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ABSTRACT Multi-view clustering which integrates the complementary information from different views
for better clustering, is a fundamental and important topic in machine learning. In this paper, we present a
multi-view co-training clustering algorithm based on global and local structure preserving. Here the global
structure is referred to the integration of the within-cluster compactness and between-cluster separation;
the local structure is referred to the neighborhood information. Our algorithm at first preserves both the
global and local structure to the subspace in each view. And then, this algorithm obtains the clustering
result in the subspace of each view, and utilizes the clustering labels of one view to guide the subspace
clustering in another view. In this way, the differences and compatibilities among themultiple views are fused
together to form the final cluster partition. Therefore, the clustering result takes full account of the global and
local structure information of the multi-view data, which is helpful to improve the of clustering accuracy.
Experimental results on the multi-view text datasets and image datasets demonstrate the effectiveness and
correctness of the proposed algorithm.

INDEX TERMS Multi-view clustering, subspace learning, co-training.

I. INTRODUCTION
With the popularization of Internet and the coming of big data
era, there is a great deal of data generated in the network
every day. A great deal of data is generated in the form of
multi-view [1]–[3]. For example, the pictures in the web page
and the description text of these pictures, videos and subtitles
of videos, and so on. Although these data can be clustered
and classified in the single view, many references [4]–[6]
have proved that the multi-view learningmethods can explore
information from different views to improve the learning per-
formance. Therefore, multi-view learning is attracting more
and more attention. The goal of multi-view learning is to
employ the multi-view information to achieve better perfor-
mance than the single view. So far, multi-view learning has
been widely researched and applied in data mining, computer
vision and natural language processing.

In real life, data usually exist in the form without class
labels. In order to determine the labels, a lot of expe-
rienced experts are needed, and a lot of resources are
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consumed. Therefore, it is particularly important to auto-
matically generate the labels by means of clustering [7]–[9].
In 2018, a subspace clustering method [7] is proposed by
introducing structured autoencoder which map input data
points into nonlinear latent spaces. In 2020, an end-to-end
clustering method [9] is developed by minimizing the dis-
crepancy between pairwise sample assignments for each data
point.

When data comes from multiple sources, multi-view clus-
tering utilizes the information from all the views to explore
the data structure, and meanwhile maximizes the consistency
among the different views. In general, multi-view clustering
can be divided into three categories: multi-view clustering
based on ensemble [10]–[13], multi-view clustering based on
subspace learning [14]–[20], and multi-view clustering based
on co-training [21]–[24].

Multi-view clustering based on ensemble [10]–[13] inte-
grates the clustering results obtained in each view to form the
final clustering results. In [10], a novel ensemble clustering
approach is proposed based on fast propagation of cluster-
wise similarities via randomwalks. In [11], another ensemble
clustering approach is developed based on ensemble-driven
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cluster uncertainty estimation and local weighting strategy.
In [12], a new bipartite graph is constructed between objects
and base clusters and then efficiently partitioned to achieve
the consensus clustering result.

Multi-view clustering based on subspace learning [14]–[20]
calculates a unified low-dimensional embedding for multi-
view data and then utilizes the clustering algorithm in the
low-dimensional space. Kumar and Rai [14] proposed co-
regularized multi-view spectral clustering which uses the
normalized cut to get the first k eigenvectors of the unified
Laplace matrix. Although this method is easy to understand,
simple and feasible, the objective function of the method
is non-convex and therefore the method often can’t get the
optimal solution. Because of this drawback, Lu et al. [15] pro-
posed a convex sparse spectral clustering algorithm, which
not only transforms the original non-convex problem into
convex problem, but also improves the clustering accuracy
effectively. Yin et al. [16] proposed a multi-view clustering
method using pairwise sparse subspace representation, which
performs sparse representation of each view and maximizes
the correlation between different views. Kan et al. [17]
proposed a supervised multi-view dimensionality reduction
algorithm MvDA which aims to find a discriminant common
space by jointly learning the specific transformation for
multiple views.

Multi-view clustering based on co-training [21]–[25] inte-
grates clustering information obtained from multiple views
by using the idea of co-training. The co-training frame-
work has been widely used in the semi-supervised learning.
Recently, it becomes more and more popular in multi-view
learning. Kumar and Iii [21] proposed a co-training approach
for multi-view spectral clustering which uses spectral cluster-
ing on individual graphs to get the discriminative eigenvec-
tors in each view, and then uses these eigenvectors to modify
the graph structure in the other view. Zhao et al. [22] pre-
sented an unsupervised multi-view dimensionality reduction
algorithm via subspace structure agreement which applies
locality preserving projections and co-training strategy to
yield the multi-view subspace. Lu et al. [24] proposed auto-
encoder based co-training multi-view representation learn-
ing. It at first trains auto-encoder of each view and then trains
a supervised network, and these two stages share the weights
partly and assist each other by co-training process.

In recent years, many scholars have considered the fact that
multi-view data often has high dimensionality, so a series of
algorithms combining dimensionality reduction and multi-
view co-training clustering have emerged. A subspace co-
training framework for multi-view clustering [23] is one of
the typical examples. The hypothesis of this algorithm is that
the samples belonging to the same class in different views
should be clustered into the same cluster, while the samples
from different classes should be grouped into the different
clusters. This algorithm performs the clusteringmethod in the
subspaces of each view to get the labels, and then exchanges
the labels between the different views until the algorithm
converges.

In general, the above algorithms effectively utilize the
information from multi-view data to achieve the goal of
performance promotion. However, most of the multi-view
clustering algorithms often focus on the global structure of
data distribution, and ignore the local structure information.
To overcome this shortcoming, this paper develops a multi-
view co-training clustering algorithm based on global and
local structure preserving (MCGLP). This algorithm aims to
preserve the structural information of the original space to the
corresponding subspace, in which the structural information
contains the global structure (represented by within-class
compactness and between-class separation) and the local
structure (represented by the neighborhood information).
And then, the clustering analysis is performed respectively
in the subspace of each view, and the co-training approach is
applied to fuse the clustering information among the multiple
views. The co-training process in our algorithm is to take
full account of differences and compatibilities in multi-view
data to formulate the final cluster partition. Compared with
the existing algorithms, the proposed algorithm takes full
account of the global structure information and local structure
information of the data, which is helpful to improve the
accuracy of clustering. Since the algorithm is performed in
subspace instead of the original space, the computation is
reduced to a certain extent. The effectiveness and correctness
of the proposed algorithm are demonstrated by experiments
on the multi-view text datasets and image datasets.

II. RELATED WORK
Many algorithms have been developed to solve the
multi-view clustering problem. Among them, a subspace
co-training framework for multi-view clustering (SCMVC)
was proposed by Zhao et al.[23]. The algorithm combines
the Linear Discriminant Analysis (LDA) and K-means into
the co-training framework. The objective function of LDA is:

max
p

Tr(PT SbP)
Tr(PT SwP)

(1)

where Sb represents the between-class scatter, Sw represents
the within-class scatter, P represents the projection matrix.
The purpose of this objective function is to find the pro-
jection matrix which maximizes the ratio of Tr(PT SbP) to
Tr(PT SwP). The objective function of K-means is:

min
H

∑
k

∑
i∈Ck

||Xi − mk ||2 (2)

where H represents the cluster labels, K represents the num-
ber of clusters, Xi represents the ith sample andmk represents
the kth cluster center. Compared with LDA, the objection
function of K-means is to find a cluster partition making the
samples falling into the same cluster more compact.

SCMVC has the following assumptions: (1) conditional
dependence among different views; (2) although each sample
has different representations in different views, they should
be assigned to the same cluster. The objection function of
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co-training subspace multi-view clustering algorithm can be
expressed as:

max
P(1),P(2)

CAI (H (1),H (2)) (3)

where

CAI (H (1),H (2))=
1
n

n∑
i=1

δ(h(1)i ,map(h
(2)
i )) (4)

H (v)
= argmin

H (v)

K∑
k=1

∑
h(v)i =k

||P(v)
T
xi−P(v)

T
mk ||2 (5)

n represents the number of samples, K represents the number
of clusters, H (v) represents the cluster labels of the vth view,
P(v) represents the projectionmatrix of the vth view,mk repre-
sents the cluster center of kth class, δ(a, b) is a function equal
to unity if a = b and zero otherwise, themap() function return
an optimal mapping between cluster labels in different views.
The goal of the formula (3) is to maximize the consistency of
cluster labels in different views. In SCMVC, LDA is firstly
utilized tomap the samples into the subspace in each view and
then K-means is performed in the subspace to get the cluster
labels of different views. After that, the obtained cluster labels
are exchanged among the different views. The above steps are
repeated until the cluster labels in different views tend to be
the consistent.

III. THE PROPOSED ALGORITHM
A. ALGORITHM DESCRIPTION
In this paper, a multi-view co-training clustering based on
global and local structure preserving (MCGLP) is proposed.
This algorithm performs the multi-view clustering by fus-
ing the information obtained from the subspace of each
view. These subspaces are resulted by taking into account
not only the global structure information but also the local
structure information. In MCGLP, the structure information
is described as follows: the global structure information is
represented by within-class compactness and between-class
separation; the local structure information is represented by
the neighborhood information. Based on this, the objective
function is established to preserve both the global and local
structure information to the subspace of each view. After that,
K-means clustering method is utilized in subspace clustering,
and other suitable clustering algorithm can also be chosen
according to the specific circumstance. In addition, MCGLP
algorithm integrates the idea of collaborative learning, and
employs the subspace clustering results obtained from the
current view to guide the description of the global and local
structure in other views. In this way, the information among
the multiple views is fused to improve the correctness of the
final clustering.

1) GLOBAL STRUCTURE INFORMATION
Suppose that input data has V views, the vth view
has d (v) dimension. The sample set on the vth view is

X (v) = {x1, x2, . . . , xn} and consists of two clusters
marked as C1 and C2. C1 is composed of samples X1 =
{x11 , x

1
2 , . . . , x

1
n1} and C2 is composed of samples X2 =

{x21 , x
2
2 , . . . , x

2
n2}. The cluster center is given by:

mi =
1
ni

∑
xj∈Xi

xj, i = 1, 2 (6)

The within-cluster scatter is:

Ri =
∑
xj∈Xi

(xj − mi)(xj − mi)T , i = 1, 2 (7)

Total within-cluster scatter is:

Rw = R1 + R2 (8)

The between-cluster scatter is:

Rb = (m1 − m2)(m1 − m2)T (9)

In MCGLP, the subspace obtained in each view aims to
separate the different clusters as much as possible, meanwhile
keep inner clusters compact. To preserve such global informa-
tion into subspace, the corresponding objective function can
be defined as:

max
U

Tr
(
UTRbU

)
Tr
(
UTRwU

) (10)

where U is the projection matrix and maps the sample into
the subspace. The trace of the between-cluster scatter matrix
is in the numerator of the formula (10) and the trace of the
total within-cluster scatter is in its denominator. In order to
maximize this objective function, the numerator should be as
large as possible, and the denominator should be as small as
possible. To achieve this goal, the data of each subspace view
should be compact within each cluster and separate as far as
possible between different clusters.

2) LOCAL STRUCTURE INFORMATION
Consider the sample set on the vth view X (v) =

{x1, x2, . . . , xn}, the local structure information in MCGLP is
described by the relationship among these samples, and such
relationship is preserved to the subspace by establishing an
objective function. The above process is concretely described
as the following steps:

1) Constructing the adjacency graph G with n nodes.
If sample xi and xj are ‘close’, we should put an edge
between node i and j. If xi and xj belong to the same
cluster and xi is in k nearest neighbors of j or xi is
in k nearest neighbor of i, the node i and j should be
connected by an edge.

2) Choosing the weightW .W is a sparse n×n symmetric
matrix. Wij denotes the weight of edge between node i
and j. If there is no edge between node i and j,Wij = 0.
If node i and j are connected, there are two methods to
calculate the weight:
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a) Heat kernel method. If node i and j are connected,
the weight between node i and j is calculated by
Wij = e−||xi−xj||

2/t .
b) Zero-one method. If there is an edge between

node i and j,Wij = 1; otherwise, Wij = 0.

3) Constructing the objective function to preserve the
local structure information:

min
U

Tr
(
UTXLXTU

)
Tr
(
UTXDXTU

) (11)

where D is a diagonal matrix obtained by D =
∑

jWij.
L = D−W is Laplacian matrix.

3) GLOBAL AND LOCAL STRUCTURE INFORMATION
PRESERVING
In MCGLP, the objective function to preserve both the global
and local structure information in the vth view is further
defined as follows:

max
U

Tr
(
UT (Rb + XDXT )U

)
Tr
(
UT (Rw + XLXT )U

) (12)

It is observed from the formula (12) that the adjustment of
the amplitude of U does not affect the direction of U and the
value of (12). By setting the denominator of (12) to non-zero
constant and maximizing the numerator, the optimization
problem of (12) is transformed into:

max Tr
(
UT (Rb + XDXT )U

)
s.t. UT (Rw + XLXT )U = I (13)

Employing the method of Lagrange multiplier, the formula of
(13) has been changed into:

L(U , λ) = Tr
(
UT (Rb + XDXT )U

)
−λi(UT (Rw + XLXT )U − I ) (14)

At the extreme point of (14), it should be satisfied:

∂L(U , λ)
∂U

= 0 (15)

Thus, the value of U should be satisfied:

(Rb + XDXT )U = λi(Rw + XLXT )U (16)

Getting the eigenvalues (λ1 > λ2 > · · · > λp) and the
corresponding eigenvectors (u1, u2, . . . , up) from:

(Rw + XLXT )−1(Rb + XDXT ) (17)

The first f (v) eigenvectors are used to compose the projection
matrix U where f (v) is the dimensionality of the subspace in
the vth view.

4) FLOWCHART OF PROPOSED ALGORITHM
In order to integrate the global and local clustering informa-
tion among multiple views, MCGLP uses the idea of collabo-
rative learning. The information exchanging among different
views is achieved by exchanging the cluster labels among
different views. For illustrative purposes, we only present
the execution flow of MCGLP algorithm under two views in
Fig. 1.

FIGURE 1. Flowchart of proposed algorithm.

The specific steps of the algorithm are as follows: Firstly,
get the projection matrix from each view. Secondly, utilize
projection matrix to map the original space to its subspace
and get cluster labels in subspace by using K-means. Thirdly,
exchange the cluster labels among the different views and
return to the first step. Solve iteratively until the algorithm
converges.

B. ALGORITHM ANALYSIS
1) ALGORITHM PROCEDURE
2) TIME COMPLEXITY
Suppose that the dataset has s views, n samples, the dimen-
sionality of sample in each view is d (v), the dimensionality
of the subspace is f (v). k is the number of clusters, g is the
iteration number of K-means, and t is the iteration number of
MCGLP. The time complexity of modeling global structure
can be roughly divided into the calculation of the within-
cluster scatter and between-cluster scatter matrix. Its time
complexity is O(nd (v)m(v)), where m(i)

= min(n, d (v)). At the
same time, the time complexity of constructing local structure
depends on matrix multiplication whose time complexity
is O((d (v))2n). According to (16), the time complexity of
computing the eigenvectors and eigenvalues is O((m(v))3).
Comparing the complexity of the global structure information
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Algorithm 1

Input:multi-view dataset X = {X (v)
|v = 1, 2, . . . , s}, X (v)

=

{x(v)1 . . . .x(v)n }, where the dataset X consists of s views and n
samples; the number k of clusters;
Output: cluster labels of each view H = {H (v)

|v =
1, 2, . . . , s}, H (v)

= {h(v)1 . . . .h(v)n };
Initialize:
1. normalize and centralize the feature vectors in each view;
2. use K-means clustering to get cluster labels H (v) in each
view;
3. select k samples closest to each cluster to form S(v) =
{s(v)1 . . . .s(v)k };
for t = 1 to iter do

forv = 1 to s do
4. exchange the cluster labels between different views, get

projection matrix by (17) in each view and project the
samples into subspace;

5. use K-means clustering with initial points S(v) to obtain
the new cluster labels in each view;

6. choose the samples closest to the clusters to update S(v);
end for

end for

and the local structure information, it can be found that the
complexity of calculating local structure is greater than that
of global structure. Therefore, the global and local structure
construction has the time complexity of O((d (v))2n). In gen-
eral, the time complexity of K-means clustering is related
to the number of samples, the dimensionality of the data,
the number of clusters and the number of iterations, which
can be expressed as O(knf (v)g). Finally, the time complexity
of MCGLP algorithm can be expressed as O((knfmaxg +
d2maxn)st), where fmax = max(f (v)) and dmax = max(d (v)),
v=1, 2, 3, · · · , s.

3) CHOOSE THE INITIAL POINTS OF K-MEANS CLUSTER
It is generally known that K-means clustering is affected
by the initial points, which may lead to the final clusters
being trapped in the local optimum rather than the global
optimum. Here we perform the experiment on Iris dataset to
reflect this phenomenon. Iris dataset is collected by Fisher,
and contains 150 samples, 4 attributes, 3 classes. Fig. 2
displays the original dataset, and marks the samples from the
different classes with different colors. Red, green, and blue
color symbols represent the samples from the first, second
and third class, respectively.

Fig. 3 shows the clustering result obtained by K-means
when trapped in local optimum. In this figure, the three black
stars denote the initial cluster centers, and the three purple
diamonds denote the cluster centers obtained by K-means.
The red, green and blue symbols represent the clustering
results obtained by K-means. From the clustering results of
this figure, it can be seen that when two initial cluster centers
fall into the same class, K-means will split the original single

FIGURE 2. Iris dataset with three clusters.

FIGURE 3. Local optimum of the K-means on Iris dataset.

cluster into two clusters, and merge the original second and
third cluster into one cluster. From this result, we can see
that the K-means algorithm is unstable, and does not always
guarantee the global optimum.

In order to avoid the convergence of the algorithm to the
local optimal solution, a multiple-attempt strategy inMCGLP
is adopted to select the final cluster centers. Specifically,
MCGLP applies K-meansmultiple times to yield the different
clustering centers, and selects the clustering result that makes
the objective function minimum, thus avoiding the problem
of the local minimum point.

IV. EXPERIMENTS
To verify the correctness and effectiveness of the proposed
algorithm, the experiments are performed on the synthetic
dataset, the text dataset and the image dataset.

A. EVALUATION METRICS
In this paper, two clustering evaluation indexes are used
respectively: Cluster Accuracy (CA) [26] and Normalized
Mutual Information (NMI) [27].

Clustering accuracy (CA) is calculated by matching the
cluster labels obtained by cluster algorithm to the correct
class labels, and getting the best matching numbers divided
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by the total number of the samples.

CA =
map(H , S)

n
(18)

where H is the cluster labels obtained by the algorithm, S is
the correct class labels,map() function is the best mapping of
H and S, and n is the total number of samples.

Mutual information (MI) is a method to measure the
mutual dependence between two random variables in prob-
ability theory and information theory. Suppose two random
variables X and Y . MI determines how similar the joint
distribution p(x, y) is to the products of factored marginal
distribution p(x), p(y) and can be defined as:

I (X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log(
p(x, y)
p(x)p(y)

) (19)

Normalized mutual information (NMI) lies between 0 and
1 and larger values indicate more accurate clustering labels.
NMI used in this paper is:

U (X ,Y ) = 2R = 2
I (X;Y )

H (X )+ H (Y )
(20)

H (X ) =
n∑
i=1

p(xi)I (xi) =
n∑
i=1

p(xi) log2
1

p(xi)

= −

n∑
i=1

p(xi) log2 p(xi) (21)

where H (X ) and H (Y ) are entropy of X and Y , respectively.

B. SYNTHETIC MULTI-VIEW DATASET
For the convenience of visual observation, we apply MCGLP
on the reconstructed wine dataset to verify the correctness
of this algorithm. The wine dataset is a data collection from
three different breeds of wine produced in the same area of
Italy. The dataset contains 178 samples, 13 attributes. The
first, second and third class contains 59, 71, and 48 samples,
respectively. Here we split the 13 attributes into two views,
the first 6 attributes form the first view, and the last 7 attributes
form the second view. The following experiment on the
reconstructed wine dataset proves that MCGLP can itera-
tively adjust the projection matrix, so that it can get better
clustering performance in the subspace.

FIGURE 4. Subspaces of two views on wine dataset in the first iteration
of MCGLP.

Fig. 4 shows the distribution of the wine dataset in the two
views’ subspaces when the MCGLP algorithm is first iter-
ated. Fig. 4 (a) and (b) represent the subspaces of View1 and

FIGURE 5. Subspaces of two views on wine dataset in the third iteration
of MCGLP.

FIGURE 6. Subspaces of two views on wine dataset in the fifth iteration
of MCGLP.

View2, respectively. Red, blue and green symbols represent
the samples from three different categories. FromFig. 4, it can
be observed that in the early iteration stage of MCGLP, the
samples of different categories are mixed in the subspace,
especially in View1, and thus it is difficult to distinguish
between the green labeled class and the blue labeled class.

Fig. 5 and Fig. 6 show the subspaces of two views for the
wine dataset in the third and fifth iteration ofMCGLP, respec-
tively. From the result, it can be seen that as the number of
iterations increases, the discrimination between the different
classes becomes more apparent.

FIGURE 7. Subspaces of two views on wine dataset in the first iteration
of MCGLP.

Fig. 7 shows the subspaces of two views on wine dataset in
last iteration of MCGLP. Compared with Fig. 5 and Fig. 6,
it is found that at the later iteration stage of MCGLP, the
samples from different categories can be well differentiated
in the two views, and the clustering accuracies of 92.13%
and 87.07% are finally obtained in two views, respectively.
These experimental results show that MCGLP can employ
the clustering information of different views to continuously
adjust the subspaces, so that better clustering results are
achieved during the iteration.
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FIGURE 8. CA curves on wine dataset changed as the iteration increases.

Fig. 8 shows the clustering accuracy (CA) curves obtained
byMCGLP in two views on the wine dataset as the number of
iteration increases. From Fig. 8, we can see that the clustering
accuracy does not monotonically increase with the number
of iterations, but the final clustering result is better than the
initial clustering result.

From the above experimental results on the wine dataset,
it can be observed that MCGLP exchanges the clustering
information among the different views and continuously
adjusts the projection matrix U to make the samples from
the different classes in the subspace more easily distinguish-
able, thereby achieving better clustering results. The above
experiment can prove the feasibility and effectiveness of the
proposed MCGLP algorithm.

C. REAL-LIFE MULTI-VIEW DATASET
To examine the effectiveness of MCGLP, we select two text
datasets and one image dataset. Table 1 shows the basic
information of each dataset.

TABLE 1. Basic information of datasets.

We choose three algorithms to compare with the proposed
algorithmMCGLP. Three algorithms are as follows: Principal
component analysis (PCA) plus K-means clustering, Locality
Preserving Projection (LPP) plus K-means clustering and
subspace co-training multi-view clustering (CoKmLDA). For
the sake of fairness, the dimensionality of subspace in all
algorithms is set to K-1 where K is the number of clusters.

1) 3SOURCES DATASET
We select 3sources dataset, which is composed of news
reported by BBC, Reuters and Guardian. In this dataset, 168

TABLE 2. CA of four algorithms on 3sources dataset.

TABLE 3. NMI of four algorithms on 3sources dataset.

TABLE 4. CA of four algorithms on ads dataset.

news are reported in three agencies, 194 news are reported
in two agencies, and 53 new are reported in single agencies.
We choose the news reported in all three agencies to construct
a new dataset. There are 6 classes in this dataset which are
business, entertainment, health, politics, sport and technol-
ogy. Each class contains about 28 news. Table 2 and Table 3
show the CA and NMI on the 3sources dataset, respectively.

The above results in Table 2 and 3 show that the clus-
tering results obtained by MCGLP in 3sources dataset are
significantly better than the other three algorithms. Compared
with the single-view algorithm (PCA+K-means and LPP+K-
means), the multi-view clustering algorithms (CoKmLDA
andMCGLP) can achieve better performance than the single-
view clustering algorithms; compared with CoKmLDA,
MCGLP can obtain better clustering performance due to the
incorporation of global and local structure information in
dimension reduction.

2) ADS DATASET
This dataset represents a set of possible advertisements on
Internet pages. The features encode the image’s URL and alt
text, the anchor text, words near the anchor text and so on.
The task is to predict whether an image is an advertisement
or not. The ads dataset consists of 3 views, 3279 samples
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TABLE 5. NMI of four algorithms on ads dataset.

TABLE 6. CA of four algorithms on mfeat dataset.

TABLE 7. NMI of four algorithms on mfeat dataset.

and 2 classes. Table 4 and Table 5 show the CA and NMI
obtained by four algorithms on the ads dataset, respectively.

From the results in Table 4 and 5, it can be seen that
MCGLP is slightly better than the other three algorithms.
At the same time, compared with the single-view algorithm,
the multi-view clustering algorithm, whether it is CoKmLDA
or MCGLP, has a relatively small difference in CA between
different views. These results show that the multi-view clus-
tering algorithm canmake full use of the information between
different views, making the final clustering results tend to be
consistent. Compared with CoKmLDA, MCGLP is slightly
better than the CoKMLDA in the average accuracy rate due
to the use of local structure information in MCGLP.

3) MFEAT DATASET
Mfeat dataset consists of features of handwritten numeral
(‘0’-‘9’) extracted from a set of Dutch utility maps. Every
sample has been digitized in binary images. These digits
are represented in terms of the following six feature sets:
Fourier coefficients of the character shapes, profile correla-
tions, Karhunen-Love coefficients, pixel averages, Zernike
moments, and morphological features. This dataset con-
tains 6 views, 2000 samples, 10 classes (‘0’-‘9’), and each
class has 200 samples. Table 6 and Table 7 show the CA and
NMI on the Mfeat dataset, respectively.

FIGURE 9. Subspaces of the Mfeat dataset obtained by MCGLP.

From the results in Table 6 and 7, it can be seen that
MCGLP does not achieve better clustering results than the
other algorithms in individual view, but the average accu-
racy is higher than the other algorithms, indicating that
MCGLP is superior to the other three algorithms in clus-
tering performance. Compared with the multi-view algo-
rithms CoKmLDA and MCGLP, although the single-view
algorithm can achieve better results in individual views,
it does not employ this useful information to improve the
clustering performance in other views, so the overall perfor-
mance is not as good as that of the multi-view clustering
algorithm.

Furthermore, since MCGLP uses the idea of cooperative
learning to guide the subspace formation, it can preserve the
clustering structure of the whole data into the subspaces of
each view. To validate this advantage of MCGLP, we take
Mfeat dataset as an example and use the visual method to
examine the effectiveness of subspaces. Fig. 9 is the final
subspaces of each view obtained on Mfeat dataset. In Fig. 9,
the symbols with the same color represent the samples from
the same class. From the Fig. 9, we can see that samples
belongs to the same class are clustered in a shape of ‘ball’.
The results show that the proposed algorithm keeps global
structure information and local structure information, which
is helpful to improve the cluster.

4) DISCUSSION OF SUBSPACE DIMENSIONALITY
How to determine the dimension number p of the subspace
is very important in dimension reduction. For the clustering-
based dimensionality reduction, some researchers [28]–[30]
have already done the theoretical analysis and experimental
studies on this problem. They have pointed out that in general,
mapping the original data into K − 1 space is a good choice
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TABLE 8. NMI of four algorithms on mfeat dataset.

FIGURE 10. CA under different subspace dimensions.

where K is the number of clusters. However, p = K is also
a good choice in many cases. The additional basis vector can
be chosen for a particular emphasis that could help to search
for broader configuration space and avoid being prematurely
trapped by a local minimum.

In order to verify the above idea, the experiments are
carried out on the Mfeat dataset. Specifically, the dimension
number p of subspace in MCGLP is set from 1 to 12 and
the corresponding clustering accuracies are recorded. Table 8
gives the clustering accuracies of MCGLP obtained on dif-
ferent views under different subspace dimensions. Fig. 10
shows the curves of clustering accuracy on each view as
p increases. Fig. 11 shows the changing curve of average
clustering accuracy as p increases.
By observing Table 8 and Fig. 10, it can be seen that when

the dimension of the subspace is 9, the clustering accuracy of
MCGLP on View 1 and View 2 is higher; when the dimension
of the subspace is 10, the clustering accuracy of MCGLP on

FIGURE 11. Average CA under different subspace dimensions.

View 3, View 4 and View 5 is higher. From Fig. 11, it is
observed that when the dimension of the subspace is set to 10,
the average accuracy of MCGLP is the highest; when the
dimension of the subspace is greater than 10, the average
accuracy does not increase obviously. From this result, we can
see that when the dimension of subspace is set to K or K −1,
MCGLP can achieve better clustering results. The experi-
mental results again support the conclusion of the subspace
dimension obtained from the existing literature. In summary,
K andK−1 are both good choices of the subspace dimension.

V. CONCLUSION
In this paper, we propose a multi-view co-training clus-
tering algorithm based on subspace structure preserving.
By preserving the clustering structure into subspace, this
algorithm obtains subspace clustering results in a single view
and then uses this result to guide subspace clustering in
another view. In this approach, the differences and com-
plementarities among the multiple views are fused together
to form the final clustering partition. Compared with the
existing algorithms, this algorithm considers both the global
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structure and local structure together, which is helpful to
improve the accuracy of clustering. The results on artificial
dataset and multi-view datasets show that the proposed algo-
rithm is effective and can achieve better cluster result than
other algorithms. At the same time, we discussed the choice
of the dimensions of the subspace, and explained that the
dimension of the subspace is suitable for selecting K and K-1,
where K is the number of clusters.
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