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ABSTRACT Mental workload has been widely estimated based on electroencephalography (EEG) in the
frequency domain. However, simple frequency features are not entirely accurate indicators of the cognitive
load because surface EEG signals are weak, nonstationary and randomness. We hypothesize that graph
methods, which analyse the relationship between each point and other points of the EEG signals, may
provide a more precise identification of the mental load. To investigate this hypothesis, we aim to identify
the optimum graph features from 14 channel EEG recordings (sampling rate= 128 Hz) in order to detect the
high cognitive load related to multitasking. Three graph features: mean degree d , clustering coefficient c, and
degree distribution p(k), are extracted from 48 subjects EEG records. Each experimental subject conducts two
tasks: without tasks and with a simultaneous capacity task, respectively. After the experiment is completed,
the feeling of the subject with the cognitive load tags in three types: low load, medium load, and heavy
load. The optimal features of these three levels of the subject sensation and two types of cognitive load in
different tasks are selected on the basis of statistical analysis. Then all graph features are forwarded into
a support vector machine (SVM) and a decision tree to conduct objective scoring classification and a three
subjective rating classification, respectively. Based on the present results,channels O2, T8, FC6, F8, and AF4
are considered optimal for a more efficiently estimation of the cognitive load. c associated with F8 and T8
during low cognitive load is significantly lower than those associated with high cognitive load (p < 0.001).
Using three graph features, the accuracy of identifying two types of mental load is 89.6%. Current findings
suggest that the mental workload associated with multi-tasks can be accurately assessed using the graph
approaches to EEG data.

INDEX TERMS Mental load, fatigue evaluation, difference visibility graph, clustering coefficient, channel
selection.

I. INTRODUCTION
The cognitive workload involves studying the dynamic rela-
tionships between the resources necessary to accomplish a
task and the ability of the brain to adequately supply those
resources [1], [2]. It is defined as the total mental activity
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imposed on a subject’s cognitive system during a particular
period of work. Measurement of cognitive load can be used
to optimize the learning process, promote alertness, enhance
work efficiency [3], [4], and improve driving performance.
According to the literature, the cognitive load is not only
depend solely on the complexity of the task, but also includes
the skills of subjects in the given task [5]. The management
of cognitive load is fundamental and is widely used in various
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fields, such as it applications in estimating the fatigue index
experienced by professional drivers, and evaluating mental
health, medical performance, and education effectiveness [6].

Cognitive load can be evaluated through subjective or
objective measurements [7], [8]. The former assesses the
causal relationship between various tasks using self-reporting
to reduce human cognitive load. The lattermainly investigates
the measurement function of physiological signals, such as
electroencephalogram (EEG) [9], electrocardiogram (ECG),
galvanic skin response (GSR), respiration, and heart rate
variability (HRV) [10]. Among these signals, EEG has been
widely used in the study of mental load due to its fast data
acquisition and convenient usage in sport or driving cars.

Traditionally, the analysis of EEG data in evaluating cog-
nitive load is either in the frequency domain or in the time
domain. The frequency domain analysis is mainly based on
δ wave (0.1-4Hz), θ wave (4-8Hz) α wave (8-12Hz), and β
wave(12-30Hz) frequency bands. For instance, the power ofα
waves declined significantly on the channel FP1 and FP2 for
driving tasks [11]. In an over-arousal state, the alpha activity
is suppressed [12]. Compared with beta rhythm, alpha rhythm
response more significantly to mental stress in the prefrontal
cotex [13]. The perceived mental effort was in correlated with
the beta frequency on F7 channels [14]. A robust decline
in right posterior alpha power may be observed for higher
arousal [15]. However, the frequency domain analysis might
produce conflicting results as shown in [13] (alpha rhythm
has more advantages than than beta) and [14] (beta is better
than others).

Recently, complex network methods have been applied in
social networks [15] and electromagnetic signal processing
[16], especially used to evaluate cognitive load using multi-
channel EEG as graph nodes [16]–[20]. For instance, it has
been demonstrated that while driving, the graph degree in the
frontal brain area increases [18]. The α wave has a higher
graph degree and clustering coefficient c̄ in arousal in driv-
ing state as compared to the eye-closed state [19]. Another
study found that stress status (such as driving) has higher
c̄ features than normal status [20]. Therefore, these results
[18], [19] differ from that decreased α waves in the case of a
single-channel in the frequency domain [11], [12], [15]. Also,
whether by car or outdoors, people alwayswear a comfortable
EEG headset which has less than 16 channels in general,
The 16 channels EEG could generate 16 nodes according
to currently network constructing methods. Thus, existing
network approaches could not obtain high accuracy results.
It is necessary to investigate whether the graph features of
the portable EEG could be effective in identifying cognitive
load using a fewer channel EEG signals.

In complex networks, degree distributions p(k) has widely
studied in EEG signals. Shang et al. [16] showed that p(k)
associated with EEG could be as features from multi-channel
EEG signals to identify cognitive load. Zhu et al. [29] demon-
strated that the clustering coefficient over degree distributions
p(k) of DVG associated with sleep ECG satisfy the power
law as well. However, no one studied whether p(k) of a

FIGURE 1. Flowchart of the proposed methods.

complex network associated with multitasking met which
type of distributions and p(k) of high stress satisfies the law
of power or not.

In this article, the cognitive load is evaluated based on
subjective feeling ratio and objective task levels with graph
methods, such as degree distributions and clustering coeffi-
cient, using comfort electroencephalography (EEG) signals
without liquid gel injection. The 14 channel EEG data is
collected using a wearable device from 48 subjects during
Simultaneous Capacity (SIMKAP) task and as a reference
during no task [21]. Meanwhile, the subjects labels three
levels of feeling when conducting each task. Data on each
EEG channel is converted into a graph through oblique
visibility graph algorithms. Then three types of graph fea-
tures: mean degree, c̄, and degree distributions are extracted.
To identify the difference between the simultaneous task
and non-task, and the three emotional categories of sub-
ject, statistical analysis of graph degree, clustering coeffi-
cient between non-task and simultaneous task is applied.
Lastly, a support vector machine and a decision tree are used
to classify the cognitive load from those extracted graph
features.

The main contribution of this work can be summarized
in three main aspects. Firstly, it develops a graph approach
from a single-channel EEG to estimate cognitive load dif-
ferent from existing graph methods that generally use mul-
tiple EEG channels (e.g. 14 channels). Secondly, it is found
that the clustering coefficient can be identified the cogni-
tive load efficiently than those of degree features. Lastly,
it demonstrates that, combined with three graph features
(mean degree, clustering coefficient, and degree distribu-
tion), the proposed method can achieve high accuracy com-
pared to current time and frequency domain methods. The
advantage of this graph method is to investigate the tra-
ditional graph feature degree and clustering efficient as
well as estimates the degree distribution of the cognitive
load.

II. METHODOLOGY
The EEG data analysis procedure is described in Fig 1, which
mainly includes four steps.
• The EEG raw data of 48 subjects were collected from a
14-channel portable EEG, one channel of EEG is shown
in the subfigures when they conducted tasks and label
their feelings.
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FIGURE 2. 20s EEG of the first subject (a) No tasks of F8 channel,
(b) SIMK tasks of F8 channel, (c) No tasks of AF4 channel, (d) SIMK tasks
of AF4 channel.

• Each channel of EEG signals was converted into an
oblique visibility graphs (OVG) .

• Three typical features (mean degree, clustering coeffi-
cient, and degree distribution) were extracted from the
OVG of each channel and each subject.

• The optimal features and EEG channels were selected
through the non-parametric Wilcoxon test between
two tasks and among three types of subject feelings,
respectively.

• The extracted graph features were forwarded int to two
classifiers, a support vector machine (SVM) technique
and a decision tree classifier, to conduct binary classifi-
cation, non-task and multi-task, as well as the classifi-
cation of three self-reported feelings in different tasks,
respectively.

A. EXPERIMENTAL DATA
The Simultaneous Task EEG Workload (STEW) EEG
database (48 subjects) used in this article was obtained from
the Nanyang Technological University [26]. Each subject
performed the Simultaneous Capacity (SIMKAP) test. The
recordings from each subject include 14 channel EEG sig-
nals from the Emotiv EPOC EEG headset: AF3, F7, F3,
FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4
according to the 10-20 international system. The signal
was sampled at 128 Hz, and the duration of each trial
was 150 seconds. Fig 2 illustrates the EEG of F8 and
AF4 channel time-domain waveforms for Non-tasks and
SIMK-tasks.

B. OBLIQUE VISIBILITY GRAPH METHOD
The oblique visibility graph (OVG) [27] is a powerful method
for transferring a time series into a graph G(V ,E). A time
point xi is mapped into a node vi. The relation between any
two points vi, vj is represented as an edge eij. The value is
defined as
xj − xk
j− k

>
xj − xi
j− i

∧ (xk ≤ xi) ∨ (xk ≤ xj) ∧ i 6= j− 1 (1)

FIGURE 3. 20 points of (a) EEG in F8 and (a) the example of OVG, where
the first point of (a) is the node v1 of (b) .

Fig 3 shows an OVG associated with a time series, which
was collected from subject Sub03 recorded in the STEWEEG
data set.

The number of time points in Fig 3 (a) are 20, the
first 7 values are Y = (3751.79,3747.18, 3753.33, 3765.64,
3766.15, 3767.69, 3784.10). The first to the seventh node in
Fig 3 (b) is associated with the first to seventh value in Y
in Fig 3 (a) respectively. A node degree is one of the basic
features to measure graphs. The degree di is the number of
edges from node vi. For example, in Fig 3 (b), d1 = 2 and
d3 = 0.

C. MEAN DEGREE AND CLUSTERING COEFFICIENT
Besides degree, there are several measuring parameters in
complex networks, such as clustering coefficient, average
path, etc [28]. The average degree d of a graph with n nodes
is defined as:

di =
1
n

n∑
j=1

dj (2)

The clustering coefficient (c) is another typical property of
the graph, the ci of a node vi is the number of edges between
the neighbors of vi divided by all possible edges between the
neighbors of vi. The average c of a graph G with n nodes is
defined as:

cj =

∑dj
k=1

∑dj
s=1 ajkasjaks

dj ∗ (dj − 1)
(3)

c =
1
n

n∑
j=1

cj (4)

where a is the adjacency matrix of G. Similar to the graph
clustering algorithm in [27] for a n > 3000 points EEG series,
the di is always less then 30 as shown in previous work [27].
Thus, we could always calculate equation 3 within constant
times (30 × 30 repeat time). Therefore, the computational
complexity of the c could assume within O(n).

D. DEGREE DISTRIBUTION
The degree distribution (p(k)) is a probability that a node has
a degree of k . It is obtained by counting the number of nodes
having degree k divided by the total number of nodes. Let
p(k) be denoted as the proportion of degree k of an OVG.
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The total number of nodes in Fig 3 is 20, the p(k) of degree
from 0 to 6 is p(k) = ( 3

20 ,
10
20 ,

2
20 ,

2
20 ,

1
20 ,

1
20 ).

E. DECISION TREE
One of the classification methods in this article is to use a
decision tree model to conduct cognitive classification. It is
also called binary decomposition technique. The tree splited
from a root node (represent a choice of a graph feature) to
grow into two nodes, each nodes represent another graph
feature and is split again into another sub tree. This article
used the R package RPART [30] to implement this decision
tree.

F. SUPPORT VECTOR MACHINE
To measure the performance of the cognitive load classi-
fication, a support vector machine (SVM) [31] is selected
to conduct the binary classification. The SVM has been
successfully used in alcoholic EEG classification [32] and
fatigue identification [27], [33]. It can perform both the linear
space discrimination and nonlinear classification by choosing
different ‘‘kernel’’ functions which can be linear, polynomial
kernel, radial basis function (RBF) and sigmoid. In this arti-
cle, the SVM algorithm with RBF kernel [34] is implemented
in R package e1071.

III. EXPERIMENTAL RESULTS
To evaluate the performance of the methods in Section II,
the DVG algorithm is implemented in C program language,
while the SVM and statistical analysis are implemented by R.
The experiments include three parts: (1) analysis clustering
coefficient, degree distribution and mean degree of DVG
associated with two tasking EEGs; (2) analysis clustering
coefficient, degree distribution and mean degree of DVG
associated with three feelings of self-reported; (3) evaluating
classification accuracy of the DVG features by different lags
on two different sizes of data sets. The SVM and RPART
involve the training stage and the testing stage, with the size
of training data equals to the size of testing sets.

A. STATISTICAL ANALYSIS ON NON-TASK VS SIMK-TASK
The mean degree (d) and Average clustering coefficient
(c) of 14-channel EEG signals are drawn in Figs 4 and 5
respectively. In relation to the status of the Non-task, the
SIMK-task has higher values of c and d . The optimal channels
are selected by the following two tests: Firstly, Shapiro-Wilk
tests show that the c, d of both groups do not satisfy normal
distributions [35]. Then non-parametric Wilcoxon tests are
applied to test the difference k between two tasks among
different EEG channels. There are only two channels, FC6
and T8, which shows a significant difference between the two
tasks (p < 0.05).

However, non-parametric Wilcoxon tests indicate that
every channel shows a significant difference (p < 0.05)
except FC5 (p = 0.221) during two tasks. More importantly,
channels on the right hemisphere:O2, T8, FC6, F8, and AF4
show a very significant difference in two tasks (p < 0.0001).

FIGURE 4. Mean degree associated with the two tasks at 14 channel EEGs.

FIGURE 5. The clustering coefficient associated with the two tasks
at 14 channel EEGs.

FIGURE 6. The degree distribution of three optimal channels associated
with the two tasks (the difference occurred after degree larger than 13).

Based on the mean degree and clustering coefficient plots
in Figs 4 and 5, channel T8 can potentially be the optimal
channel for classification of two types of tasks with two fea-
tures degree and clustering coefficient. Next, then the Degree
distribution (p(k)) of the optimal channels F8 and T8 are
drawn in Fig 6. Obviously, it is difficult to use p(k) between
degrees 0 and 10 to identify those two tasks.

B. STATISTICAL ANALYSIS ON SUBJECTS FEELING
Mean degree (d̄) and average clustering coefficient (c̄)
of 14-channel EEG signals based on subjects’ feelings
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FIGURE 7. Mean degree associated with 14 channel EEG with three type
feelings.

associated with two tasks are drawn in Figs 7 and 8. Com-
pared to the low and middle self-reported feeling, the high
self-reported feeling has higher c̄. The optimal channels are
selected by two tests: firstly, Shapiro-Wilk tests show that
the d̄ and c̄ of three groups does not satisfy normal distribu-
tions. Secondly, non-parametric pairwise Wilcoxon tests are
applied to compare two graph features between low, middle,
and high workload feeling.

Unlike the two task cases in Fig 4, there has no significant
difference among low, middle and high workload feeling
using mean degree features (the smallest p = 0.058 between
low load feeling and high load feeling in AF6 channel)
in Figs 7 and 8. On the mean clustering coefficient case,
the channels F8, FC6, and T8 show a significant differ-
ence between low feeling, middle and high workload feeling
(p < 0.05). In the three types of feeling, only three channels
can be selected based on statistical analysis. The Degree
distribution (p(k)) of two optimal channels F8 and T8 are
drawn in Fig. 9. It is clear that the degree between middle and
high workload feelings is not significantly differed among all
degrees.

C. EVALUATING THE CLASSIFICATION ACCURACY WITH
TWO TYPES OF CLASSIFIERS
Two types of classification are conducted using the
above optimal selected features and channels in this
section. The first type is to identify the simultaneous
task from non-task subjects. The second one is to clas-
sify the subject’s feelings after they complete the tasks.
The results for the first type of classification are shown
in Table 1.

It can be seen the two classes are based on mean degree,
clustering coefficient and degree distribution appear using
optimal channels in Table 1. The feature candidates c and
d of F8 and T8 has no significant difference between SVM
and PRART.When the number of optimal channels increased
from single channel to two channels: F8 and T8, and the
number of features increases from 1 to 3, the classification
accuracy of SVM is improved to 87.5% of ACC and with

FIGURE 8. The mean clustering coefficient of OVG at each channel with
three type feelings.

FIGURE 9. The degree distribution of the optimal channels associated
with three feelings.

TABLE 1. Accuracy for two tasks cognitive load classification.

0.75 Kappa. When the epoch length is 384, the graph features
from three optimal channel F8, T8, andAF4 achieve 89.6% of
ACC and with 0.79 kappa accuracy by the SVMmethod. The
expected two tasks classification accuracy by random chance
is 83.77% of ACC and with 0.67 Kappa accuracy by the SVM
method.

Table 2 shows the accuracy of three self-reported feelings
of classification using SVM and RPART classifies. Firstly,
all features are observed on three group classification with
two classifiers in Table 2. Secondly, the performance are
poor than those of two tasks classification if the features are
from the same channels. However, it is possible to obtain a
high performance by picking the highest optimal combined
channels and features.
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TABLE 2. Accuracy for the three self-reported cognitive load
classification.

It can be seen that high performance are based on three
graph features, the clustering coefficient c̄ and two degree
distribution p(13), p(16) as shown in Table 2.When the epoch
length is 384, the classification accuracy between SVM and
PRART shows that features of DVG in channels F8, T8, f8,
AF4 have no significant difference. However, using the graph
features (c̄, p(13) and p(16)) from three optimal channel (F8,
P7, and P8), features of the classification accuracy increase
to 79.5%, and 0.67 kappa by the SVMmethod. The expected
three self-reported feelings classification accuracy by random
chance is 75% of ACC and with 0.5 Kappa accuracy by the
SVM method.

IV. DISCUSSION
The study examines the impact of cognitive load based on
graph features on EEG data. This study’s findings suggest
that the clustering coefficient has an effective performance
in identifying the cognitive load using EEG signals. The
accuracy can achieve 77.1% by just using a single fea-
ture: clustering coefficient of F8 channel. Previous results
[26] on the same database have obtained 75% using 5-fold
cross-validation for the tasks classification, whereas 80% as
training and 20% as testing. Thus, the graph feature has
high performance for identifying the cognitive load based
on objective rating. The accuracy of the proposed method
is 89.6% using SVM (50% as training and 50% as testing),
which is 14.6% higher than those previous results on the same
datasets for the tasks classification.

TABLE 3. Compared with existing cognitive load classification on two
level arousal.

Table 3 compares the existing mental load classification
based on tasks. The subjective sentiment classification results
using the proposed method achieved 79.5% accuracy with
only three features, which is also 10.3% higher than those
of the previous methods [26]. Regarding the three types
of classification of feeling, we also obtain 69.2% accuracy
with 28 features [26]. It should be noted that the expected
classification accuracy by random chance in the previous
studies is 41.7% [26].

The other contribution of this article is to find that the
optimal EEG channels of cognitive load measurement are not
only related to the frontal area (F8 and AF4) but also related
to temporal regions(T8). Channels (F8, T8 and AF4) with the
three features (c, d and p(14)) have the highest classification
accuracy for different tasks. In addition, we suggest that
the clustering coefficients of both F8 and T8 channels are
the optimal channels for discriminating cognitive load from
individual tasks. These findings also reveal that the channels
on the right hemisphere: F8 and T8 show a very significant
difference from two tasks (p< 0.0001), where F8 are similar
to the findings of the previous work. Working cognitive load
measures are significant predictors of multitasking [26]. For
the ‘‘No task’’ condition, the delta activity is concentrated
around the AF4 and F8 position, and the theta activity is
present in AF4, F8, and T8 along with alpha and beta activity.
For ‘‘SIMKAP’’ condition, FC5, AF4, and F8 are activity
in the bands of the delta, theta, alpha and theta [26]. Also,
So et al. [25] discovered that the frontal area was sensitive
to cognitive loading. However, this study shows that the right
temporal region T8 can also be efficiently applied in cognitive
load detection.

Regarding the complexity of the proposal method, the
degree and clustering coefficient features can be calculated
in O(n) respectively, where n is the number of points in the
time series. Other contribution is to find that the optimal
EEG channels of cognitive load measurement and related
to the frontal area (F8 and AF4). It is slightly slower than
those of power spectrum methods; the latter has the same
computational complexity as that FFT speed. Excluding EEG
sampling time, the process time of the proposed method is
within one second on a PC with IntelrCoreTM i7-4790 @
3.60 GHz CPU to complete extracting three graph features
and classification verification (see Tables 1 and 2).

This study’s limitation is that the only two graph topol-
ogy, degree and clustering coefficient, are applied in fea-
tures extraction. There has many other graph topology, such
as path, community or strength. Furthermore, it is unclear
whether the gender, age or patients can affect the cognitive
load recognition. In the feature, the accuracy of cognitive load
identification could be improved by increasing the number
of graph features. In addition, it is also possible to measure
the cognitive load to differentiate mental diseases better and
improve the operator efficiency of the brain-computer inter-
faces, especially on fatigued driving detection.

V. CONCLUSION
In this article, three graph features are applied to identify
cognitive load tests based on differences tasks and feeling
of subjects. The clustering coefficient features are higher
during the multi-task compared to those of the rest states.
The F8, P8, T8, and AF4 channels in the right hemisphere
of high cognitive load are significantly different from those
of low cognitive load (p-value < 0.0001). It is the first time
investigating mental EEG with graph methods and showing
that both the temporal and the frontal area are sensitive to high
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cognitive load. In contrast, the previous work only found in
the frontal area [25], [26]. Meanwhile, these results show that
the graph features of EEG on tasks satisfy the exponential
distributions. The proposed methodology is helpful in identi-
fying fatigue and optimizing learning.
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