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ABSTRACT This paper introduces a novel variant of the cumulative vehicle routing problem (CCVRP)
that deals with home health care (HHC) logistics. It includes multiple nonfixed depots and emergency
trips from patients to the closest depot. The aim is to minimize the system’s delayed latency by satisfying
mandatory visit times. Delayed latency corresponds to caregivers’ total overtime hours worked while visiting
patients. A newmixed-integer linear programmingmodel is proposed to address this problem. Computational
experiments, with more than 165 new benchmark instances, are carried out using the CPLEX and Gurobi
MIP solvers. The results indicate that patients’ geographical distribution directly impacts the complexity of
the problem. An analysis of the model parameters proves that instances with more depots/vehicles or longer
workdays are significantly easier to solve than are original cases. The results show that Gurobi outperforms
CPLEX in 55% of the instances analyzed, while CPLEX performs better in only 16% of them. To the best
of our knowledge, this is the first VRP that minimizes delayed latency and the first HHC routing study to
use a cumulative objective function.

INDEX TERMS CCVRP, home health care, HHC, MDCCVRP, mixed integer programming.

I. INTRODUCTION
In recent years, home health care (HHC) services have grown
considerably inmany countries. This growth can be explained
by the increase in the number of patients with chronic dis-
eases and physical disabilities [1]. These types of services
help prevent queues and congestion at hospitals and allow
patients to receive timely attention. HHC logistics manage-
ment can be addressed at three different decision levels.
Strategic planning includes districting, setting the location
of infrastructure, and fleet sizing. Tactical decisions include
those related to medical staff allocation (to hospitals or other
facilities) and inventory policies. Operative planning mainly
involves routing decisions but also includes scheduling and
other short-term decisions [2]. A limited team of caregivers
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tending to patients at their scheduled appointment times can
be viewed as an operative planned logistic activity [3]. From
the point of view of service providers, such a situation can
therefore be addressed as a vehicle routing problem.

Vehicle routing problems (VRPs) are one of the most stud-
ied types of combinatorial optimization problems due to their
varied applications. A VRP aims to find the best sequence
of client visits for a fleet, generally using cost-minimization
criteria. Vehicles may or may not have a limited capacity;
if they do, then the problem can be classified as a capac-
itated vehicle routing problem (CVRP) [4]. This type of
problem was introduced by [5], who proposed the first for-
mulation and algorithm to solve a real problem of gaso-
line distribution. Since then, several authors have conducted
research in this field. Some authors have worked on exact
solution methods, [6], [7], while others have focused on
heuristics-metaheuristics methods [8], [9]. Still others have
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developed new VRP applications including HHC [10], drone
routing [11], [12], blood transportation processes [13], and
several others [14]. The depot is the node at which vehicles
start and end routes. A classical VRP has only one depot, but
the multi-depot vehicle routing problem (MDVRP) has also
been identified. In MDVRPs, vehicles are forced to start and
end a route at the same depot [15]. However, it is possible to
relax this condition and allow vehicles to close their routes
at other depots [16]. This concept is known as a nonfixed
destination or simply as a nonfixedMDVRP [17]. A literature
review of MDVRPs can be found in [18]. One of the most
studied variants of VRPs is a vehicle routing problem with
time windows, VRPTW, which incorporates an interval of
time in which vehicles can visit each customer. There are two
kinds of time windows (TWs) in VRPs. The most studied
type is hard TWs, in which the interval must be respected.
In this case, if a vehicle arrives early, then service must be
provided at the lower bound of the TW [19]. Conversely,
a soft TW allows vehicles to violate the TW but penalizes
them for doing so [20], [21].

A relatively new branch of VRPs is the use of latency as
an objective function. Latency can be defined as the total
distance traveled, or the time required, to reach each node.
In latency problems, costs are influenced not only by the loca-
tion of the nodes but also by their position in the route [22].
These problems are known as cumulative vehicle routing
problems.

This paper is structured as follows. Section 1 presents the
problem to be addressed and describes the relevant recent
research. Section 2 describes the materials and methods used
in this work; then, a new mathematical model used to address
the problem is introduced. Section 3 discusses the main
research results. Finally, Section 4 presents the conclusions
and directions for future research.

A. PROBLEM DESCRIPTION
Traditionally, HHC routing has been addressed mainly from
a business point of view; that is, it has focused primarily on
minimizing costs. This can be a problem if these routes do
not guarantee service quality. Low-quality services not only
imply economic consequences due to a loss of clients but
can also lead to legal repercussions. Several authors agree
that problems with cumulative objective functions (latency)
are well suited for addressing real-life problems in which the
focus is on client satisfaction [23]–[25]. The above aspect is
due to the nature of the objective function, which implies
that patients need to be attended to as soon as possible.
Figure 1 compares solutions under criteria for minimum total
cost/time and minimum latency. In the example, two clients
must be visited by two available vehicles. The travel time
between nodes is indicated close to the edges. The opti-
mal total cost-based route is D1-C2-C1-D1, using only one
vehicle. The optimal latency-based routes are D1-C1-D1 and
D1-C2-D1, using two vehicles (each line type represents a
different vehicle). The total cost for the first case is 30 units,
while its total latency is 37 units because C2 is visited

FIGURE 1. Optimal solution by objective function. (a) Minimum total
cost/time. (b) Minimum latency.

at 12 and C1 is visited at 25. The total cost for the second case
is 34 units, while its total latency is 17 units (C1 is visited at 5
and C2 is visited at 12).

As presented in Section 1.2, some authors have included
clients’ preferences in their HHC models. However, none
of them have looked for routes defined by the desirable
maximum workload per client. Due to the limited nature of
resources such as vehicles, caregivers, and hospitals, it is not
always possible to tend to each patient without exceeding the
aforementioned limit. Nevertheless, it is desirable to mini-
mize such situations. It has been proven that a heavyworkload
for caregivers implies burnout, which leads to low-quality ser-
vices [26]. According to these authors, work overload causes
emotional exhaustion and depersonalization in caregivers,
leading to bad work performance.

The problem addressed is as follows. Consider an incom-
plete graph, G = (N ,A), with N = C ∪ T as the set of
nodes, C as the set of patients, T as the set of hospitals, and
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FIGURE 2. Structure of the literature review.

A as the set of feasible arcs. Additionally, let B be the set
of vehicles/caregivers. Each patient, i, has a scheduled visit
time, hi, that needs to be fulfilled. Each hospital (depot), k ,
has an available fleet at the beginning of the day, QIt , and a
demand for vehicles at the end of the day, QFt . The supply
and demand may be different. After visiting all their assigned
clients, vehicles b ∈ B can finish their route at the same or
different depot than the one at which they started. An arc,
(i, j), with i ∈ N and j ∈ C , is feasible if the sum of hi
(if i ∈ T , hi = 0) and travel time dij is less than or equal
to hj. As visit time is strict, caregivers can arrive early and
wait or arrive just in time, but they can never arrive late. For
each patient, an emergency travel time to the closest hospital
must be considered in case the patient suffers an unexpected
emergency or if the medical team needs medical supplies
that are not available in their vehicle. Such a situation is an
important consideration since most of the patients on these
routes have chronic conditions. The challenge is to find the
best route for each vehicle, considering a maximum desirable
quota, lb, for client visits. This quota can be represented by
the standard workday. If necessary, services with overtime are
allowed. Nevertheless, it is an undesirable condition due to
the risk of low-quality services that it implies. The aim is to
minimize the sum of the overtime hours with which clients
are visited (if any). The more patients who are served after
the regular workday, the greater the penalization.

B. LITERATURE REVIEW
The structure of this literature review is presented in Figure 2.
It focuses mainly on two kinds of problems: i) VRPs in

the HHC industry and ii) cumulative VRPs. For an in-depth
review of VRP variants and their respective practical applica-
tions, the reader may refer to [4].

1) VEHICLE ROUTING PROBLEMS IN HHC
Two of themain operational decisions in HHC are routing and
scheduling. These two decisions can be made individually
or simultaneously [27]. The literature contains a number
of studies that focus only on routing in HHC. The authors
of [1] solved an HHC routing problem by addressing it as a
CVRP. They used the well-known savings algorithm to solve
a situation involving 20 patients. The work of [28] addressed
a simultaneous pickup and delivery VRPTW.Drugs are deliv-
ered to patients, and simultaneously, unused drugs or biosam-
ples are collected. To deal with this problem, the authors
proposed two mixed-integer programming (MIP) models.
Two heuristic algorithms were also used: a genetic algo-
rithm (GA) and a tabu search (TS). An HHC routing problem
in the context of natural disasters was addressed by [29],
who proposed a model that included soft time windows,
mandatory rest for staff, and workday constraints. Some
interesting considerations, such as nurses’ qualifications and
language proficiency, were also incorporated. The objective
was to minimize the time spent and both client and staff
dissatisfaction. They found that the Xpress v7 solver was not
capable of solving large instances, so they proposed a variable
neighborhood search algorithm (VNS) to handle them. The
proposedmodel and algorithmwere testedwith real data from
Austria. In [30], mixed-integer linear programming (MILP)
models for a VRPTW with precedence and synchronization
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constraints were proposed. Patients needed to receive differ-
ent kinds of services at specific intervals of time, following
a precedence pattern. The objective was to minimize travel
time, clients’ dissatisfaction with their assigned caregivers,
and wait times. It also considered a maximum route length.
Models were solved using OPL v12.5, and they handled
situations involving 45 clients. A similar case was addressed
in [31], in which the aim was to minimize costs, and the pro-
posed method was an iterative local search algorithm (ILS).
In turn, [32] studied an HHC application of a VRP with the
synchronization constraints proposed by [33]. The objective
was to minimize caregivers’ travel time. The authors pro-
posed a metaheuristic based on an ILS combined with the
random variable neighborhood descent method (RVND) to
solve the problem. A multiobjective approach to this kind of
problem was addressed by [34], which sought to optimize
both cost and client preferences. The authors proposed dif-
ferent variants of the nondominated sorting genetic algorithm
(NSGA-II) to solve the problem with up to 73 clients.

The home health care routing and scheduling problem
(HHCRSP) is a variant of the VRP that includes simultaneous
routing and scheduling decisions [35]. In [36], different kinds
of services had to be provided to clients, and both client and
staff availability had to be considered in the time windows.
The aim was to minimize the staff required to satisfy client
demand. The authors proposed an integer linear program-
ming (ILP) model. Small and medium-sized instances were
solved by CPLEX. For large instances, a matheuristic that
decomposed the model into two subproblems (staff rostering
and vehicle routing) was proposed. A multiobjective MILP
model was proposed by [37], which optimized four objec-
tives by using the weighted linear aggregation method: to
minimize the total travel time and the arrival times of each
caregiver and to maximize caregiver operability and patient
satisfaction. This model also considered patients’ relative
priority, which was related to the health condition of each
patient. The authors used CPLEX to test the proposed model
and optimally solve instances with up to 40 nodes. Another
multiobjective model for this kind of problem was addressed
by [38]. The objective of the proposedmodel was tominimize
cost and maximize service level, and it also incorporated time
windows and client preferences regarding caregivers and visit
times. The proposed solution corresponded to a metaheuristic
combining a large neighborhood search with a multidirec-
tional LS. In the work of [39], a matheuristic algorithm was
proposed to address a periodic scheduling and routing prob-
lem applied to medication delivery. This algorithm consisted
of two phases. In the first phase, a mathematical optimization
model was used to solve the scheduling problem; the model
was solved with CPLEX. The second phase incorporated
a metaheuristic that combined simulated annealing with a
record-to-record algorithm to solve the routing problem. The
proposed algorithm was tested with real-life pilot cases in
Chile, which included up to 800 clients. Another two-phase
matheuristic algorithm that sought to minimize transport and
labor costs was proposed to solve an HHCRSP in [40]. This

approach was based on MIP modeling and separated deci-
sions by type of caregiver. In the first phase, only nurses were
scheduled. The solution determined by the first phase was
added as a constraint to the second phase, in which the other
caregivers and synchronization constraints were considered.
The authors used Gurobi to perform their experiments. They
found that the proposed approach was computationally more
efficient than was solving the complete model. Two recent
literature reviews of HHCRSP can be found in [35], [41].
TW has been a common feature observed and analyzed in
most HHC papers. Mandatory visit times are a particular case
of hard TW; here, intervals’ lower bounds are open [21].

2) CUMULATIVE VEHICLE ROUTING PROBLEMS
Research on cumulative routing problems began with
the minimum latency problem (MLP), which is a variant
of the traveling salesman problem (TSP) [42]. The objective
of the MLP is to minimize the sum of the arrival times
at each client. According to [43], the MLP has also been
referred to as the traveling repairman problem (TRP) [44]
and delivery man problem (DMP) [45]. Despite the fact that
cumulative TSP variants were introduced in the 1990s, cumu-
lative VRP variants were not introduced until much more
recently, within approximately the last ten years. Seminal
work on this problem was published by [23]. The authors
called this problem The Cumulative Capacitated Vehicle
Routing Problem (CCVRP). In the same paper, the authors
also presented upper and lower bounding procedures, which
are based on memetic algorithms (MAs) and the properties
of the CCVRP, respectively. The CCVRP seeks to minimize
system latency and is a generalization of the MLP, adding
capacity constraints and homogeneous fleets.

Since the publication of these seminal works, several
solution methods have been proposed. The authors of [46]
proposed an adaptive large neighborhood search heuristic
that outperforms the MAs of [23]. An ILS was proposed
by [47], and it outperformed the algorithm of [23] but was
less effective than that proposed by [46]. The two-phase
metaheuristic presented by [48] also outperformed the MAs.
In some instances, this algorithm was capable of finding
better solutions than those found by [46], but it took more
time to do so. In [49], the authors proposed and compared
threemethods: a GA, an evolutionary algorithm using particle
swarm optimization, and a TS. Their results indicated that
the TS provides the best solutions in most of the instances
tested. However, these algorithms were not compared with
others from the literature. In [25], a two-stage adaptive VNS
was proposed. The authors compared their proposed method
with the algorithms proposed by [23], [46], and [48]. New
best-known solutions were found for a number of instances
in the literature, proving the competitiveness of the algorithm
in terms of solution quality and CPU time. The authors also
tested the effectiveness of the algorithm with a CCVRP that
minimizes the maximum arrival time. A brainstorm opti-
mization algorithm was presented in [50], and the authors
compared it with those proposed by [46], [48], and [25]. This
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algorithm was capable of finding new best-known solutions
for several instances, and it took less time on average. Two
new mathematical formulations were proposed by [51]. One
of them could optimally solve instances of up to 44 nodes in
less than two hours using CPLEX. The authors also proposed
two versions of the greedy algorithm for the CCVRP. The
average GAP between their obtained results and the best
known solutions was less than 1%. Their algorithm was
capable of finding new and improved solutions for a few
instances and also arrived at the best known solution for
several instances in less CPU time than that required by the
algorithms in [23], [46], [48], and [25]. Recently, [52] pro-
posed a skewed VNS heuristic. The authors compared it with
the algorithms from [23] and [46], and it was proven to be
more efficient in terms of CPU time and solution quality.
The only exact algorithm found in the literature was proposed
by [53]. They developed a branch and cut and price algorithm,
which was capable of optimally solving instances with more
than 100 clients.

Below, the variants of the CCVRP studied in the litera-
ture are presented. In [54], the authors proposed a hybrid
ant colony algorithm to solve a multi-depot cumulative
VRP (MDCCVRP) as applied to postdisaster route planning.
More recently, an LS-based algorithm was presented in [55]
to solve the same theoretical problem, which was also studied
in [24], in which the authors proposed a matheuristic that
decomposed the problem into subproblems that could be
easily solved to optimality. Their approach was called par-
tial optimization metaheuristic under special intensification
conditions.

The multitrip cumulative capacitated vehicle routing
problem (MTCCVRP) is another variant of the problem that
has been studied in the literature. Unlike in the classical
problem, the MTCCVRP allows vehicles to perform several
trips. It was addressed for the first time by [56], who proposed
two MIP formulations and a GRASP-based metaheuristic for
the problem; they considered a single-vehicle scenario. The
same question was addressed in [57], where the authors pro-
posed two MILP models and an exact algorithm to solve the
problem. This method was based on a resource-constrained
shortest path formulation and was capable of optimally solv-
ing instances with up to 40 clients. The generalized version
of the problem, that is, the non-single-vehicle variant, was
introduced by [58], who presented an MILP model and a
hybrid metaheuristic for the MTCCVRP. The proposed solu-
tion combined a multistart ILS with variable neighborhood
descent. The authors tested it with instances with more than
400 clients. More recently, the authors in [59] studied another
variant of the problem, a CCVRP with priority indexes. This
variant incorporated precedence constraints to ensure that
certain clients were visited before others. The problem was
addressed with biobjective optimization, and the objectives
were to minimize the system’s total latency and total tardi-
ness. AnMIPmodel was proposed but was capable of solving
instances with only up to 15 customers. Therefore, the authors
proposed MAs with random keys to solve larger instances.

Regarding CCVRPs with time windows, the only work found
was that of [60]. These authors introduced the problem and
proposed ametaheuristic based on the hybridization of a large
neighborhood search algorithmwith a GA. They asserted that
this problem was suitable for several applications, especially
humanitarian logistics in postdisaster contexts.

Cumulative routing problems have many possible appli-
cations. The work of [61] presented a latency VRP applied
to postdisaster management; specifically, it addressed the
routing of assessment teams in disaster areas. The authors
proposed a continuous approximation approach to solve this
problem. Another latency routing problem was addressed
in [62], which also dealt with postdisaster routing. This
method considered minimum service level constraints, and
the authors developed a VNS-based heuristic. Unnamed
aerial vehicle surveillance services were also addressed with
latency routing problems in [63]. Here, the authors used linear
programming (LP) to minimize the delivery latency in this
context, proposing a model that allowed vehicles to perform
multiple trips. The cumulative VRP was also a natural fit for
modeling trucks’ fuel consumption [64]. In [65] and [66],
column generation-based algorithms were used to address
CCVRP in a fuel-consumption context. Cumulative objective
functions may also be suitable for modeling energy manage-
ment systems for electric/hybrid vehicles [67], [68]. To the
best of our knowledge, VRPs minimizing latency have not
yet been used in the HHC logistics context.

C. MAIN CONTRIBUTION OF THIS WORK
The literature review revealed that studies on cumulative
routing problems have focused on solution methods for the
classic CCVRP (mainly heuristics). Few variants have been
addressed until now, including the CCVRP with priority
index, the MTCCVRP, the CCVRPTW and the MDCCVRP.
The main contribution of the present article is that it intro-
duces a novel variant of the CCVRP to address HHC logis-
tics. To propose a suitable method for supporting routing
planning in HHC, our problem combines the features of
CCVRP variants that have been studied only individually.
The problem includes multiple nonfixed depots, emergency
trips to the closest depot, and mandatory visit times. To the
best of our knowledge, this is the first VRP that seeks to
minimize delayed latency. It is also the first HHC routing
problem addressed through a cumulative objective function.
The concept of a system’s delayed latency corresponds to
the total overtime hours with which each patient is visited.
A novel MILP model is proposed to handle this problem. The
proposed model is implemented with two of the most-used
commercial solvers, CPLEX and Gurobi, to benchmark their
performance. This method is designed for planning the atten-
tion of patients with chronic diseases and physical disabili-
ties. Nevertheless, it is suitable for several other applications,
such as humanitarian logistics, forest fire control, and food
transportation. The common feature in all of these scenarios
is that customer satisfaction is the key factor.
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II. MATERIALS AND METHODS
To address the problem described in Section 1.1, we propose
an MILP model. The problem is a novel variant of the
CCVRP. We have called it the nonfixed Multi-depot Cumu-
lative Vehicle Routing Problem with mandatory visit times
(MDCCVRmvt).

The proposed model has the following sets:
Sets
• C : Clients
• T : Depots
• N : Nodes, N = C ∪ T
• B: Vehicles
• A: Feasible arcs that comply with scheduled visit times
In the model, clients represent patients, while depots rep-

resent hospitals or other medical facilities. In this article,
‘‘clients’’ are equivalent to ‘‘customers’’ in the classical VRP.
We use the terms ‘‘patient’’ and ‘‘client’’ because the person
is receiving a service. The term ‘‘customer’’ is more suitable
for goods transportation.

The parameters used in the model are as follows:
Parameters
• QIt : Number of vehicles at depot t at the beginning of
the day.

• QFt : Number of vehicles at depot t at the end of the day.
• lb: Maximum desirable quota with which vehicle b can
visit each client before being penalized (workday).

• hi: Scheduled visit time of client i.
• dij: Travel time from node i to node j.
• BigM : Sum of worst arcs from each node, mathemati-
cally,

∑
i∈N

max
j∈N
{dij}

Finally, the following decision variables are introduced:
Decision variables
• Xbij : 1 if the arc going from i to j is considered part of the
route of vehicle b and 0 otherwise

• Ub
i : Accumulated time spent traveling to client i by

vehicle b
• CUi: Overtime hours with which client i is visited
The proposed model’s formulation corresponds

to (1) – (12):

min Z =
∑
i∈C

CUi (1)

subject to:
∑

b∈B,j∈N |(i,j)∈A

Xbij = 1 ∀i ∈ C (2)

∑
j∈N |(j,i)∈A

Xbji =
∑

j∈N |(i,j)∈A

Xbij ∀i ∈ C, b ∈ B (3)

∑
b∈B,j∈C|(t,j)∈A

Xbtj ≤ QIt ∀t ∈ T (4)

∑
b∈B,j∈C|(j,t)∈A

Xbjt ≤ QFt ∀t ∈ T (5)

∑
t∈T ,j∈N |(t,j)∈A

Xbtj ≤ 1 ∀b ∈ B (6)

dtj ≤ Ub
j + BigM (1− Xbtj )

∀b ∈ B, t ∈ T , j ∈ C|(t, j) ∈ A (7)

Ub
i + dij ≤ U

b
j + BigM (1− Xbij )

∀b ∈ B, i ∈ C, j ∈ C|(i, j) ∈ A (8)

CUi ≥ Ub
i +min

t∈T
{dit } − lb ∀i ∈ C, b ∈ B (9)

Xbij ∈ {0, 1} ∀b ∈ B, i ∈ N , j ∈ N |(i, j) ∈ A (10)

Ub
i ≥ 0 ∀i ∈ C, b ∈ B (11)

CUi ≥ 0 ∀i ∈ C (12)

The objective function (1) minimizes the delayed latency
of the system. It corresponds to the sum of the overtime
hours with which each patient is visited. The greater the
number of patients visited by the vehicle, the more greater
the penalization. To the best of our knowledge, our model is
the first VRP that intends to optimize delayed latency. The
set of constraints (2) ensures that all clients are visited once.
In (3), we present flow balance constraints, which establish
consistency in the use of vehicles. The set of constraints (4)
indicates the maximum number of vehicles that can start a
route from each depot. Similarly, (5) provides the maximum
number of vehicles that can end a route at depot t . It is impor-
tant to note that the model does not force vehicles to return to
their starting depot; it is a nonfixed MDVRP. The constraints
in (6) prevent vehicles from performing more than one route.
The constraint groups (7) and (8) calculate the accumulated
time for each vehicle at each client; they also correspond to
the subtour elimination constraints. While set (7) considers
arcs from depots, (8) accounts for between-client arcs. The
set of constraints (9) calculates the overtime hours spent
with each client. Overtime hours correspond to the difference
between the workday and the cumulative time plus an emer-
gency trip to the closest depot. Equations (10) to (12) present
the decision variable domains.

Finally, set A, which represents all feasible arcs, must be
defined. This definition is given by 13-15.

A1 : (t, i) | ht + dti ≤ hi ∀t ∈ T , i ∈ C (13)

A2 : (i, j) | hi + dij ≤ hj ∀i ∈ C, j ∈ C|i 6= j (14)

A3 : (i, t) ∀i ∈ C, t ∈ T (15)

A1 includes all the arcs from depots that are close enough to
patients for vehicles to arrive by the established appointment
time. Note that ht represents departure times from depots; we
assume that this value is equal to zero. A2 represents arcs
between patients. Finally, as depots have no visit times, A3
states that all arcs from clients to depots are feasible.

Therefore, the set of feasible arcs is represented as follows:

A = A1 ∪ A2 ∪ A3 (16)

It is important to note that the condition sets (13) – (16)
have a similar role to time window constraints. In this
MDCCVRmvt, independent of the arrival time, service is
provided at the scheduled time. In real-life HHC problems,
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service must be provided at the scheduled time, instead of
having an interval of possible visit times. Set A is computed
prior to the solving process.

Figure 3 illustrates an example of the proposed model with
a small instance. It consists of two depots (A and B), four
clients, and one vehicle. To force the vehicle to travel a route
from depot A to depot B, we define parameters QIA = 1,
QFA = 0, QIB = 0, and QFB = 1. The final depot does not
affect the objective function value. To simplify this example,
we assume that visit time hi is equal to accumulated travel
time Ui. Parameter lb is set equal to 150 time units. Travel
times measured in time units are indicated at the edges of
the diagram. Dashed lines represent emergency trips to the
closest depot.

Dashed lines around patients indicate that overtime hours
were used on those visits. The objective function value is
equal to 25 time units. The route performed by the vehicle
is A-C1-C2-C3-C4-B, and the normal workday time limit is
exceeded during the visit to client C3. It is important to note
that CUi is equal to lb, less the sum of the accumulated time
traveled,Ui, and the emergency trip to the closest depot. Thus,
if the emergency trip was not considered, then none of the
visits would incur overtime.

III. RESULTS AND DISCUSSION
The proposed MILP model was implemented on AMPL
and solved using the commercial solvers CPLEX 12.9.0 and

Gurobi 8.1.0. The computer used had the following features:
Intel Core TM i7-7700K, 4.2 GHz processor, 32 GB RAM,
and a 64-bit RedHat Enterprice 8.0 operating system. Both
solvers were used with default settings and with the time limit
parameter set to 3600 s.

A. DATA GENERATION
To test the computational performance of the model, we cre-
ated structured instances. These are combinations of varia-
tions in sets’ cardinality and parameters. These features are
described as follows:
• Clients (C) : {10, 20, 30, 40, 50}.
• Depots (T ) : d

√
C/2e.

• Vehicles(B) : 3T , where QIt = QFt = 3
• Quota (lb) : {100, 125, 150, 175, rand[125, 175], 200}.
• Geographic distribution of clients: random (R), clusters
(CL), and geometric (G). An example of each can be
seen in Figure [4]. Squares represent depots, and circles
represent clients.

• Cluster density parameter (D) : {3, 6, 9, 12, 15}.
This parameter affects only cluster-type instances. The
smaller the value of D is, the denser the cluster. For a
more comprehensive explanation of the cluster creation
methodology, the reader may refer to [69].

Coordinates x and y for all nodes are in the range
[−100, 100]. While the type of geographical distribution of
the clients is variable, depots are fixed and independent of

FIGURE 3. Explanatory example of the problem.
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FIGURE 4. Geographical distribution types. (a) Random. (b) Cluster.
(c) Geometric.

client distribution. The travel time parameter dij is assumed to
be equal to the value of the Euclidean distance between points
i and j. The visit time parameter hi may define instance feasi-
bility. To generate these values with a low risk of infeasibility,
the methodology considers a number of parameters. First, for
each client and depot, we define Aij as the approximation of

the next multiple of 15 of the travel time between client i
and depot j. For example, if dij = 40, then Aij is set equal
to 45. Then, for each client, one of the |T | parameters, Aij,
is randomly selected. The next step is to sort clients by their
selected Aij values and create G groups with m members.
The number of groups created for each instance is G =
{2, 3, 4, 5, 6} for C = {10, 20, 30, 40, 50}. When the remain-
der of C/G = 0, we haveG groups withm = C/Gmembers.
Otherwise, we will have G − 1 groups with m = dC/Ge
members and one group with m = C − (G − 1)dC/Ge
members. Each member of each group is subject to variation
parameter Vi, which affects the selected Aij. The values of Vi
are given by probabilities, as shown in Table 1. It should be
noted that ε corresponds to an additional variation parameter,
which is included to add variability to hi values. In our
experiments, we set ε = 15.

TABLE 1. Probabilities of possible values of Vi according to problem size
and assigned group.

Finally, clients’ appointment time hi is given by the sum of
the selected approximation parameter and the variation that
occurred. This parameter is expressed as follows:

hi = Aij + Vi (17)

B. EXPERIMENT A: PROBLEM SIZE VS. CPU TIME
The first experiment consists of an exploratory analysis.
We tested the model’s performance by instance size and
compared the results of both commercial solvers. Param-
eter lb was set to 200 time units. This experiment does
not contain C = 50. For each number of clients C , five
instances with different random seeds are created (in total
20 instances). All instances are distributed randomly (R) in
the plane.

The results summarized in Table 2 indicate that the prob-
lem’s complexity grows with the number of clients. Instances
with 10 and 20 patients are solved in a few seconds on
average. However, for instances with C = 30 and 40,
the CPU time increases considerably. We found that in terms
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TABLE 2. Average CPU time (s), objective function value and GAP by
instance size for each solver.

of CPU time and GAP, Gurobi is more efficient than CPLEX
for solving the analyzed instances. Another result worth
noting is the objective function value in instances with 20
patients. A small Z value indicates that in these instances,
little or no overtime hours are required for client visits. This
can be explained by the combination of the quota’s value and
the number of vehicles. For instances with C = 20, B = 9,
while for those with C = 10, B = 6, which is approximately
2 patients per vehicle. This implies a low risk of overtime.

C. EXPERIMENT B: VARIATIONS IN QUOTA PARAMETER
The objective of Experiment B is to determine the influence
of lb on model performance. This analysis was applied only
to instances that presented an objective function value equal
to 0 in Experiment A (with lb = 200). Furthermore, we only
used Gurobi. A total of 35 instances were analyzed, 7 for each
value of lb = {100, 125, 150, 175, rand[125, 175]}. Three of
these 7 instances correspond to C = 20, two to C = 30 and
two others to C = 40.
As the value of lb increases, the objective function’s value
for each instance size C improves. This situation can be
explained by the fact that penalization starts later when the
value of lb is larger. CPU time is demonstrated to be indi-
rectly proportional to the value of lb. As the quota parameter
increases, the problem becomes less complex. Indeed, it is
possible to observe a significant diminution in computational
time between lb = 150 and 175 and from 175 to 200. This
phenomenon is visible in all instance sizes, but especially
in C = 30 and 40. The results of this experiment are
summarized in Figure 5. The first horizontal axis contains the
number of clients, while the second contains lb values. CPU
time is represented by blue bars (left vertical axis), and Z is
represented by green bars (right).

D. EXPERIMENT C: ANALYSIS OF GEOGRAPHICAL
DISTRIBUTION TYPE
Here, we analyze whether the geographical distribution of
clients influences model behavior. Additionally, both com-
mercial solvers are compared. Instances include variations
in the quota and the number of clients. While lb =

{150, rand[150, 200], 200}, C = {10, 20, 30, 40, 50}. For
the random distribution case, five seeds were generated for
each value of C . These seeds were used for the three quota
values. In the cluster distribution, for each combination of
number of patients C and quota lb, five instances were cre-
ated, each with different cluster density D. In the geometric
case, only one seed for each number of clients was created
and used for the different values of lb. A total of 165 instances
were created in this experiment: 75 for random distribution,
15 for geometric distribution, and 75 for clustering.

By analyzing the results in Table 3, we conclude that the
geometric distribution is the most complex, while the cluster

TABLE 3. Benchmarking solvers: Average results by distribution type,
problem size, and allowed quota.
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FIGURE 5. Average CPU time and objective function value by allowed quota and problem size.

distribution is the easiest to solve. All small instances, that is,
C = 10 and C = 20, were solved to optimality for random
and cluster distributions but not for geometric distribution.
By analyzing instances with 30 or more clients, we found that
all cluster types were solved to optimality. By comparing ran-
dom and geometric distributions, we found that in most cases,
random distribution presents better average CPU times. For
geometric type, none of the instances with C = 30 could be
optimally solved. Regarding cluster distribution, the objective
function was found to be equal to 0 for all instances analyzed.
The above situation means that no overtime has occurred.
Regarding cluster density, we found that the denser the cluster
is, the less CPU time required to solve the problem. The effect
of density on model performance is easily visible in large
instances. The behavior of cluster instances (and its differ-
ence compared to other distributions) can be explained by
the level of closeness between clients and depots. The results
of instances with 50 clients are summarized in Figure 6.
Regarding solvers’ benchmark, for instances with C = 10
and C = 20, we found that CPLEX performs better than

Gurobi in geometric distribution and tight quotas. For lb =
200, a significant difference in favor of Gurobi was observed.
For instances with 30 and 40 clients, Gurobi requires consid-
erably less computational time to solve most of the random
and cluster instances. In geometric instances of these sizes,
both solvers reach the time limit, but Gurobi presents lower
GAPs than CPLEX. Furthermore, in three instances with
C = 30, CPLEX runs out of memory. In these instances,
the branch and bound algorithm explores a large number of
nodes that are not able to be pruned, leading to a large number
of nodes left to explore and high memory usage. In cluster
instances with C = 50, Gurobi outperforms CPLEX. For
other instances, no notable differences are found.

E. EXPERIMENT D: INSTANCE SMOOTHING – INCREASE
IN THE NUMBER OF DEPOTS AND SIZE OF THE FLEET
The final experiment involves tripling the number of depots
(smoothed(D)) and vehicles (smoothed(V )). We consider
both cases separately and together (smoothed(V +D)). Only
instances with random and geometric distributions were ana-
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FIGURE 6. Average CPU time by cluster density, allowed quota, and solver for instances with C = 50.

lyzed because these reached the time limit with high GAP
values in the previous experiment. The same instances as
those in experiment Cwere smoothed: 75 instances of random
type and 15 instances of geometric distribution. Furthermore,
we used only Gurobi.

The reader can observe the results of this experiment
in Table 4. In most of the cases studied, compared to the
original situation, the proposed variations decrease the prob-
lem’s complexity in terms of CPU time, GAP, and objective
function value for both distribution types. By comparing the
effect of depots and vehicles (geometric instances), we found
that larger fleets lead to lower GAPS and CPU times in most
cases. These results are consistent and can be validated by
property 1 of the MDCCVRP described in [24]. Furthermore,
there is no pattern that indicates the parameter with the great-
est impact on the objective function value. The improvement
produced by smoothing both parameters is greater than that
by doing so separately. As the number of available vehicles
and depots increases, the possibility of a caregiver using over-
time hours to visit a client decreases. In the new scenario, each
vehicle can perform shorter routes, which reduces the risk of

incurring overtime. All instances were solved to optimality in
considerably low computing times for the smoothed(V + D)
case.

F. SUMMARY OF THE BENCHMARKING OF COMMERCIAL
SOLVERS
A total of 165 instances were used to compare the commercial
solvers CPLEX v12.9 and Gurobi v8.1 in experiments A
and C. While Gurobi exhibits better computational perfor-
mance in 90 instances (55%), CPLEX does better in 27(16%).
In 48 instances, (29%), the solvers are found to have a similar
performance, which is mainly due to the fact that they both
reach the time limit in the more complex instances. Never-
theless, Gurobi presents lower GAPs than CPLEX in most of
these instances. Another important conclusion from the com-
parison is illustrated in Figure 7, which presents a graphical
analysis of the benchmarking by plotting CPLEXCPUtime −
GurobiCPUtime for each instance. Thus, instances with nega-
tive values indicate that CPLEX ismore efficient thanGurobi,
while positive values indicate the opposite. The reader can
observe not only that Gurobi has better behavior in more
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TABLE 4. Comparison between original and smoothed instances.

instances but also that when this solver outperforms CPLEX,
the magnitude of the difference in CPU time is considerable.
Figure 7 presents only those instances in which differences
in CPU time are greater than 50 s. For further details of all
instances, the reader may check the supplementary materi-
als. Instances’ names are constructed as follows: distribution
type, number of patients, and quota. For cluster instances,
density D is also included at the end. For example, instance
CL50-200-D9 is a type-one cluster distribution with C = 50,
lb = 200, and D = 9.

IV. CONCLUSION AND DIRECTIONS FOR FUTURE
RESEARCH
In this paper, we introduced a new variant of the CCVRP.
It corresponds to the nonfixed MDCCVRPmvt with mini-
mum delayed latency. Contrary to similar CCVRPs found
in the literature, our problem includes features present in
real-life HHC routing problems. These characteristics include
fulfilling mandatory visit times, multiple depots, and emer-
gency trips in case patients need special attention at a hospital.
The novel objective function used helps define routes by the
minimizing overtimes hours with which clients are visited,
leading to better service quality. A novel MILP model to
address this problem is proposed, the performance of which

is analyzed with new structured instances. The main idea is
to simulate different potential real-life cases. We find that
instance size is directly proportional to computation time.
Most instances with 10 and 20 clients are solved with relative
ease by both solvers. In our analysis of patients’ geographical
distribution, we conclude that geometric is the most difficult
instance type to address, while cluster distribution is the
easiest. The density parameter also influences model perfor-
mance. The denser the cluster is, the better themodel’s behav-
ior. It is important to note that instances of up to 50 clients
are solved optimally for cluster cases. For the other two
distribution types, most instances with C = 40 and 50 reach
the time limit without finding the optimal solution. In some of
these cases, the GAP is 100%. Regarding the effect of param-
eters on the problem’s complexity, we find that tighter quotas
make the instance more difficult to solve. By increasing the
number of depots and the fleet size, the complexity can be
reduced. This situation can be explained by the improved
workload distribution that additional vehicles/depots pro-
vide. The benchmarking between CPLEX and Gurobi indi-
cates that Gurobi requires less computational time in most
of the instances analyzed. Remarkable differences in CPU
time and GAP are found in favor of Gurobi for several
instances.
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FIGURE 7. Difference in CPU time (CPLEX-Gurobi) by instance.

Although we present this novel model for HHC applica-
tions, it can easily be extended to other problems as follows:
• In forest fire control (considering planes with more than
one water discharge mechanism). In this case, hot spots
are clients. Depending on when a fire starts, hot spots
have a defined maximum time to be reached by plane.
The parameter lb could correspond to the maximum
flight time, which could be limited by gas availabil-
ity or other technical constraints. Planes could stay on
route even when the quota is reached. Nevertheless,
it is a dangerous situation, the risk of which increases
with each new hot spot visited. Emergency trips to the
closest depot must be performed when the plane runs
out of water or gas or when it faces other technical
emergencies.

• Humanitarian logistics in a postdisaster context. Natural
disasters such as earthquakes have the potential to affect
wide swaths of the population. Rescue vehicles must
take certain routes to pick up these individuals and take
them to shelters. In this context, a good response time is
essential, and the goal is to reach all the people before a
maximum time, lb, after the event occurrence. If a person

needs emergency medical attention, then an emergency
trip to the closest facility must be made.

• In the delivery of frozen/fresh products or warm bread.
Note that in many Latin American countries, it is
common to eat fresh, warm bread at breakfast and din-
ner. In both cases, products have a certain time available
before the cold chain is broken or they get cold. The
desirable outcome is to deliver products that have not
had their quality negatively impacted by transport. Stan-
dard time lb violations are expected to be minimized.
The emergency trip could be related to clients who reject
the delivery if, for example, the order is incomplete or
the products are in poor condition. This would imply a
trip to the closest depot to correct the order.

• Truck/bus companies that provide scheduled delivery
or pickup services. In this case, lb corresponds to the
maximum number of hours that drivers should be at
the wheel. They can drive more hours, but it increases
the risk of accidents. In the same industry, lb can also
correspond to the number of km at which each vehicle
should undergo routine maintenance. Vehicles can be on
the road without maintenance, but it increases the risk of
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operational failures, which can, in turn, lead to accidents
or scheduling problems. In this case, since lb, Ub

i and
CUi are distances, a simple conversion using a speed
parameter is needed.

For future research, we propose adding new features and
components to the model to improve its representation of the
real world. Such components can include service time, differ-
ent types of services, or precedence constraints. The proposed
model can also be extended to a cumulative HHCRSP. Amul-
tiobjective approach that allows for the study of the tradeoff
between delayed latency and total cost/time-based objectives
may be adequate. Furthermore, new solution methods to han-
dle more complex instances are also an interesting possibility.
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