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ABSTRACT Stroke is the second most common cause of death in developed countries. Rapid clinical
assessment and intervention have a major impact on preventing infarct growth and consequently on patients’
quality of life. Clinical interventions aim to restore perfusion deficits via pharmaceutical or mechanical
intervention. Regardless of which reperfusion procedure is used, clinicians need to consider the risks and
benefits based on multi-modal neuroimaging studies, such as MRI scans, as well as their own clinical
experience. This intricate decision-making process would benefit from an automatic prediction of the final
infarct, which would provide a estimation of tissue that will probably infarct. This paper introduces a deep
learning method to automatically predict ischemic stroke tissue outcome. The authors propose an end-to-end
deep learning architecture that combines information from perfusion dynamic susceptibility MRI, alongside
perfusion and diffusion parametric maps. We aim to automatically extract features from the raw perfusion
DSC-MRI to further complement the information gleaned from standard parametric maps, and to overcome
the loss of information that can occur during perfusion postprocessing. Combining both data types in a
single architecture, with dedicated paths, we achieve competitive results when predicting the final stroke

infarct core lesion in the publicly available ISLES 2017 dataset.

INDEX TERMS Stroke, magnetic resonance imaging, image prediction, deep learning, DSC-MRI.

I. INTRODUCTION

Ischemic stroke is a major cause of death worldwide [1].
Acute ischemia is caused by a sudden occlusion of one (or
more) of the arteries supplying blood to the brain [2], lead-
ing to a reduction of blood flow and triggering hypoperfu-
sion with hypoxia and neuronal paralysis. This state can be
reversible if timely reperfusion occurs alongside restoration
of the blood flow, but if persistent occlusion occurs, it may
progress to irreversible tissue damage (infarct core) [3].
Thrombolysis and mechanical thrombectomy are the estab-
lished procedures for restoring tissue reperfusion to salvage
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tissue at risk. However, both procedures are associated with
complications, including hemorrhage and vascular injury
[4], [5]. Therefore, assessment of the risks and benefits for
each patient and prompt identification of tissue at risk are
essential factors in the success of acute stroke therapy [6].
Furthermore, several pathophysiological factors need to be
considered, including location of the occlusion, other comor-
bidities, and the state of collateral circulation [7]. The latter
is a key factor to the clinical outcome [8], [9], as vascular
network with sufficient collateral flow will keep the neural
cells viable until they are rescued by reperfusion therapy [8].

Correct decision-making in the management of stroke
depends on the accurate differentiation of ischemic penum-
bra from the infarct core, requiring advanced neuroimaging,
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namely CT or MRI perfusion [10]. Both techniques detect
tissue at risk. CT remains the most commonly neuroimag-
ing technique due to its availability and rapidity. However,
multi-parametric MRI is more sensitive in detecting early
ischemic stroke, especially smaller ischemic lesions as well
as lesions in the posterior fossa. Perfusion Dynamic Sus-
ceptibility Contrast-enhanced MRI (DSC-MRI) is used to
assess the penumbra with whole brain acquisition across
time, during injection of a contrast agent [10]. From stacked
slices of 2D MRI acquisitions, forming a 3D volume, across
a time frame, 4D spatiotemporal data is generated, where
the intensity of each voxel varies across time due to the
bolus passage [11]. From this data, it is possible to generate
a set of standard parametric perfusion maps such as mean
transit time (MTT), time-to-maximum (Tmax), time-to-peak
(TTP), cerebral blood volume (CBV) and cerebral blood flow
(CBF). CBEF, CBV, MTT, TTP, and Tmax perfusion maps
can be viewed as surrogate parametric maps that summa-
rize the perfusion process, encompassing specific blood flow
dynamics. To obtain such maps, standard approaches first
require an arterial input function (AIF), that characterizes the
time-concentration curve in one of the largest arteries of the
brain. Then, the parametric maps are obtained by applying a
deconvolution to the time-concentration curve of each voxel
alongside the AIF. Since the AIF is patient-specific, the resul-
tant parametric maps are dependent on the flow rate of injec-
tion, and more importantly dependent on the cardiovascular
condition of the patient [12], [13]. However, automatically
detecting a regional artery near the infarct area is not always
technically feasible, due to the low resolution of the image on
which the artery needs to be selected. Therefore, the location
of the AIF, in clinical practice is mostly chosen in a major
vessel that can be visible on the input image. This practical
solution however, limits the accuracy due to known delay
and dispersion effects [14]. In clinical context, where time is
essential for the success of the treatment, manual detection of
AIF is unfeasible [12], because stroke is a dynamic process,
where in the absence of clinical intervention the hypoperfused
region becomes irreversibly damaged, leading to a growth
of the infarct core [10]. Predicting stroke lesion at a given
time since stroke provides important information about the
underlying dynamic process of a stroke lesion. In addition,
it may guide physicians in their time-critical decision-making
process. In this paper, we propose to automatically extract
feature maps from perfusion DSC-MRI data, with the goal of
complementing the standard parametric maps, and avoid the
possible loss of information when generating such parametric
maps. To do so, we present an end-to-end two-pathway multi-
data deep learning network that considers information from
the DSC-MRI perfusion acquisitions, and the standard para-
metric perfusion/diffusion maps to predict the stroke lesion at
a 90-day follow-up.

A. PREVIOUS WORK
Several methods have already been proposed to predict the
infarct core lesion based on multivariate linear regression
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models, decision trees, and Convolutional Neural Networks
(CNNs) [15]-[18]. In addition, since Ischemic Stroke Lesion
Segmentation (ISLES) 2016 & 2017 Challenges, which pro-
vide a public training dataset alongside a testing dataset
evaluated by an online platform, prediction of the infarct core
based on acute MRI Perfusion and Diffusion imaging has
gained higher interest in the machine learning community.
For a summary of the ISLES 2016 and 2017 results, please
see the summary paper by [19].

The majority of the proposed methods for stroke lesion
prediction only considers the standard parametric maps [19].
Only recently, perfusion DSC-MRI has been considered for
final infarct stroke prediction [20]-[24]. Amorim ef al. [20]
evaluated the use of attention models when merging feature
spaces extracted from standard parametric perfusion and dif-
fusion maps, and perfusion DSC-MRI acquisitions. Based on
the DSC-MRI simulator proposed by [25], Debs et al. [23]
employs the simulator as a synthetic data generator to
increase the robustness of a simple fully-connected CNN
architecture. The encoding of the perfusion images is
achieved by extracting 2D patches, where the first dimen-
sion comprehends the unrolled Moore’s neighbourhood
and the second one the temporal DSC-MRI acquisitions.
By adding clinically relevant data, the authors argue the need
for fewer real training data to robustly predict the final infarct
lesion. Using a similar data encoding, Giacalone et al. [22]
extracts temporal texture features from the local binary pat-
tern, which are then fed to a support vector machine to
classify the chances of survivability of each voxel. Both
proposals perform prediction of the final infarct lesion at
30-days, on a small testing patient cohort, where the acqui-
sition protocol needs to be restrained to 60 temporal acquisi-
tions. Moreover, the majority of the testing set encompasses
patients who didn’t receive thrombolytic therapy, therefore,
the testing data covers only the patients in whom the proba-
bility of irreversible tissue damage is higher. Ho et al. [26],
similarly to our work, proposed a deep learning architec-
ture that simultaneously captures spatio-temporal informa-
tion, designated CNN-contralateral. From pairs of patches
that contain the patch of interest and its contralateral patch,
the authors first focus on extracting temporal information.
Hence, a 2D convolutional layer is applied to each ele-
ment of the input pair, being the third dimension of the
3D filter equal to the number of temporal acquisitions.
Afterwards, both outputs are summed encoding the tempo-
ral information as channels and the data is processed along
the spatial dimensions. The results obtained in a private
dataset of 48 patients demonstrate the importance of the
proposal. However, the prediction of the stroke lesion is
performed in a short time-window of 3-7 days after treat-
ment. Instead of using DSC-MRI, but still performing predic-
tion of the final stroke lesion, Robben et al. [27] considered
spatio-temporal CT perfusion. The authors demonstrated the
capacity to avoid standard deconvolution processing meth-
ods by using the spatio-temporal data directly as input
to a Deep Learning neural architecture based on the one
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proposed by Kamnitsas et al. [28]. In addition, the method
of Robben et al. [27] combines imaging with clinical meta-
data, increasing its performance. Although not applied to
stroke lesion prediction, there are approaches that aim to
achieve a higher level of abstraction from the perfusion
DSC-MRI [29], [30]. Hess et al. [30] developed a deep
learning architecture to avoid the need for a deconvolution
step. The method aims to generate improved versions of stan-
dard parametric maps from an automatic machine learning
approach, which are independent of the underlying mathe-
matical foundations and drawbacks of the deconvolution.

B. CONTRIBUTIONS

This paper extends our previous work [21], presented at the
MICCALI conference, where the basic concept and method-
ology was presented along with preliminary results. In this
paper, we present an improved automatic multi-data deep
learning network for predicting the final infarct lesion, from
DSC-MRI perfusion and standard parametric maps. Since
standard perfusion and diffusion maps are generated from
kinetic models, we hypothesize that complementary infor-
mation to the standard clinical maps can be extracted from
the raw perfusion data to improve stroke outcome pre-
diction. Compared to our preliminary results presented in
Pinto ef al. [21], where various training stages per block
were required, here we propose an end-to-end training that
combines the information from the standard parametric maps
and the DSC-MRI simultaneously, which enables a better
interplay between features from different sources, improving
lesion outcome prediction.

Another contribution of our work is a fully automatic
pipeline that does not require the determination of a
patient-specific AIF when dealing with DSC-MRI data.
In our proposal, the temporal information is encoded as chan-
nels, where a deep neural network is responsible for extract-
ing spatio-temporal information of relevance, avoiding the
spatial variability associated with the definition of a reference
input function.

The remainder of the paper is organized in five sections.
Section II describes the methodology. Section III addresses
the setup for final infarct core tissue prediction. Section IV
addresses the discussion of the results. Finally, Section V
presents the main conclusions.

Il. METHODOLOGY

In this section, we first describe the perfusion dynamics
associated with the DSC-MRI for ischemic stroke. After-
wards, we detail the proposed two pathway deep learning
architecture, which aims to combine the features extracted
from the DSC-MRI acquisitions with the features extracted
from the standard parametric perfusion and diffusion maps.
Our motivation is to obtain a model aware of underlying
phenomena in ischemic stroke lesion across time, therefore
capable of predicting the final infarct lesion from perfusion
DSC-MRI, clinical maps.
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A. PERFUSION DSC-MRI IN ISCHEMIC STROKE

In the acquisition of the perfusion DSC-MRI, the arrival of
contrasting agent to the brain, the bolus, is responsible for
a drop on the MRI signal, and consequently for attenuating
the intensity values. The intensity attenuation is recovered as
the contrast agent is diluted by the circulation. This behavior
can be described by a time-attenuation curve. In the pres-
ence of an ischemic stroke, the bolus passage in the infarct
core region is mostly absent, so its intensity values barely
change across time. However, we may observe an attenu-
ation of the intensities in the hypo-perfused tissue due to
residual blood flow circulation or bolus dispersion [8], [31].
Figure la depicts the signal intensity behavior in a patient
with an acute ischemic stroke, during contrast agent injection.
In each voxel, the time-attenuation curve corresponds to a
time-concentration curve, since a higher intensity attenuation
corresponds to higher concentration of contrasting agent.

Signal Intensity

0 10 20 30 a0 50 60 70 80

Time Acquisitions

Signal Intensity

Signal Intensity

Time Acquisitions

()

FIGURE 1. Perfusion DSC-MRI time-attenuation curve of: (1a) an acute
ischemic stroke patient in the healthy tissue (green) and in the final
infarct core (red); (1b) DSC-MRI signal of acute ischemic patients before
applying the temporal pre-processing, and (1c) after extracting an aligned
subset of temporal acquisitions.
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FIGURE 2. Proposed pipeline that considers the raw-DSC-MRI data, along with standard parametric maps of perfusion and diffusion in a two-pathway
deep neural network. Intersection of paths comprehends concatenation of data.

Based on this observation it is possible through deconvolution
in time-space to obtain 3D MRI perfusion maps that charac-
terize different cerebral perfusion properties.

However, as can be seen in Figure 1b, there is a
misalignment in the temporal steps of the DSC-MRI. This
misalignment will affect the training of deep neural net-
works. To surpass this dispersion, we propose to align the
DSC-MRI scans across all patients by identifying and select-
ing a common temporal window where the bolus passage
occurred, as shown in Figure lc. We focus on identify-
ing the time-stamp where the average of intensities in the
whole brain is the lowest, corresponding to the highest sig-
nal attenuation and therefore the highest concentration of
contrast agent in the brain. This time-stamp characterizes
the point in time when the differences of perfusion between
healthy tissue, ill-perfused tissue and infarct core tissues are
higher [12]. We use the information on the time-step with
the highest concentration to define a temporal window of
size W centred on it. The method is encompassed by the
temporal pre-processing block shown in Figure 2, in the
data-processing and extraction module. After, the 3D MRI
acquisitions contained in the selected time window undergo
a bi-dimensional patch extraction, which is used as the input
of the neural network module (Figure 2), particularly the
data-driven DSC-MRI block where the temporal dimension
is modelled as channels.

B. DEEP LEARNING ARCHITECTURE

Based on neuroimaging scans acquired at the acute phase,
we assign to each MRI voxel one of two classes: healthy
tissue or stroke tissue that will appear as infarct at the 90-day
follow-up. To predict the final infarct core volume, the deep
learning module, shown in Figure 2, encompasses three func-
tional blocks: data-driven block, standard diffusion/perfusion
block and fusion block. The data-driven and standard dif-
fusion/perfusion blocks generate features from two diverse

VOLUME 9, 2021

groups of MRI data in parallel paths of the network. On one
hand, the standard diffusion/perfusion block extracts features
directly from 2D MRI patches of parametric maps, where the
perfusion maps result from a deconvolution step applied to
the raw DSC-MRI data. The deconvolution was performed
offline at the onset time acquisition, by a third party software.
On the other hand, the data-driven branch computes features
from DSC-MRI data. Given the different extracted feature
sets, the fusion block aggregates and elaborates over the two
inputs, as shown in Figure 2.

1) DATA-DRIVEN DSC-MRI BLOCK

The spatio-temporal information provided by the perfusion
DSC-MRI is considered in the Data-driven block. After
temporal standardization, 2D patches are extracted for the
selected time-acquisitions serving as input to the architecture.
We propose to characterize the tissue at risk of infarction by
capturing information of the blood dynamics using the tem-
poral information of DSC-MRI sequences. This is performed
by encoding the temporal sequence as input channels of the
neural network. The temporal correlation is further enforced
at the scaling up of the decoder path where the network
performs up-sampling followed by a convolution layer, with
a kernel of (1 x 1 x C5) where C; denotes the number of
channels at the upper scale s. Thus, features extracted along
the temporal and local dimensions, by convolutional layers
with kernels of (3 x 3), are further correlated and combined
along different scales of the decoder path, aiming to extract
discriminative blood flow information.

2) STANDARD DIFFUSION/PERFUSION BLOCK

The standard diffusion/perfusion block encompasses the
standard parametric maps of perfusion: Tmax, TTP, MTT,
relative-CBV (rCBV), and relative- (rCBF), computed
based on the perfusion DSC-MRI with standard decon-
volution methods [11], [12], and the Apparent Diffusion
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FIGURE 3. Deep neural network architectures applied to: (a) - the standard diffusion/perfusion
block and the data-driven DSC-MRI block, and (b) to the fusion block. Figure 3a shows a U-Net
based architecture, while Figure 3b details the FCNN network.

Coefficient (ADC) map. This block is functionally equivalent
to other state-of-the-art approaches, mimicking the architec-
ture proposed for the Data-driven DSC-MRI block. The input
of the block are 2D patches extracted across the parametric
maps.

3) FUSION BLOCK

To take advantage of the distinct information captured
in the Data-driven DSC-MRI and in the Standard diffu-
sion/perfusion block, we combine the feature maps from the
last scale of each decoder and combine them into a short
FCNN path. Merging information from both types of data
allows the network to consider complementary information
that might improve the prediction of the final stroke lesion.
The fusion block considers four convolutional layers with a
residual connection at the second layer. The outputs of the
fourth layer are fed to the softmax classifier.

The data-driven and the standard diffusion/perfusion
blocks are based on the 2D U-Net architecture [32], which has
proved to be competitive in many biomedical image applica-
tions. All scales of the architecture consider small convolu-
tional kernels of size 3 x 3. The convolutional layers of the
first scale have 32 channels, whereas at the second and third
scales the number of channels is 64 and 128, respectively.
Each convolutional layer comprises a convolutional opera-
tion, combined with ReLU activation function [33]. Spatial
dropout is applied at every two convolutional layers, with
a probability of p = 0.25 [34]. Long skip connections are
employed at the first and second scales, between the encoder
and decoder paths. Figure 3 shows the proposed architecture.

lll. EXPERIMENTAL SETUP

Our method was evaluated on the publicly available ISLES
dataset [35], which is associated with an online benchmark
platform responsible for the evaluation of the testing set data.
In this section, we detail the dataset used and the metrics
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employed for evaluation. Lastly, we describe the model train-
ing and parameters of the network.

A. DATA

ISLES 2017 dataset encompasses 75 ischemic stroke patients,
which are separated into two sets: training (n = 43) and
testing (n = 32). Both sets are constituted by patients who
underwent mechanical thrombectomy, and are characterized
by perfusion DSC-MRI and its standard 3D perfusion para-
metric maps, which are the relative CBV (rCBV), relative
CBF (rCBF), MTT, TTP, and Tmax, alongside a 3D diffusion
map, the ADC. Alongside the MRI acquisitions, the dataset
contains the manual delineation of the final infarct lesion
from a 90-day follow-up T2-weighted MRI. However, only
for the training set the ground truth is disclosed for public
access. Hence, the evaluation of the testing set can only be
performed by the online platform [35].

When assessing the DSC-MRI data, we noticed that the
training set has four cases where the acquisition might have
been corrupted (cases 31, 42, 43, 45). Consequently, the pro-
posed temporal slicing and alignment method is not able to
select an appropriate time-window, despite these cases pos-
sess viable standard parametric maps. So, we have excluded
these cases from the training set. In all the experiments, a total
of 39 cases were used as training set. Using cross-validation,
the window size was selected as YW = 26.

B. EVALUATION
For evaluation purposes we used the same metrics defined
for ISLES Challenges [19]: Dice score, Hausdorff Distance
(HD), Average Symmetric Surface Distance (ASSD), Preci-
sion, and Recall.

HD allows the identification of the farthest spatial outlier
present in the prediction. The remaining distance metric,
ASSD, computes the average distances between volumes’
surface points, namely the ground truth and the prediction.

VOLUME 9, 2021



A. Pinto et al.: Prediction of Stroke Lesion at 90-Day Follow-Up by Fusing Raw DSC-MRI

IEEE Access

Parametric maps

Perfusion DSC-MRI

=

]

-

=

=

2 g

-q:) DAV v Al

&  DSC: 049 DSC: 0.56 DSC: 0.52
H.D.: 20.10 H.D.: 12.41 H.D.: 18.25

TPW-NFB TPW

DSC: 0.60
H.D.: 12.96

DSC: 0.61
H.D.: 10.20

Precision: 0.46 Precision: 0.47 Precision: 0.39 Precision: 0.53 Precision: 0.52

Recall: 0.52 Recall: 0.69

Recall: 0.81

Recall: 0.70 Recall: 0.72

FIGURE 4. MRI of a 75-year-old male patient performed 83 minutes after acute onset of right hemiplegia, NIHSS 22. The MRI
depicted occlusion of the M1 segment of the left middle cerebral artery (not shown), as well as diffusion restriction in the
middle cerebral artery territory and the basal ganglia as shown in the ADC map (arrow). DSC perfusion showing prolongation of
the temporal parameters, as seen in Tmax, TTP and MTT. The ground truth is the delineation of the final infarct as seen on the
follow-up imaging three months after the initial stroke. In the bottom row, from left to right we show the results obtained from
the one-pathway with standard parametric maps (OPW-SM), the one-pathway with all imaging data (OPW-A), two-pathway with
no temporal slicing (TPW-NTA), the two-pathway without fusion block (TPW-NFB), our proposal (TPW), and the ground-truth at a

90-day follow-up.

Dice score measures the spatial overlap between two vol-
umes. Precision characterizes the probability of assigning
correctly a given class, while Recall consists of a probability
in identifying positive cases as such.

C. PRE- AND POST-PROCESSING

All MRI data is already co-registered and skull-stripped [19].
Figure 4 shows a training case example with the standard
parametric maps alongside some temporal acquisitions of
perfusion DSC-MRI and the manual segmentation of the
tissue lesion, the Ground Truth (GT).

As preprocessing, we first resize all MRI data to the same
volume space of 256 x 256 x 32, since the dataset con-
tains acquisitions from different centers. Bias field correction
was performed to the perfusion DSC-MRI using the N4ITK
method [36], followed by a temporal processing that extracts
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a fixed temporal window size of 26 acquisitions, which is
based on the sampling rate of the MRI acquisition. Finally,
a linear scaling was applied between [0, 255] to all maps.
Before linear scaling, the T}, was clipped to [0, 20s], and
the ADC was clipped to the range [0, 2600] x 10~ 6mm? /s,
as values out of these ranges are known to be biologically
meaningless [17].

D. MODEL TRAINING AND PARAMETERS

The overall architecture, including both blocks, was trained
with 35 cases, alongside a validation set encompassed by
4 cases, randomly chosen. In each case, 1000 patches of
dimensions 84 x 84 were randomly extracted. The network
was trained with ADAM optimizer (Ir = 1 X 1075) and a
mini-batch of size 4. For regularization, we employed a spa-
tial drop-out [34] of 0.25 at each two convolutions. We used
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TABLE 1. Results in ISLES 2017 testing dataset for the different configurations of our proposal. Each metric contains the mean =+ standard deviation.
Underlined values correspond to the highest score of the respective performance metric (column-wise).

Experiments Params. Dice H.D. ASSD Precision Recall
OPW-SM - One-pathway standard maps (Baseline) 382 154 0.30 4 0.21 38.83 £ 21.10 7.08 + 5.15 0.26 + 0.23 0.64 + 0.30
OPW-A — One-pathway 816916 0.28 £ 0.21 37.47 £ 16.05 6.90 &+ 4.43 0.32 +0.28 0.54 + 0.30
TPW-NTA - Two-pathway no temporal align 838 594 0.28 £ 0.21 43.66 4 23.57 7.89 &+ 6.31 0.25 +0.23 0.66 4= 0.33
TPW-NFB — Two-pathway no fusion block 787 778 0.27 £ 0.21 40.89 + 18.68 8.21 + 6.68 0.28 £+ 0.26 0.53 + 0.34
TPW-PM — Two-pathway with parametric maps 828 514 0.28 + 0.23 44.13 + 19.98 8.39 + 7.30 0.26 £+ 0.26 0.64 + 0.31
TPW-AD — Two-pathway with DSC-MRI and ADC 834 562 0.26 £ 0.22 44.29 4 17.97 7.28 + 4.30 0.27 4 0.27 0.66 4= 0.30
3PW — Three-pathway 1177 058 0.28 £ 0.21 40.12 + 14.50 6.74 + 3.85 0.28 4 0.25 0.59 + 0.29
TPW — Two-pathway (Proposal) 836 002 031 £ 0.21 33.94 + 1743 5.99 + 4.58 0.29 4 0.23 0.63 4 0.30

the soft-dice loss function [37], where the gradient of the Dice
score for the j voxel of prediction is given by:

sDice &1 PP+ X0 g =2 X0 pigi
5pi (X pf+ 2 8
The sum is performed for the N voxels of the output patch,
where p; € P denotes the predicted probability of a voxel i
and g; € G the respective ground-truth label.
All the models were developed using Keras with Tensor-

flow, and trained on an Nvidia GeForce GTX 1070 8 GB,
with a prediction time around 15 seconds.

ey

IV. RESULTS AND DISCUSSION

This section starts by discussing the ablative study, which
measures the importance of the main contributions of our pro-
posal. In this ablative study, we first evaluate the importance
of including spatio-temporal imaging data with the standard
parametric maps. Second, we measure the importance of the
two-pathway architecture and key components of the method,
namely the temporal processing of the perfusion DSC-MRI
and the data-fusion block. After, we delve in the information
extracted from the DSC-MRI deep neural network. Finally,
we compare our proposal with state-of-the-art methods in
ISLES 2017 Challenge.

A. ABLATION STUDY

To measure the importance of the key components of our
proposal, we start by evaluating the impact of consider-
ing the DSC-MRI data alongside the standard parametric
maps. Then, we compare our two-pathway architecture with
the one-pathway based on the U-Net. Finally, we measure
the impact of performing the temporal processing of the
DSC-MRI and of the Fusion block. The results are presented
in Table 1.

1) ON THE INCLUSION OF SPATIO-TEMPORAL

IMAGING DATA

We evaluate the importance of using one-pathway with
the standard maps (OPW-SM) compared to a two-pathway

IThe source code for reproducing the segmentations, the mod-
els’ weights can be found at: https://github.com/apinto92/
DSCMRI_Stroke_Prediction.git.
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architecture (TPW) that combines the DSC-MRI with the
standard maps. The results are presented in Table 1. Compar-
ing the two experiments, we verified the benefit of combin-
ing both types of input. The TPW achieved higher average
Dice score, alongside lower average distance metrics and
higher average Precision score. We know that the paramet-
ric maps are obtained by summarizing the dynamics of the
time-attenuation curve through different processes [38]. So,
while the standard diffusion/perfusion block extracts infor-
mation on this rich set of inputs, the data-driven DSC-MRI
block takes an unbiased look at the raw data by considering
only the time-attenuation curve conditioned on the informa-
tion of the viability of the brain tissue — healthy or lesioned
tissue after 90-day. This may have allowed the block to learn
anew set of features, boosting the performance of the model.
Thus, we may conclude that direct extraction of features from
the DSC-MRI data was important to predict the final infarct
stroke lesion.

2) ONE PATHWAY OR TWO-PATHWAY

In this ablative study, we evaluate how the DSC-MRI and
the standard parametric maps can be aggregated in our neural
network. This combination can be performed in two different
ways. We can directly aggregate both input data into a single
network (OPW-A), allowing the network to relate informa-
tion from different types of data; or, we can use different
paths (TPW) to extract specific features that are combined
later. The results of this study are presented in Table 1. In this
study both methods employed the same temporal slicing and
alignment. From the results, it is possible to verify that using
a single path (OPW-A) achieved lower performance in all
metrics except in the average Precision. Considering our data,
we observe that while the parametric MRI maps summary
different aspects of the dynamics of the time-attenuation
curve, in DSC-MRI each input characterizes a specific time
step. So, we hypothesize that since in TPW there is a specific
path for each type of input, the use of a dedicated path allowed
generating better features. So, in the context of predicting
stroke lesion evolution, we conclude that the use of dedicated
paths to extract information from distinct physiological pro-
cesses is more effective than using a single network to process
all of them simultaneously.
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FIGURE 5. Normalized Mutual Information between the standard perfusion/diffusion maps and the feature maps

from the data-driven block for the training set.

3) THE IMPORTANCE OF TEMPORAL ALIGNMENT

AND THE FUSION BLOCK

In this study, we evaluate the importance of two components
of our proposal, the temporal slicing and alignment, and the
fusion block. In the comparison of the temporal slicing and
alignment, the data-driven branch uses the first 40 temporal
acquisitions. This was the minimum number of slices avail-
able across all patients in the dataset. The results are presented
in Table 1. We verify that elaborating with more convolu-
tional layers over the features aggregated from both paths
(TPW), instead of removing the fusion block (TPW-NFB),
provides an overall increase of the performance. Comparing
the metrics, we note an increase in the average Dice, aver-
age Precision and Recall. Regarding the temporal alignment,
we observe that TPW outperforms TPW-NTA, presenting an
increase in the average Dice score, alongside lower average
distance metrics. Hence, we conclude that performing tem-
poral slicing and alignment allows a spatio-temporal stan-
dardization useful for the extraction of higher discrimina-
tive features when predicting the final infarct stroke lesion.
Furthermore, the spatio-temporal standardization provides a
reduction on the amount of temporal acquisitions used as
input, without impairing the performance of the method.

4) INDEPENDENT BRANCHES ACCORDING

TO MRI DATA TYPE

Diffusion imaging characterizes the onset infarct tissue, pro-
viding information of lesioned brain tissue that will be
encompassed by the final stroke lesion. Perfusion imaging
provides richer information of salvageable surrounding tissue
that is of utmost importance when predicting the evolution
of this lesion [39]. However, we hypothesize that how one
combines these imaging data may have impact on the quality
of the prediction. Hence, in this last study, we evaluate the
impact of combining either DSC-MRI and/or parametric per-
fusion data with diffusion data in different paths as opposed
to our proposal. This study starts by having as architecture
our proposed two-pathway network, while the input data
varies. In one hand, we consider the DSC-MRI with the ADC
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(TPW-AD), while in the other, the input encompasses the per-
fusion maps with the ADC (TPW-PM). With the TPW-PM,
the results demonstrate that considering the ADC map and the
perfusion parametric maps in distinct paths, leads to an over-
all lower performance. This can be explained by the filters
learned in the two-paths, which do not consider simultane-
ously perfusion/diffusion information. The TPW-AD method
achieved an even overall lower performance. Combining both
results, this study indicates that the ADC map, when used in
a dedicated path, might require fewer data processing and/or
a path specific loss function. However, when the diffusion
and perfusion maps are combined at the input of the network
(TPW), the overall performance improves. Finally, we also
study the impact of having the same input data as in our
proposed architecture but using the ADC in an independent
path (3PW) that overall resulted in a lower performance.

B. DATA DRIVEN BRANCH - FEATURE ANALYSIS

In our proposal, we hypothesize that the inclusion of the
source DSC-MRI data, responsible for generating the stan-
dard perfusion maps, provides additional and complemen-
tary perfusion dynamics information useful for predicting the
final infarct core lesion. Henceforth, to assess the relevance
of the feature space extracted from the data-driven block,
we study the correlation among the features extracted from
the source DSC-MRI branch and the standard perfusion and
diffusion maps. The correlation is studied using the normal-
ized mutual information, Figure 5.

As illustrated in Figure 5, the normalized mutual informa-
tion achieved low association values (less than 0.2) among
the extracted feature maps and the standard parametric maps.
Note that values closer to 0 mean low mutual information
and closer to 1 represent a high association. Regardless of
the fact that the DSC-MRI acquisition only characterizes
perfusion properties, we extended our analysis to both major
vascular properties, diffusion and perfusion. Therefore, in the
light of the performance results obtained in the testing set,
we hypothesize that both functional blocks introduce distinct
and complementary features, useful when predicting the final
infarct core volume.
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TABLE 2. Recently published methods in ISLES 2017 testing dataset and our proposal, in descending order of Dice score. Each metric contains the mean
+ standard deviation. Underlined values correspond to the highest score of the respective performance metric (column-wise).

Dice H.D. ASSD Precision Recall
o Mok et al. * 0.32 + 0.23 40.74 £+ 27.23 897 + 9.52 0.34 £+ 0.27 0.39 £ 0.27
’g Kwon et al. * 0.31 £ 0.23 45.26 4= 21.04 791 + 731 0.36 + 0.27 0.45 + 0.30
% Robben et al. * 0.27 & 0.22 37.84 £+ 17.75 6.72 + 4.10 0.44 + 0.32 0.39 + 0.31
m Pisov et al. * 0.27 £+ 0.20 49.24 4 32.15 9.49 4 10.56 0.31 £ 0.27 0.39 £ 029
Monteiro et al. * 0.30 = 0.22 46.60 £ 17.50 6.31 + 4.05 0.34 + 0.27 0.51 £ 0.30
Pinto et al. [21] 0.29 £+ 0.21 41.58 £+ 22.04 7.69 + 5.71 0.21 £ 0.21 0.66 + 0.29
Amorim et al. [20] 0.29 £+ 0.21 38.90 £ 20.00 7.00 &= 4.31 0.26 £ 0.23 0.61 £ 0.28
Lucas et al. * 0.29 + 0.21 33.85 + 16.82 6.81 + 7.18 0.34 + 0.26 0.51 +0.32
) Choi et al. * 0.28 + 0.22 43.89 + 20.70 8.88 & 8.19 0.36 £ 0.31 0.41 £+ 0.31
B Niu et al. * 0.26 £ 0.20 48.88 £+ 11.20 6.26 &= 3.02 0.28 £ 0.25 0.56 £ 0.26
% Sedlar et al. * 0.20 + 0.19 58.30 & 20.02 11.19 = 9.10 0.23 + 0.24 0.40 + 0.29
Eb Rivera ef al. * 0.19 £ 0.16 63.58 £ 18.58 11.13 &+ 7.89 0.27 4+ 0.25 0.21 £ 0.17
n Islam et al. * 0.19 £+ 0.18 64.15 £ 28.51 14.17 & 15.80 0.29 + 0.28 0.25 £+ 0.25
Chengwei et al. * 0.18 = 0.17 65.95 + 25.94 922 + 6.99 0.37 £+ 0.30 0.21 + 0.23
Yoon et al. * 0.17 £ 0.16 45.23 4+ 19.14 12.43 £+ 11.01 0.23 £+ 0.27 0.36 £ 0.32
Baseline 0.30 = 0.21 38.83 £ 21.10 7.08 + 5.15 0.26 + 0.23 0.64 + 0.30
Proposed 0.31 £ 0.21 33.94 4 17.43 599 + 4.8 0.29 + 0.23 0.63 £ 0.30

* Results retrieved from [19].

Figure 4 depicts an example case of the validation set when
considering the one-pathway multi-data network, the two-
pathway multi-data with no temporal slicing, and our pro-
posal. Analyzing Fig. 4, the OPW experiment achieved the
lowest Dice score and highest Hausdorff distance, when com-
pared with the other methods. The TPW-NTA predic ted
the largest final stroke lesion among the evaluated methods,
which explains the high Recall metric. The TPW method
yields the best prediction of the final stroke lesion, achieving
the highest Dice score alongside a good balance between
Precision and Recall. Additionally, the Hausdorff distance
achieved by our proposal was the lowest.

C. ISLES 2017 CHALLENGE

On Table 2, we compare our proposal with state-of-the-art
methods submitted to the online ISLES 2017 benchmark.
It was not possible to compute statistical significance tests,
since individual testing metrics are not available. Regardless
of the model topology, predicting final infarct core is still a
challenging and intricate task, that needs to consider scenar-
ios of successful and unsuccessful reperfusion. Furthermore,
in each reperfusion scenario, predicting the infarct growth,
and consequently the final stroke lesion, needs to consider
various haemodynamic factors (e.g. location or collateral cir-
culation) which hinders the learning process. We emphasize
that ISLES 2018 aims to segment the stroke lesion using CTP
imaging, while ISLES 2017 aims to predict the stroke lesion
90-days after the onset MRI scan.

In ISLES 2017 testing set, our proposed approach was
capable of achieving competitive results, with a Dice score
among the top 2 ranked methods, tied with Kwon et al.,
and with the second lowest average Hausdorff distance
and the lowest average ASSD. However, we note that

26268

Kwon et al. used an ensemble of 12 neural networks com-
bining Fully Convolutional Neural Networks (FCNNs) and
Fully-Connected Networks (FCNs), while our proposal is a
single FCNN with two branches in the input.

When comparing with ensemble strategies, we achieved
lower average Dice score, when compared against Mok et al. ,
surpassing the remaining ensemble strategies. Furthermore,
for a single model approach, we remark the consistency of
the proposed approach, as shown by the distance metrics,
being lower than all ensemble methods. As for the precision
and recall metrics, we observe a slight trade-off. Consider-
ing the top two ensemble approaches, our model achieved
higher average recall, alongside the lowest average precision.
Comparing with Robben et al. and Pisov et al., ensemble
approaches of convolutional neural networks, our method
was capable of surpassing both in the average Dice score.
Similarly, we also achieved higher recall, combined with
lower Hausdorff distance, on average.

Considering only single system strategies (non-ensembles),
we observe that our proposal achieved the highest Dice
average in the testing set. In this group, the precision and
recall metrics ranked 5th and 2nd, respectively. In addition,
we remark the robustness of our proposal in predicting stroke
tissue outcome, observed by the low standard deviation val-
ues. We emphasize the benefits of the proposed approach
to extract and model information that might not be fully
characterized by the standard perfusion and diffusion maps
alone.

V. CONCLUSION

In the presence of an ischemic stroke perfusion DSC-MRI
data provides spatio-temporal information useful to charac-
terize brain tissue viability and its hemodynamics. However,
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due to the high amount of generated imaging data, postpro-
cessing methods were developed to summarize the DSC-MRI
in 3D parametric maps that in turn can be rapidly inspected
by clinicians at onset time. Nonetheless, current postpro-
cessing methods can provide non-physiological results and
can lead to the loss of valuable information. So, in this
work, we proposed a two-pathway deep neural network to
simultaneously extract features from the DSC-MRI and the
standard parametric maps of diffusion/perfusion. Our ablative
studies demonstrate the importance of combining both types
of data in dedicated paths, rather than in a single-pathway
architecture. Furthermore, instead of applying the DSC-MRI
data to the network, we showed that our proposed temporal
slicing and alignment provides a common temporal scale
beneficial to the extraction of richer features.

When evaluated on ISLES 2017 testing set, our proposal
demonstrated an overall improvement when considering both
types of data. From a single FCNN model we were able
to achieve competitive results reaching the second highest
average Dice score and lower distance metrics, surpassing
some ensemble methods.

With this work, we aim to contribute in developing new
methods to support clinicians during their decision pro-
cess, which ponders whether to perform or not therapeu-
tic intervention. Nonetheless, there are still open lines of
research. We envision that the processing of DSC-MRI
spatio-temporal data can be further consolidated so it can con-
sider patient specific hemodynamic and also be less depen-
dent on the acquisition protocol.

REFERENCES

[1]1 Global Status Report on Noncommunicable Diseases 2014, World Health
Organization, Geneva, Switzerland, 2014.

[2] R. A. Grysiewicz, K. Thomas, and D. K. Pandey, “Epidemiology of
ischemic and hemorrhagic stroke: Incidence, prevalence, mortality, and
risk factors,” Neurologic Clinics, vol. 26, no. 4, pp. 871-895, Nov. 2008.

[3] H.Memezawa, M. L. Smith, and B. K. Siesjo, ‘“‘Penumbral tissues salvaged
by reperfusion following middle cerebral artery occlusion in rats,” Stroke,
vol. 23, no. 4, pp. 552-559, Apr. 1992.

[4] J.S.Balami, P. M. White, P. J. Mcmeekin, G. A. Ford, and A. M. Buchan,
“Complications of endovascular treatment for acute ischemic stroke: Pre-
vention and management,” Int. J. Stroke, vol. 13, no. 4, pp. 348-361,
Jun. 2018.

[5] D. J. Miller, J. R. Simpson, and B. Silver, “Safety of thrombolysis in
acute ischemic stroke: A review of complications, risk factors, and newer
technologies,” Neurohospitalist, vol. 1, no. 3, pp. 138-147, Jul. 2011.

[6] W. J. Powers, A. A. Rabinstein, T. Ackerson, O. M. Adevoe,
N. C. Bambakidis, and K. Becker, ‘2018 guidelines for the early manage-
ment of patients with acute ischemic stroke: A guideline for healthcare
professionals from the American heart association/American stroke asso-
ciation,” J. Vascular Surg., vol. 67, no. 6, p. 1934, Jun. 2018.

[7] D.S. Liebeskind, R. Jahan, R. G. Nogueira, O. O. Zaidat, and J. L. Saver,
“Impact of collaterals on successful revascularization in solitaire FR with
the intention for thrombectomy,” Stroke, vol. 45, no. 7, pp. 2036-2040,
Jul. 2014.

[8] D. S. Liebeskind, “Collateral circulation,” Stroke, vol. 34, no. 9,
pp. 2279-2284, 2003.

[9] S. Jung, R. Wiest, J. Gralla, R. McKinley, H. Mattle, and D. Liebeskind,
“Relevance of the cerebral collateral circulation in ischaemic stroke:
Time is brain, but collaterals set the pace,” Swiss Med. Weekly, vol. 147,
Dec. 2017, Art. no. w14538.

[10] R. Gonzalez, J. Hirsch, W. Koroshetz, M. Lev, and P. Schaefer, “Acute
ischemic stroke: Imaging and intervention,” Amer. J. Neuroradiology,
vol. 28, no. 8, p. 1622, 2007.

VOLUME 9, 2021

(11]

[12]

(13]

[14]

[15]

(16]

(17]

(18]

[19]

(20]

(21]

[22]

(23]

(24]

(25]

[26]

[27]

(28]

L. Ostergaard, R. M. Weisskoff, D. A. Chesler, C. Gyldensted, and
B. R. Rosen, “High resolution measurement of cerebral blood flow using
intravascular tracer bolus passages. Part I: Mathematical approach and
statistical analysis,” Magn. Reson. Med., vol. 36, no. 5, pp. 715-725,
Nov. 1996.

M. Bahr Hosseini and D. S. Liebeskind, “The role of neuroimaging in elu-
cidating the pathophysiology of cerebral ischemia,” Neuropharmacology,
vol. 134, pp. 249-258, May 2018.

K. Yamada, O. Wu, R. G. Gonzalez, D. Bakker, L. stergaard,
W. A. Copen, R. M. Weisskoff, B. R. Rosen, K. Yagi, T. Nishimura, and
A. G. Sorensen, “Magnetic resonance perfusion-weighted imaging of
acute cerebral infarction: Effect of the calculation methods and underlying
vasculopathy,” Stroke, vol. 33, no. 1, pp. 87-94, Jan. 2002.

A. A. Konstas, G. V. Goldmakher, T.-Y. Lee, and M. H. Lev, “Theoretic
basis and technical implementations of CT perfusion in acute ischemic
stroke—Part 2: Technical implementations,” Amer. J. Neuroradiology,
vol. 30, no. 5, pp. 885-892, May 2009.

F. Scalzo, Q. Hao, J. R. Alger, X. Hu, and D. S. Liebeskind, “Regional
prediction of tissue fate in acute ischemic stroke,” Ann. Biomed. Eng.,
vol. 40, no. 10, pp. 2177-2187, Oct. 2012.

S.E.Rose, J. B. Chalk, M. P. Griffin, A. L. Janke, F. Chen, G. J. McLachan,
D. Peel, F. O. Zelaya, H. S. Markus, D. K. Jones, A. Simmons,
M. O’Sullivan, J. M. Jarosz, W. Strugnell, D. M. Doddrell, and J. Semple,
“MRI based diffusion and perfusion predictive model to estimate stroke
evolution,” Magn. Reson. Imag., vol. 19, no. 8, pp. 1043-1053, Oct. 2001.
R. McKinley, L. Hini, J. Gralla, M. El-Koussy, S. Bauer, M. Arnold,
U. Fischer, S. Jung, K. Mattmann, M. Reyes, and R. Wiest, “Fully auto-
mated stroke tissue estimation using random forest classifiers (FASTER),”
J. Cerebral Blood Flow Metabolism, vol. 37, no. 8, pp.2728-2741,
Aug. 2017.

A. Nielsen, M. B. Hansen, A. Tietze, and K. Mouridsen, “Prediction of
tissue outcome and assessment of treatment effect in acute ischemic stroke
using deep learning,” Stroke, vol. 49, no. 6, pp. 1394-1401, Jun. 2018.

S. Winzeck, A. Hakim, R. McKinley, J. A. Pinto, V. Alves, C. Silva,
M. Pisov, E. Krivov, M. Belyaev, M. Monteiro, and A. Oliveira, “Isles
2016 & 2017-benchmarking ischemic stroke lesion outcome prediction
based on multispectral MRL”* Frontiers Neurol., vol. 9, p. 679, Sep. 2018.
J. Amorim, A. Pinto, S. Pereira, and C. A. Silva, “Segmentation squeeze-
and-excitation blocks in stroke lesion outcome prediction,” in Proc. IEEE
6th Portuguese Meeting Bioeng. (ENBENG), Feb. 2019, pp. 1-4.

A. Pinto, S. Pereira, R. Meier, V. Alves, R. Wiest, C. A. Silva, and
M. Reyes, “Enhancing clinical mri perfusion maps with data-driven maps
of complementary nature for lesion outcome prediction,” in Medical
Image Computing and Computer Assisted Intervention—MICCAI. Cham,
Switzerland: Springer, 2018, pp. 107-115.

M. Giacalone, P. Rasti, N. Debs, C. Frindel, T.-H. Cho, E. Grenier, and
D. Rousseau, “Local Spatio-temporal encoding of raw perfusion MRI
for the prediction of final lesion in stroke,” Med. Image Anal., vol. 50,
pp. 117-126, Dec. 2018.

N. Debs, P. Rasti, L. Victor, T.-H. Cho, C. Frindel, and D. Rousseau,
“Simulated perfusion MRI data to boost training of convolutional neural
networks for lesion fate prediction in acute stroke,” Comput. Biol. Med.,
vol. 116, Jan. 2020, Art. no. 103579.

M. Giacalone, C. Frindel, E. Grenier, and D. Rousseau, ‘“Multicomponent
and longitudinal imaging seen as a communication channel—An applica-
tion to stroke,” Entropy, vol. 19, no. 5, p. 187, Apr. 2017.

M. Giacalone, C. Frindel, M. Robini, F. Cervenansky, E. Grenier, and
D. Rousseau, ‘“Robustness of Spatio-temporal regularization in perfusion
MRI deconvolution: An application to acute ischemic stroke,” Magn.
Reson. Med., vol. 78, no. 5, pp. 1981-1990, Nov. 2017.

K. C. Ho, “Predicting ischemic stroke tissue fate using a deep convolu-
tional neural network on source magnetic resonance perfusion images,”
J. Med. Imag., vol. 6, no. 2, May 2019, Art. no. 026001.

D. Robben, A. M. M. Boers, H. A. Marquering, L. L. C. M. Langezaal,
Y.B.W.E.M.Roos, R. J. van Oostenbrugge, W. H. van Zwam,
D. W. I. Dippel, C. B. L. M. Majoie, A. van der Lugt, R. Lemmens, and
P. Suetens, “Prediction of final infarct volume from native CT perfusion
and treatment parameters using deep learning,” Med. Image Anal., vol. 59,
Jan. 2020, Art. no. 101589.

K. Kamnitsas, C. Ledig, V. F. J. Newcombe, J. P. Simpson, A. D. Kane,
D. K. Menon, D. Rueckert, and B. Glocker, ““Efficient multi-scale 3D CNN
with fully connected CRF for accurate brain lesion segmentation,” Med.
Image Anal., vol. 36, pp. 61-78, Feb. 2017.

26269



IEEE Access

A. Pinto et al.: Prediction of Stroke Lesion at 90-Day Follow-Up by Fusing Raw DSC-MRI

[29] R. McKinley, F. Hung, R. Wiest, D. S. Liebeskind, and F. Scalzo,
“A machine learning approach to perfusion imaging with dynamic sus-
ceptibility contrast MR,” Frontiers Neurol., vol. 9, p. 717, Sep. 2018.

[30] A. Hess, R. Meier, J. Kaesmacher, S. Jung, F. Scalzo, D. Liebeskind,
R. Wiest, and R. McKinley, “Synthetic perfusion maps: Imaging perfu-
sion deficits in DSC-MRI with deep learning,” 2018, arXiv:1806.03848.
[Online]. Available: http://arxiv.org/abs/1806.03848

[31] FE. Calamante, L. Willats, D. G. Gadian, and A. Connelly, “Bolus delay
and dispersion in perfusion MRI: Implications for tissue predictor models
in stroke,” Magn. Reson. Med., vol. 55, no. 5, pp. 1180-1185, 2006.

[32] O. Ronneberger, P. Fischer, and T. Brox, ‘“U-Net: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image
Comput. Computer-Assisted Intervent. Cham, Switzerland: Springer, 2015,
pp. 234-241.

[33] V. Nair and G. E. Hinton, “Rectified linear units improve restricted Boltz-
mann machines,” in Proc. ICML, 2010, pp. 1-8.

[34] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler, “Efficient
object localization using convolutional networks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 648-656.

[35] SMIR Online Platform. (2017). Ischemic Stroke Lesion Segmentation
2017. Accessed: Apr. 26, 2019. [Online]. Available: https://www.smir.ch/
ISLES/Start2017

[36] N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan,
P. A. Yushkevich, and J. C. Gee, “N4ITK: Improved n3 bias correction,”
IEEE Trans. Med. Imag., vol. 29, no. 6, pp. 1310-1320, Jun. 2010.

[37] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-Net: Fully convolutional
neural networks for volumetric medical image segmentation,” in Proc. 4th
Int. Conf. 3D Vis. (3DV), Oct. 2016, pp. 565-571.

[38] K. Butcher and D. Emery, ““Acute stroke imaging—Part I: Fundamentals,”
Can. J. Neurolog. Sci./J. Canadien des Sci. Neurologiques, vol. 37, no. 1,
pp. 4-16, Jan. 2010.

[39] K. Butcher and D. Emery, “Acute stroke imaging—Part II: The ischemic
penumbra,” Can. J. Neurological Sci./J. Canadien des Sci. Neurologiques,
vol. 37, no. 1, pp. 17-27, Jan. 2010.

ADRIANO PINTO (Member, IEEE) received the B.Sc. and master’s
degrees in biomedical engineering—medical electronics from the University
of Minho, Portugal, in 2013 and 2015, respectively, and the joint Ph.D.
degree in computer science from the Universities of Minho. His research
interests include medical imaging, computer vision, machine learning, and
representation learning.

26270

JOANA AMORIM received the B.Sc. degree in 2017. She is currently pursu-
ing the master’s degree in biomedical engineering—medical electronics from
the University of Minho, Portugal. Her master’s thesis focuses on medical
imaging and representation learning knowledge applied to predicting final
infarct of an ischemic stroke.

ARSANY HAKIM is currently a Neuroradiologist with Bern University Hos-
pital INSEL). He cooperated closely in organizing the 2017 challenge edi-
tion of Ischemic Stroke Lesion Segmentation (ISLES). His clinical expertise
encompasses cerebrovascular imaging, vessel wall imaging, and perfusion
imaging. His research interest includes stroke imaging.

VICTOR ALVES is currently an Assistant Professor with the Department of
Informatics, School of Engineering, University of Minho, and a Researcher
with the Centro Algoritmi Research and Development Centre. His main
research interest includes medical imaging informatics, mainly in mod-
eling of the imaging modalities and their interpretation by synergistic
human-machine methods for clinical benefits and applications not only
in the computer-aided diagnosis/detection research context but also in the
broader context of ambient intelligence.

MAURICIO REYES has been an Associate Professor with the Medical
Imaging Analysis Faculty, University of Bern, since 2014. In 2008, he was
the Head-Chief of the Medical Image Analysis Group, Institute for Surgical
Technology and Biomechanics, Switzerland. He is currently the Head of
the Healthcare Imaging A.I. Lab, Faculty of Medical, University of Bern.
His research interests include machine learning for medical image analysis,
neuroimaging, and interpretability of machine learning technologies for
medical imaging.

CARLOS A. SILVA is currently an Assistant Professor with the Department
of Electronics, School of Engineering, University of Minho. He is also a
Researcher with the CMEMS-UMinho Research and Development Center.
His research interests include intersection between machine learning and
medical imagine processing, stroke tissue outcome prediction, brain tumor
segmentation and grading, and retinal vessels segmentation.

VOLUME 9, 2021



