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ABSTRACT A neutral zone is a section of a railway line without traction current during high-speed
train operations and is very common in high-speed railway lines. However, previous studies on energy-
efficient speed profile (ESP) optimization did not consider the electric neutral section constraints. Thus,
a risk of being unable to drive out of the neutral section because of a low initial speed and a deviation
in the energy consumption effect occur. This paper studies the characteristics of the neutral section to
optimize the operating curves of high-speed trains. It can aid in trains passing through the neutral section
smoothly. The proposed method is feasible and close to reality. By analyzing the actual coasting distance
of a train in the neutral section and building its mathematical model, we provide special double-speed
limits and stability constraints. Subsequently, by simulating vehicle performance, operating conditions, and
the location of the neutral section, a train ESP optimization model is constructed. Moreover, an improved
dynamic programming algorithm is proposed, which uses the vehicle maximum traction and braking force
to simplify the computation of state transitions. Finally, the numerical results of simulations demonstrate
the efficiency of the proposed model and solution methodology. Compared with the solution without neutral
section constraints, an energy-efficient effect of 1.43% is achieved. Further, the proposed method performs
better with a stability and high-quality solution than the genetic algorithm.

INDEX TERMS Neutral section constraint, high-speed railway, energy-efficient speed profile, optimization,
dynamic programming.

I. INTRODUCTION
Because of its outstanding advantages of capacity, rapidity,
safety, and punctuality, the high-speed railway (HSR) is grad-
ually becoming the core of China’s railway transportation
system. With the rapid construction of the HSR network, its
operating mileage reached 35000 km by the end of 2019,
of which a neutral section exists every other 15–20 km.
And it is a basic and necessary process for the train to pass
through the neutral section. Generally, the electrical multi-
ple unit (EMU) of a train adopts forced coasting without
traction current in neutral sections by auto-passing the neu-
tral section device of an automatic train protection (ATP).
Hence, the driver or automatic train operation (ATO) system
must understand the auto-passing speed, particularly on trunk
lines with higher permitting speeds and operation densities.
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Otherwise, when the train stops in a neutral section because
of an untimely operating, the transportation order of the entire
line, even to the railway network, will be affected.

From the mature application experience of the ATO in
the urban rail transit (URT), it is a successful experiment
to equip trains with an ATO system based on 2/3 level of
the Chinese Train Control System (CTCS-2/3). Consider the
CTCS-3 + ATO system as an example: an ATO unit, GPRS
radio, and related supporting equipment are newly included
in the on-board equipment, and a new function of platform
door protection is included in the ATP; the ground equip-
ment adds new functions to the train control center (TCC),
temporary speed restriction server (TSRS), and centralized
traffic control (CTC); precise positioning balises are mounted
on the track in stations (Fig. 1). The ATO unit for the HSR
has a classic double-layer control structure: an optimization
layer and a control layer. The optimization layer calculates
an optimal recommended speed curve for a specific offline or
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FIGURE 1. Architecture of CTCS-3 + ATO system.

online target according to line data, vehicle performance, and
operating conditions, while the control layer outputs a control
variable to drive the train automatically according to the
guide profile. The control layer has many advanced control
methods to help us realize the tracking of the train operation
well [1]–[4], but this paper we emphasize the offline opti-
mization of recommended speed profile based on neutral
section constraints, and the controller design is not the focus
of this paper.

Neutral zone is very common in railway lines and passing
through it is a basic feature of high-speed train operations.
According to our investigation data of Beijing-Shanghai
HSR, it happens from time to time that the train stops into the
neutral section, causing transportation disorder and increas-
ing the work pressure of dispatchers. However, there is almost
no literature in theory to consider the influence of neutral
section from the perspective of optimizing train operation
curve, thus studying energy-efficient speed profile (ESP)
optimization with consideration to the neutral section con-
straints is a new idea and it effectively avoids stopping into
neutral section of the train which will improve operational
efficiency.

Many advantages such as energy efficiency, more com-
fortable and improving punctuality are shown in the exist-
ing different types of literature on the optimization of train
speed. On this basis, we propose a method of ESP opti-
mization by considering neutral section constraints. The
main objective is to guarantee that a high-speed train passes
smoothly through a neutral section meanwhile to improve
energy efficiency. The main contributions of the paper are as
follows:

1) Double-speed limits model and stability constraints are
provided by analyzing the actual coasting distance of

the train in the neutral section; these can be directly
used by the ESP optimization.

2) An improved dynamic programming (DP) algorithm
is proposed to solve an ESP optimization problem
that considers neutral section constraints. It uses the
vehicle maximum traction and braking force to reduce
the calculation times of state transition. In comparison
to previous works our team have done, the improved
DP Effectively improve the solving efficiency.

3) The problem studied in this paper is not only a sup-
plement to the train operation curve optimization, but
also provides a prerequisite guarantee for the train to
pass through neutral section smoothly and improve
the operation efficiency. Since there is no traction
energy consumption in neutral section, the energy con-
sumption calculated in this paper is more suitable for
the actual situation compared with the other existing
literature.

The remainder of this paper is organized as follows.
In section II, we review the literature on solving the ESP
optimization problem. In Section III, by analyzing the charac-
teristics of the neutral section, we develop a coasting distance
mathematical model and provide the double-speed limits con-
straints. In Section IV, an optimization model that consid-
ers neutral section constraints is constructed; subsequently,
we present the solution process. Section V presents an exper-
imental study based on data from the Beijing-Shanghai HSR
in China. Finally, conclusions and future considerations are
presented.

II. LITERATURE REVIEW
The ESP optimization problem has been popular since
Ishikawa first studied the optimal train control model using
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the maximum principle [5]. Over the decades, scholars in
China and other countries have conducted in-depth analy-
ses on it from different perspectives. The methods in the
literature can be crudely grouped into two types: analytical
and numerical algorithms. Analytical algorithms can obtain
precise optimal solutions while some simplified measures
must be conducted to ensure the good properties of the objec-
tive function. Numerical algorithms do not require objective
functions; however, there is a trade-off between efficiency
and accuracy.

A. ANALYTICAL ALGORITHMS
In 1980, Moliry formulated the energy-efficient driving prob-
lem of trains as a continuous optimal control model, which
established the basis for modern train optimal control the-
ory. Later, it was developed by the Scheduling and Control
Group of the University of South Australia. Based on the
Pontryagin’s Maximum Principle (PMP), further researches
have been done by them ranging from the optimization model
(continuous model-discrete model-continuous model) to line
conditions (flat track to steep track, constant speed limit to
changed speed limit) [6]–[14]. They even proved that any
continuous reference curve can be approximated by a dis-
crete optimal curve [15], which means both the continuous
and discrete control models can be applied to vehicles with
continuous or discrete traction and braking forces [16]. For
continuous control problems, Khmelnitsky solved the opti-
mal running curve using the PMP within a given scheduled
time with consideration to speed limits and changed slopes,
and proved that the calculation complexity is determined by
slope and speed-limit complexity [17]. Liu et al. obtained
an analytical solution and optimal control sequence of a
train operation by analyzing the energy-efficient optimiza-
tion calculation process, and they proposed a complete solv-
ing scheme of optimal speed curve [18]. However, because
of the complex nonlinear characteristics of vehicles, solv-
ing them using analytical algorithms is difficult in some
instances [19], while numerical algorithms provide better
solutions.

B. NUMERICAL ALGORITHMS
Since Asnis theoretically proved that the ESP of trains
should include four driving phases, i.e., ‘‘maximum traction,
cruise, coasting, and maximum braking’’ [20], reasonably
increasing the coasting time of driving strategies is gener-
ally considered to achieve energy saving [21]. The genetic
algorithm (GA) has demonstrated promising performance
in solving this problem [22]. In [23], a GA was used to
solve the coasting control problem. Subsequently, for a single
coasting point scenario, they studied some of the classic
search algorithms such as the golden search method as a
supplement to the GA study [24]. Based on this, the GA
was improved by dynamically allocating coasting points
into the chromosomes This enhanced its practical applica-
tion [25]. In [26], a coasting control strategy in the automatic

operation mode was designed based on the GA with consid-
eration to the changing gradient, line curve, and speed limits,
etc. The solving efficiency is well-known to determine the
practicality of a numerical algorithm. Ke et al. proposed a
new method of optimizing the ESP using the MAX-MIN
ant colony algorithm. The computation time was lowered
to a reasonable level, thereby enabling online optimization
based on numerical algorithms [27]. In addition, DP performs
well in optimizing the running profiles of trains. Franke
transformed optimization of the velocity curve into discrete
optimal control problem to implement the real-time opti-
mal control that combines Discrete Dynamic Programming
(DDP) and Nonlinear Model Predictive Control (NMPC)
[28]. Ko formulated train operation process as a multi-stage
decision process, with DP applied to search for the optimal
control strategy directly [29]. Miyatake adopted DP, Gradient
Descent and Sequential Quadratic Programming (SQP) to
generate profiles which DP was contributed to process state
variable constraints [30]. Lu proposed the graphic model
of train trajectory searching, upon which DP, ant colony
optimization (ACO) and GA were applied to search for the
optimum speed at each preset position directly [19]. Ghaviha
designed the recommended speed curve for Driver Advi-
sory System (DAS) in which dynamic losses are taken into
account in energy calculation [31]. Haahr proposed a speed
curve graph with heuristic rules to solve the energy-efficient
speed curve problem [32]. Zhou presented space-time-speed
grid to complete the joint train timetable and speed pro-
file optimization by using the Lagrangian relaxation [33].
In recent, some scholars adopted Approximate Dynamic
Programming (ADP) to address the classical ‘‘curse of
dimensionality’’. Huang proposed an energy-saving model
with on-board energy storage devices and a heuristic
dynamic programming (HDP) was designed for optimal
speed curve [34]. Wang combined off-line ADP and on-line
search process to reduce the probability of delayed arrival
and energy saving with the uncertainty of train traction and
resistance [35]. Xun designed an algorithm for maximizing
the utilization of regenerative energy (MURE) by using ADP
to adjust the speed curve of the accelerating train. Then, three
approximation methods such as rollout method, interpolation
method, and neural network were applied to verify the effec-
tiveness of MURE [36]. Tang studied the energy-efficient
driving problem of fixed planning time. For each section, a
compound trapezoidal formulawas used to calculate the oper-
ating distance and time; subsequently, DP was used to search
for the optimal solution [37]. The above analysis indicates
that in-depth Researches on energy-efficient driving exist.
However, the effect of the neutral section requires further
exploration.

III. PROBLEM OF ESP OPTIMIZATION WITH
CONSIDERATION TO THE NEUTRAL SECTION
The following are definitions of the notations and hypotheses
in this paper.
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TABLE 1. Notation definition.

HYPOTHESES
1) Vehicles can obtain the theoretical maximum traction

and braking force under any conditions.
2) The braking force and traction in each stage is a con-

stant value.
3) Attempting the coasting condition first in the neutral

section, the air brake can be used when the train will
overspeed. The delay in establishing the air brake is
assumed to be negligible.

A. PROBLEM DESCRIPTION
As Fig. 2 shows, curve a is the optimal speed profile based
on an energy-efficient strategy. It does not consider the con-
straints of the neutral section. In practice, the train’s trajectory
may result as curves b or c depending on the differences in
the lines or the entrance speed into the neutral section, which
may not guarantee a smooth passage of the train. Hence,
the original solution may not be feasible when a neutral
section exists. In the following, we analyze the train operation
process in the neutral section in detail.

FIGURE 2. Possible speed profiles on the condition of neutral zone
constraints.

B. NEUTRAL SECTION ANALYSIS
1) COASTING DISTANCE MODELING
This requires that the handle is returned to the zero level
in advance and the main circuit switch is disconnected, that
is, the actual coasting distance of the train in the neutral
section is greater than its physical length. In this paper,
the actual coasting distance is called the logical neutral
section. Fig. 3 shows the detailed process of auto-passing the
neutral section by the ATP.

FIGURE 3. Length of a logical neutral zone based on the ATP
auto-passing neutral section.

1) 10 seconds before the entrance of the neutral section,
the on-board ATP continuously reminds the driver
that the train is about to pass; hence, the driver discon-
nects the main circuit switch.

2) 3 seconds from the entrance of the neutral section,
the automatic device disconnects the main circuit
switch, causing the train to coast passively.
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3) After passing the ‘‘power on’’ sign, the train is ener-
gized and operates normally.

Therefore, we can formulate the actual coasting distance as
follows:

Llog ical = Lpoweroff + Lneutralzone + Lpoweron (1)

2) DOUBLE-SPEED LIMIT CONSTRAINT
The train’s acceleration in the neutral section is determined by
the resistance it encounters. According to the hypothesis(3),
we simplify the problem and only analyze the decelerated
condition in the neutral section. As Fig. 4 shows, if the train
enters the neutral zone at different speeds, a correspond-
ing unique exit speed will be obtained. However, when the
entrance speed is lower than vp, and the exit speed will be
lower than v′q. Here, the train is likely to stop in the neutral
section because of insufficient power. In this paper, the speed
at point P is called the lower speed limit, and the original
limited speed is considered the upper speed limit; thus, they
form the double-speed limit constraint in the neutral section.
The velocity at point P is determined by the resistance accel-
eration. Frequently, it will be set to 5 km/h.

FIGURE 4. Diagram of the double speed limit.

vlimit and vneutral are the upper and lower speed limits,
respectively. Thus, the constraints of the neutral section is
formulated as follows:

F(v) = 0, xstart ≤ x ≤ xend
vneutral ≤ v ≤ vlim it , xstart ≤ x ≤ xend
H ∈ {Bair ,C}, xstart ≤ x ≤ xend

(2)

To avoid the shock caused by the sudden disconnection
of the strong traction current, which would be extremely
uncomfortable, and to satisfy the comfort requirements of the
high-speed railway ATO standard, this paper expresses the
stability constraint of the neutral section as follows:

|ak+1| ≤ |ak | , xk ∈ (x ′start , xstart )
|ak+1| ≥ |ak | , xk ∈ (xend , x ′end )
|ak+1 − ak | ≤ 0.15

(3)

C. DYNAMICS MODEL
The operation of high-speed trains is restricted by many
aspects such as line conditions, temporary speed limits, and
vehicle conditions. The additional resistance (gradient, curve,
tunnel, etc.) is frequently related to the train’s location. For
a more convenient description of the additional resistance,
the single-mass point train motion equation is described as
a position-based model:

(1+ γ ) ·
dv
dx
=
utra(v)− ubra(v)− (r(v)+ g(x)) · g

v
dt
dx
=

1
v

r(v) = a+ bv+ cv2

(4)

where γ is the rotating coefficient, which is generally 0.6.
We use the parameters of CR400AF EMU as the basic vehicle
simulation data. Its traction, braking force, and basic resis-
tance are shown in Fig. 5.

IV. SOLUTION METHOD BASED ON DYNAMIC
PROGRAMMING
A. OBJECTIVE FUNCTION
There are many complicated nonlinear constraints in the opti-
mal control problem of train. Certainly, some simplification
measures need to be done in the laboratory environment. And
choosing a suitable algorithm is critical. DP can directly deal
with difficult constraints of an optimal control problem [29].
And it is frequently used to solve discrete problems. There-
fore, we constructed the train energy-efficient optimization
model as a discrete model. Meanwhile, the boundary condi-
tions and safe operation constraints are met.

minE

E=


∑
k

=1N
1
2
(u+|u|)·1xk , xk ∈ ((0, xstart ) ∪ (xend , S))

0,1xi ∈ (xstart , xend )

s.t



v(0) = 0, x(0) = 0
v(T ) = 0, x(T ) = S
vk < vk,lim it , xk
!! ∈((0, xstart ) ∪ (xend , S))
vk,neutral < vk < vk,lim it , xk ∈ (xstart , xend )∣∣∣∣ N∑
i=1

ti − T

∣∣∣∣ ≤ δ
(5)

B. SOLUTION PROCESS
The basic concept of DP is to divide the problem to be
solved into several interrelated sub-problems. When the
sub-problems are solved, the solution to the original prob-
lem would be determined. The solution process is generally
divided into three steps: discrete state space, state transition
calculation, and search for the optimal solution.
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FIGURE 5. Tractive effort, braking effort, and resistance
of the CR400AF EMU.

1) STATE DISCRETE
The entire interval is divided into N stages with equivalent
distances of 10 m, and the starting point of each stage is the
preset position of the train in that state. We assume that the
slope and speed limit values in each stage are constant to
ensure the control variable in each stage is constant. Thus,
if conditions 1, 2, or 3 in Fig. 6 were encountered, the follow-
ing processes would be conducted respectively.

FIGURE 6. Schematic of stage divisions.

Scenario 1: the slopes have different values at a certain
stage. In this scenario, the slope at the starting position of
a stage is used as the slope of this stage.
Scenario 2: the speed limit increases at a certain stage. The

lower speed limit should be considered the maximum speed
limit at this stage to ensure safety.
Scenario 3: the speed limit decreases at a certain stage.

Similarly, the lower speed limit must be used as themax speed
limit at this stage.

Subsequently, the effective speed range [vmin, vmax] would
be easily obtained using the fastest and slowest running
curves [38]. Here, we discrete it using 1v = 0.5km/h to
obtain the speed set as {vmin, vmin +1v, vmin + 21v, vmin +

31v . . . . . . vlim it } for each stage. Thus, we obtain the entire

state space � of the problem and state sk (vk,xk ) ⊆ � for
k = 1, 2, 3 . . . . . .N + 1. The initial and final states can be
expressed as s1(0,0) and sN+1(0,xN+1), respectively.

2) STATE TRANSITION CACULATION
Restricted by the maximum traction and braking force when
the train is out of the neutral section, a certain range in which
the train transfers from one stage to another exists, which is
defined by (6): va =

√
v2k + 2amax _tra ·1s

vb =
√
v2k + 2amax _bra ·1s

(6)

Moreover, the state transition of stage k is

sk (vk,i, xk )
u
−→ sk+1(vk+1,j, xk+1), vk+1,j ∈ [va, vb] (7)

In the neutral section, a range of the state transition does
not exist, and the variables exhibit a one-to-one correspon-
dence (8).

vk+1 =
√
v2k + 2aneutral ·1xk , xk ∈ [xstart , xend ]

aneutral = (r(v)+ g(x)) · g
vk+1 = vk+1, vk+1 ≤ vk+1,lim it

vk+1 = vk+1,lim it , vk+1 > vk+1,lim it

(8)

Equation (9) can be used to calculate the energy and time cost
of each state transition, and two sparse matrices, ECk and
TCk , are used to store them in stage k . After calculating all the
stages, the energy and time consumption costs of the entire
state space are stored in two three-dimensional matrices.

Ek (k, i, j) =
1
2
(u(k, i, j)+ |u(k, i, j)|) ·1xk

xk ∈ ((0, xstart ) ∪ (xend , S))

Ek (k, i, j) = 0, xk ∈ (xstart , xend )

Tk (k, i, j) =
21xk

vk,i + vk+1,j

(9)

3) SEARCHING FOR AN OPTIMAL SOLUTION
We introduce the utility function in (10) to evaluate the
decision-making in each stage, and we use indicator function
J (v) to assess the advantages and disadvantages of a policy;
J∗(v) is the value of the optimal strategy.

Uk (vk,i, vk+1,j) = c · (1− α)ECk (i, j)

+α ·

∣∣∣∣TCk (i, j)− T
N

∣∣∣∣
k ∈ [1,N + 1], i, j ∈ [1,M ]

,

(10)

where c is the coefficient that balances the energy and time
consumption, and c = 1e − 7 in this paper;α is the weight
coefficient, which indicates the importance of punctuality.
We assume that the indicator function value of the final state
sN+1(0,xN+1) is JN+1(0, xN+1) = 0, the indicator function
of each state in the (N − 1)th stage is

JN (vN ,i) = UN (vN ,i, 0)+ JN+1(0, xN+1) (11)
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The minimum indicator function value of all state in the
(N − 1)th stage is the optimal indicator function. Therefore,
the optimal indicator function of the kth stage is

J∗k (vk,i) =


{
min{Uk (vk,i, vk+1,j)+ J∗k+1(vk+1,j)},
k ∈ [1,N ), i, j ∈ [1,M ]

0, k = N + 1

(12)

whereM is the maximum number of state variables in a stage.
Using v∗k = arg J∗k (vk ), we can obtain the optimal speed
sequence.

V. RESULTS AND DISCUSSION
To test and verify the efficiency of the proposed model and
solution method, we present a study case based on the data
from the Beijing-Shanghai HSR in China. Considering the
flexibility of evolutionary algorithm, genetic algorithm is one
of the most widely used evolutionary algorithms in solving
the train curve optimization problem. In this paper, the flow
chart of genetic algorithm presented in reference [39] is taken
as an example to compare with the results of dynamic pro-
gramming algorithm. In addition, the slope data were rounded
to safe values which is more secure for train operation. The
processed slope and speed limit are shown in Fig. 7. The
parameters of simulation EMU and the control parameters
of the algorithm are listed in Tables 2 and 3, respectively.
We performed the simulation on a PC (2.2 GHz processor
speed and 4 GB RAM) with the Windows 10 platform, and
the simulation software was MATLAB R2018b.

FIGURE 7. Journey altitude and speed limit profile.

According to the regulations of the Chinese railway trans-
portation department on setting neutral section signs, we pro-
cessed the original neutral zone data as shown in Table 4.

According to the neutral section model established in
section III, the solution process in section IV, the simulation
parameters and line data. The specific solving steps of DP
algorithm are as follows:
Step 1: dividing the simulation section into 2600 stages

with equal interval of 10m, with total 2601 position nodes,
each position node xk ∈ {0, 10, 20, . . . . . . 2600}.
Step 2: discrete speed limit uses 1v = 0.5km/h.

If xstart < x < xend , the speed set at each stage is

TABLE 2. Numerical parameters of the CR400AF electrical multiple unit.

TABLE 3. Table iii. Numerical parameters of the DP algorithm.

TABLE 4. Neutral section information of Wuxi east to north of Suzhou.

{vneutral, vneutral +1v . . . . . . vlim it }, else the speed set at each
stage is {0,1v, 21v, 31v . . . . . . vlim it }.
Step 3: calculating the fastest running curve vmax(x) of

train.
Step 4: according step 3, compressing the speed set at every

stage, if xstart < x < xend , the speed set at each stage is
{vneutral, vneutral + 1v . . . . . . vmax(xk )}, else the speed set at
each stage is {0,1v, 21v, 31v . . . . . . vmax(xk )}. thus, we can
use a V matrix of m ∗ n dimension to store all discrete speed
and obtain all states, each state sk = (xk , vk,i). Where n is
number of position nodes andm is Maximum number of state
nodes in a stage.
Step 5: if xstart < x < xend (in neutral section), calculation

the time cost and energy consumption of each state transition
process with state in stage k transferring to a state in stage
k + 1 by (8), (9), else calculation the time cost and energy
consumption of each state transition process with state in
stage k transferring to a state in stage k + 1 by (6), (7), (9).
And storing them in sparse matrix TCk(i, j) and ECk (i, j)
respectively.
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Step 6: for each stage k(1 ≤ k ≤ 2600), execute step5.
The energy and time cost of state transition in the whole
state space are stored by two three-dimensional matrices
EC(i, j, k) and TC(i, j, k) respectively.
Step 7: two m ∗ n dimensional matrix J and matrix I are

established to store the optimal indicator and velocity index.
Step 8: for stage N , it is end state, vN+1,1 = 0 and the

optimal indicator J∗(vN+1,1,N + 1) = 0, so the value of
J (1,N + 1) in matrix J is J (1,N + 1) = 0 and the value
of I (1,N + 1) in matrix I is I (1,N + 1) = 1. For stage
N − 1, for each state, the optimal indicator J∗(vN ,i,N ) is get
by (10), (12), the value of J (i,N ) in matrix J is J∗(vN ,i,N )
and the value of I (i,N ) in matrix I is I (i,N ) = j, where j
is subscript of vN+1,j, vN+1,j = arg(J∗(vN ,i,N )). For stage
k(1 ≤ k ≤ N −2), execute the iterative calculation described
as above.
Step 9: according to the value of I (1, 1) in matrix I , we can

easily search the subscript of optimal velocity in next stage.
after searching for all stages, a vector of optimal-velocity
index is certain, then find the velocity value in matrix V by
the vector. Thus, the optimal solution is obtained.

In this study, the fastest running curve, optimal speed
profile with neutral section constraints, and optimal speed
profile without neutral section constraints were simulated and
analyzed. Fig. 8 indicates that the fastest operating strategy
operated the train at the maximum speed in almost every
stage, including maximum traction, cruise, and maximum
braking conditions. The optimal speed profile with neutral
section constraints had a passive coasting process in the a–b
segment (in the neutral zone). Note that the neutral section
affected the entire interval, particularly the segment of the
speed profile before the neutral section area. Compared with
the optimal speed profile without neutral section constraints,
the solution in this study would accelerate in advance to
reduce speed loss in the neutral section. This is also known
as ‘‘speed grabbing’’ in engineering. The comparisons of the
three profiles are shown in Table 5. The difference between
the running and planned time of three curves was less than
three minutes, which satisfied the punctuality requirements
of HSRs, and the comfort level also satisfied the required
value of 0.75 m · s−3. In addition, compared with the solution
without neutral section constraints, an energy-efficient effect
of 1.43% was achieved.

Fig. 9 shows the speed curve, resultant acceleration, and
slope in the neutral section. The recommended speeds at
the entrance and exit of the neutral section were 238.5 and
235.7 km/h, respectively, which meant that a speed loss
of 2.8 km/h occurred. In the neutral zone, the train continued
decelerating and the deceleration change range was from
−0.06 to −0.02. The deceleration was consistent with the
change trend of the line slope, which indicated the rationality
of the speed profile.

Fig. 10 shows the entire energy consumption in the interval,
energy consumption in each stage, and change in the control
variable. The figure indicates that energy consumption was
concentrated in the traction section. Thus, energy consump-

FIGURE 8. Three types of speed trajectories.

TABLE 5. Comparison of the results of three operation curves.

FIGURE 9. Details of the speed trajectory, total accelerate, and gradient in
the neutral zone.

tion in the neutral section was zero. The entire change trend
of the control variable was relatively stable with a few local
violent changes with higher energy consumption.
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FIGURE 10. Total energy consumption, energy consumption in each stage,
and total control variable.

According to the neutral section model established in
section III, the solution process in section IV, the simulation
parameters and line data, and reference [39], the specific
solving steps of GA algorithm are as follows:
Step 1: First we set the number of genetic individuals

(num) is 100. Individuals are randomly generated as the
first generation G1 = (S11 , S

2
1 , . . . , S

num
1 ) .The individual’s

genes represent the distance and acceleration, which are the
variables of the solution S ik = (x1, a1, x2, a2, . . . , xn, an).
Step 2: The solution of each individual is required an

evaluation of the fitness function to determine whether the
individual can be preserved. if xstart < x < xend (in neutral
section), calculation the time cost and energy consumption
of each individual by (8), (9), else by (6), (7), (9). Then, the
expression of the fitness function is

f nk =
1

c · (1− α)Enk + α ·
∣∣T nk − T ∣∣ (13)

where f nk is the fitness of the nth individual of the k genera-
tion; Enk and T nk are the traction energy consumption and the
journey time of it.
Step 3: The individuals are arranged in descending order

according to fitness function, and the sorted individuals are
operated in a series of steps, including selection, crossover,
mutation and replacement. In this study, the specific parame-
ters of the algorithm are based on the reference [39].
Step 4:in the selection phase, the 10 top fitness function

ranking individuals are retained to form the new generation.
Step 5: during the crossover phase, two individuals are

selected randomly as parents, and some allele genes from the
parents are exchanged, this step is repeated 35 times.
Step 6: in the mutation phase, individuals are randomly

selected and some genes are replaced with random values,
this step is repeated 10 times.
Step 7: during the replacement phase, new individuals are

randomly generated to replace the last 10 individuals sorted
by the fitness function.

Step 8:after the four stages of the GA, the total number of
individuals in each generation remains unchanged and a new
generation is born. Step 2–7 are repeated until the number of
generations reaches at 50 or the change of fitness function
less than the expected set value.

The simulation results of the GA are shown in Fig. 11.
GA fail to find a smooth trajectory with frequent traction
and braking. However, speed profile based on DP performed
better with a stable cruising phase and smooth trajectory
according to the above results analysis.

FIGURE 11. Speed trajectory using GA.

Fig. 12 shows how the fitness function evolves with the
generation. The fitness function of each generation decreases
gradually with the change of generation, which converges to
the optimal solution quick.

FIGURE 12. Fitness function at each generation for GA.

TABLE 6. Performance comparison between the two algorithms.

DP is able to obtain the optimal solution compared with
the GA, since the different states in each stage correspond
to a certain journey time, energy consumption and distance.
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The optimized solution is found by traversing all solutions
set, while the GA may fall into local optimum.

Table 6 shows a performance comparison between the two
algorithms.

VI. CONCLUSION AND SUMMARY
The main contribution of this paper is to consider the con-
straints of the neutral section in the energy-efficient opti-
mization problem of the HSR to determine a solution with
more practical engineering application significance. In par-
ticular, by analyzing the operation characteristics of the
train in the neutral section, a mathematical model of the
actual coasting distance in the neutral section is constructed.
The double speed limit and stability constraints are pro-
vided to ensure that the train passes through the neutral
section smoothly. Additionally, based on these constraints,
we build an energy-efficient optimizationmodel of speed pro-
files. When solving the model, we improved the calculation
method of the state transition of the DP algorithm according
to the features of the neutral section. We conduct a case
study and combine with the GA comparison to elucidate the
efficiency of the proposed approach based on actual track data
from the Beijing-Shanghai HSR. The results of the numerical
experiment indicated that the neutral section affects the speed
curve in the entire interval and not only in the neutral zone.

Note that the accuracy of the speed quantification fre-
quently affects the accuracy of the solution. When the accel-
eration in the neutral section is sufficiently small, the actual
speed reached in the next stage may be between two dis-
crete speed values.Meanwhile, some approximate processing
measures are required to ensure a complete solution can be
searched. In addition, using DP to solve the energy-efficient
optimization problem requires a large storage memory. The
storage space increases non-linearly with the state space even
if a sparse storage method is adopted. The solving efficiency
is another key factor for scholars to use DP algorithms,
particularly when the train headway is increasingly becom-
ing smaller. Generally, when the state space is determined,
the total number of calculation operations is almost certain.
Using high-configuration computers to increase the calcula-
tion efficiency or reduce the number of calculations times
are the two main methods of increasing solution efficiency.
Therefore, the future consideration of this study is methods
of reducing the invalid state transition calculation process.
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