss. The
auxiliary loss function comprehensively considers the pixel
level cross-entropy and global level semantic information to
optimize the whole segmentation model better.

Experimental results on two RSIs data sets (Potsdam and
CCF data sets) show that the proposed method remarkably
improves the representation ability of extracted features. The
use of local attention enhancement module is conducive for
classifying the easily confused regions, while the embed-
ding of attentions from high-level features to low-level ones
improves the preservation of spatial details. However, one of
the remaining problems in the semantic segmentation of RSIs
is that how to identify large object regions and extract clear
boundaries. Next, we will further optimize the enhancement
module to improve the extraction and fusion of low and
high-level features.
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