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ABSTRACT Deep neural networks are used as effective methods for the Low Probability of Intercept (LPI)
radar waveform recognition. However, existing models’ performance degrades seriously at low Signal-to-
Noise Ratios (SNRs) because the effective features extracted by the networks are insufficient under noise
jamming. In this paper, we propose a multi-resolution deep feature fusion method for LPI radar waveform
recognition. First, we apply the enhanced Fourier-based Synchrosqueezing Transform (FSST), which shows
good performance at low SNRs, to convert radar signals into time-frequency images. Then, we construct
a multi-resolution deep convolutional network to extract more deep features from each resolution channel.
Next, we explore an interactive feature fusion strategy for deep feature fusion. By some down-sampling
or up-sampling blocks, different resolution features are fused to generate new features. Finally, we apply
a fusion algorithm to the fully connected layer to achieve classification fusion for better performance.
Simulation experiments on twelve kinds of LPI radar waveforms show that the overall recognition accuracy
of our method can reach 95.2% at the SNR of −8 dB. It is proved that our approach does indeed improve
the recognition accuracy effectively at low SNRs.

INDEX TERMS Radar waveform recognition, multi-resolution, feature fusion, FSST, convolutional neural
network.

I. INTRODUCTION
LPI radar, not easily intercepted by non-cooperative
receivers, has been widely used in modern radar systems.
They often use various modulation waveforms with variable
parameters to improve anti-interception performance. Ran-
domly altering one or more of the modulation parameters
can confuse the intercept receivers, especially in a complex
environment of high noise interference and multiple signals
[1], [2]. Therefore, LPI radar waveform recognition has
become a tough challenge in Electronic Warfare (EW).

Traditional methods relying on artificial experience
to select features fail to recognize modulation wave-
forms in a complex environment [3], so they cannot
meet the needs of modern intelligent recognition systems.
Recently, with the successful application of deep learning
in image classification and other fields [4], [5], scholars
are devoted to converting one-dimensional radar signal into
two-dimensional feature images by signal processing and
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using the deep learning models to extract image features
automatically for classification.

In order to exhibit the difference among various radar
signals, signal processing based on Time-Frequency (T-F)
analysis are employed to handle modulated radar waveforms,
such as Short-Time Fourier Transform (STFT), Wigner Ville
Distribution (WVD) [6], Choi-William Distribution (CWD)
[7]–[10], and Cohen class Time-Frequency Distribution
(CTFD) [11]. CWD has better performance in cross-term
suppression and higher quality in T-F images, but it has high
algorithm complexity and performs poorly at low SNRs. The
Fourier-based Synchrosqueezing Transform (FSST) [12] is
an effective T-F analysis method for radar signals, which
provides a sharp and concentrated feature representation
and is robust to noise and small perturbations. However,
the frequency squeezing makes few features available for
identification.

Deep learning networks have been successfully applied
in radar signal recognition tasks. After a series of image
processing, T-F images are sent into the deep network model
for automatic feature extraction and classification. In [13],
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Zhang converted the T-F images to binary images with 32×
32 pixels as inputs and adopted the Convolutional Neu-
ral Network (CNN) and Elman Neural Network (ENN) for
eight radar signals recogniton. The recognition rate achieved
94.5% at SNR of -2 dB. In [11], Qu used 64 × 64 T-F
images for the input layer of CNN, and explored a deep
Q-learning network to improve the probability of success-
ful recognition. In [8], the authors utilized CWD to obtain
T-F images and constructed a six-layer CNN for LPI radar
waveform recognition. Experiments verified the influence
of different input sizes on recognition accuracy. The results
showed that CNN with 128 × 128 inputs obtained a 93.58%
recognition rate at SNR of -6 dB. Authors in [10] applied
the ResNet for complex multiple radar waveforms. In addi-
tion to the CNN network, the Stacked Auto Encoder(SAE)
model had also been applied to radar waveform classifica-
tion [14]. Besides, some scholars used deep learning net-
works to extract the features of T-F images and selected
the Tree-based Pipeline Optimization Tool (TPOT) or Sup-
port Vector Machine (SVM) for classification [9], [15]. All
the above methods have made some progress in improving
radar waveform recognition performance, but most methods
showed severe recognition performance degradation when
the SNR was less than -6 dB. Therefore, how to improve
the radar waveform recognition performance at low SNRs
is a challenging problem. We note that T-F images with
different resolutions have different features that can be used
for identification. T-F images with high resolution have
more detailed features, while T-F images with low resolu-
tion contain more geometric features. Obviously, the fea-
tures extracted from single-resolution inputs are insufficient
to distinguish various radar signals at low SNRs, especially
similar signals, making it difficult to improve recognition
performance.

To solve the above problem, scholars have adopted some
fusion strategies to obtain more effective features. In [16],
a T-F image fusion strategy and a multi-feature fusion algo-
rithm were used for radar signal recognition. In [17], the fea-
tures extracted fromCNNwere fused with shallow features to
obtain more features in image expression. In addition, design-
ing a network structure to extract features with multiple reso-
lutions could also improve recognition performance, which
had proven to be an effective method in object detection.
In our previous work [18], we designed a dual-channel CNN
structure to extract more features. However, we only used
simple feature fusion for two resolutions. Considering that the
features at different resolutions have different contributions
to the recognition performance, we will try to use T-F images
with multiple resolutions for network training and improve
the fusion strategy to extract deep features.

In this paper, we propose a multi-resolution deep feature
fusionmethod for LPI radar waveform recognition, to address
the problem of insufficient features extracted from deep
learning networks under noise jamming. Our work mainly
focuses on three aspects: to select a better T-F representation
method, to construct amulti-resolution network structure, and

to develop an effective fusion strategy. The major contribu-
tions to this paper are list as follows:

1) Apply an enhanced FSST for signal T-F analysis to con-
vert radar signals into T-F images. The FSST with spectrum
enhancement shows better anti-noise performance and faster
operation than CWD at low SNRs.

2) Propose a deep convolutional network with a
multi-resolution structure. We use down-sampling to obtain
images of different resolutions in the first layer, then we
construct CNNs to extract more deep features from each
resolution channel. Compared with a single resolution input,
themulti-resolution network structure can extractmore useful
features.

3) Explore an interactive feature fusion strategy instead
of simple concatenation fusion. Different resolution features
from each CNN are fused to generate new features by some
down-sampling or up-sampling blocks. The fusion modules
enable the features to be enhanced, which helps to identify
similar signals.

4) Use a fusion algorithm to the Fully Connected (FC) layer
with different resolutions to achieve classification fusion, and
select the Error-Correcting Output Coding-Support Vector
Machine (ECOC-SVM) as a classifier, which can improve
the fault tolerance of the classification. It shows a significant
improvement in recognition accuracy.

The paper is organized as follows. Section II introduces
the classification system and waveforms. Section III presents
signal processing, including time-frequency analysis (FSST)
and image processing. Section IV describes the classification
method in detail, and section V shows the simulation results.
Finally, Section VI concludes the paper.

II. CLASSIFICATION SYSTEM AND WAVEFORMS
This section presents the definition of LPI radar waveforms
considered in this paper and the structure of LPI radar classi-
fication system.

A. SYSTEM STRUCTURE
The classification system consists of three parts: signal
processing, feature extraction and fusion, and classifica-
tion, as shown in Figure 1. In the signal processing stage,
the received LPI radar waveforms are first converted into T-F
images by the enhanced FSST. Then the T-F images are pro-
cessed by cutting, image resizing, and normalization. Next,
a deep convolutional network with three resolutions struc-
ture is designed for feature extraction. An interactive feature
fusion strategy is used for feature fusion. After that, we apply
a fusion algorithm on FC features and use ECOC-SVM as a
classifier to realize waveform recognition.

B. SIGNAL MODEL
Assuming that the received LPI radar signal is a pulse wave
with Additive GaussianWhite Noise (AWGN). Then, the sig-
nal model can be expressed as:

s(t) = x(t)+ n(t), 0 ≤ t ≤ T (1)
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FIGURE 1. The proposed LPI radar waveform recognition system.

where

x(t) = A exp(j(2π f (t) · t + φ(t)) (2)

is the time complex LPI radar signal samples. A is amplitude,
T is the pulse duration. Suppose that the signals have the same
amplitudes, we set A = 1 here. n(t) is white Gaussian noise
with variance σ 2. The SNR of the signal is defined as SNR =
10log10A

2/2σ 2. f (t) and φ(t) are the carrier frequency and
phase function, respectively, which determine the modulation
type of radar signal. In this paper, twelve types of intrapulse
modulation LPI radar waveforms are considered [2]: BPSK,
Costas, Frank, LFM, P1, P2, P3, P4, T1, T2, T3, and T4 codes.

III. SIGNAL PROCESSING
A. FSST FOR TIME-FREQUENCY ANALYSIS
The short-time Fourier based synchrosqueezing transform,
introduced in [19], is a new time-frequency analysis method,
which aims to provide the sharp and concentrated represen-
tation by allocating the STFT coefficient value to a different
point in the T-F plane, and it has been proved to be robust
to noise and small perturbations. For LPI radar waveforms,
we use FSST to obtain a high-resolution T-F image, making
it easier to distinguish between various received waveforms.
We denote the short-time Fourier transform of signal s(t) by
S(t, f ):

S(t, f ) =
∫
+∞

−∞

s(τ )g(τ − t)e−j2π f (τ−t)dτ (3)

where t and f are the time variable and the frequency variable,
respectively. g(t) is a window function. Limited by the size
of the window, the frequency resolution of the short-time
Fourier transform cannot be optimal. Starting from the STFT,
FSST moves the coefficients S(t, f ) according to the map
(t, f )→ (t, ŵ(t, f )), defined by

T (t,w) =
1
g(0)

∫
+∞

−∞

S(t, f )δ(w− ŵ(t, f ))df (4)

where

ŵ(t, f ) = Re
(

1
2π i

∂t (S(t, f ))
S(t, f )

)
(5)

is the local instantaneous frequency. δ is the Dirac delta
function and g(0) is the value of a sliding window g(t) at time
0. In this paper, a Kaiser window of length 256 is applied.

FSST has improved the T-F feature resolution by squeez-
ing the spectrum, but the squeezed spectrum is only with
a few pixels width, which is not beneficial for waveform
recognition at low SNRs. To enhance the signal T-F feature
representation, we shift the T-F coefficients T (t,w) in a small
frequency range and add them together. The enhanced coef-
ficients T̂ (t,w) are expressed as follows

T̂ (t,w) =
w0∑

w′=−w0

T (t,w−w′) (6)

where w′ is the value of frequency shift. In our paper, we set
w′ = 1 to keep noise and feature enhancement in balance.
T̂ (t,w) is a complex-valued bivariate. Here, we take the
amplitude

∣∣∣T̂ (t,w)∣∣∣ as an effective representation of the T-F
images. Assuming that the length of the signal is L, we can
obtain the T-F imageswith the size of 256×L. Comparedwith
CWD, the enhanced FSST algorithm has low complexity and
fast operation.

B. IMAGE PROCESSING
Before the images are sent into the classifier, image cutting
and resizing are used to reduce the computational cost for
the deep neural network. Considering that the T-F features
of the signal are located in the upper of images, image
cutting is applied to retain the upper half of the image.
By the nearest neighbor technique, the T-F images are resized
to 256× 256.
The T-F images of twelve kinds of LPI radar waveforms

with 256 × 256 pixels are shown in Figure 2. All the
signals are generated in the condition of SNR = 10dB
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FIGURE 2. T-F images of twelve kinds of LPI radar waveforms (SNR =

10dB).

and f0 = 5MHz. As shown, there are several differ-
ences between waveform categories in high SNR condi-
tion. It shows that the enhanced FSST is outstanding in
terms of noise robustness and T-F feature representation.
We also note that the polyphase codes have similar T-F
features to LFM. Frank and P1 codes are approximately the
stepped lines, while P1 and P4 are closer to the straight
lines. The feature difference between polyphase codes
becomes more obvious in our method, which is conducive
to improve the probability of successful recognition, even at
low SNRs.

IV. CLASSIFICATION METHOD
The classification method based on the deep convolutional
network have four modules: multi-resolution network struc-
ture, interactive feature fusion module, classification fusion
and the ECOC-SVM classifier. In this section, we will
describe each module in detail.

Inspired by the feature pyramid structure [20], we design
a multi-resolution structure based on CNN to extract deep
features of different resolution images. The difference is
that we do not directly obtain multi-resolution features from
the single network’s multiple layers. Figure 3 shows the

FIGURE 3. Multi-resolution network structure.

multi-resolution network structure. The input size is 256 ×
256×1. Then, 2×2 and 4×4 maxpooling modules are used
for down-sampling to generate 128 × 128 and 64 × 64 T-F
images. Next, the designed CNN [18], which proved to be an
effective network in our previous work, is applied to different
resolution inputs.

The CNN consists of Conv1, Maxpool1, Conv2, Max-
pool2, Conv3, and Inception. The convolutional kernel size
for Conv1, Conv2 and Conv3 is designed as 7× 7, 5× 5, and
3 × 3, according to the width of the time-frequency curves
in the T-F images. The numbers of the convolutional kernels
are set to 64. Each convolutional layer is followed by Batch
Normalization (BN) to speed up training and prevent the
gradient from disappearing or exploding. We use Rectified
Linear Unit (ReLU) as a nonlinear activation function. Max-
pool1 and Maxpool2 are set to 2 × 2 filer size, stride size 2,
and no zero-padding. We add the Inception architecture [21]
after Conv3 to increase the depth of the network and extract
more features at different scales.

Figure 4 shows the Inception module structure. It is com-
posed of 1×1, 3×3, 5×5 convolutions and 3×3 avgpooling
stacked upon each other. Here, the 5 × 5 convolution is
dissolved is 1 × 5 and 5 × 1 convolution, which speeds
up the calculation. The kernel number after concatenation
is 224. We denote the feature maps for CNN outputs as
{F1,F2,F3} ∈ Rn, which have the sizes of 16 × 16 × 224,

FIGURE 4. The Inception module structure.
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32×32×224, 64×64×224 with respect to three resolution
inputs.

A. INTERACTIVE FEATURE FUSION (IFF)
F1, F2, and F3 represent effective features with different
resolutions, which have similarities and differences. Different
from the former methods that fuse multi-resolution features
using addition or concatenation, our fusion idea is to sum var-
ious resolution features interactively for each output module,
realized by the down-sampling module and the up-sampling
module. The strategy is shown in Figure 5.

FIGURE 5. Interactive feature fusion structure.

As shown, we apply a 2 × 2 avgpooling module with a
stride of 2 and a 4 × 4 avgpooling module with a stride of 4
to achieve 2↑ and 4↑ down-sampling. In contrast, for 2↓ and
4↓ up-sampling, we use a 2×2 deconvolution module with a
stride of 2 and a 4×4 deconvolutionmodule with a stride of 4.
By addition, the fusion feature {X1,X2,X3} can be obtained
as follows

X1 = F1 + F22↓ + F34↓

X2 = F12↑ + F2 + F32↓

X3 = F14↑ + F22↑ + F3 (7)

B. FUSION FOR CLASSIFICATION
Following the interactive feature fusion module, the FC lay-
ers are connected to obtain the final classification feature
vectors. By training the designed multi-resolution network,
we can extract feature vectors {Y1,Y2,Y3} from FC layers.
The feature vectors are closely related to the probability of
classification. In order to reduce the recognition error caused
by feature deviation, we apply the weighted average method
for the classification fusion.

The weighted average method is to fuse different fea-
tures proportionally by setting a weighted coefficient. It is
described as follows:

Y=αY1 + βY2+γY3 (8)

where α, β, γ are the weighted coefficients that determine the
proportion of each feature. Y is the fused feature vector. Here,
we set α = β = γ = 1

3 for classification fusion.

C. CLASSIFIER
After feature extraction and fusion are finished, a final deci-
sion is made using a classifier. Support vector machine
is a supervised learning algorithm that is widely used to
solve classification problems due to its ability to deal with
high dimensional data and efficiency in modeling diverse
data [22]. The basic idea of the SVM is to construct an
optimal hyperplane on the feature space that optimally sep-
arates each class. It is often designed for binary classifica-
tion. Error-Correcting Output Codes (ECOC) is a successful
framework to address the multiclass problem. It can improve
the performance of classification because of its ability to
correct the bias and variance errors of the base classifiers
[23], [24]. In this paper, we apply ECOC-SVM to deal with
multiple waveform classification.

The ECOC-SVM algorithm consists of two steps: encod-
ing and decoding. Here, the one-versus-one strategy is
designed for the coding matrix. Given a set of N classes to
be learned, the ternary symbol-based coding matrix defines
as H ∈ {−1, 0, 1}N×n, where n is the codeword length,
n = N (N − 1)/2. For the decoding stage, the minimum
Hamming distance dr among all pairs of rows can be defined
as follows [24]

dr = min


n∑
j=1

(1− sign(yji1 · y
j
i2
))/2

 (9)

For i1, i2 ∈ {1, . . . ,N }, i1 6= i2, being y
j
i1
the jth position of

the codeword for class ci1 .

V. SIMULATION RESULT AND DISCUSSION
In this section, we verify the performance of the proposed
recognition model by simulation experiments. We generate
radar waveform datasets for simulation and then compare the
performance of the proposed algorithm with other methods
at different SNRs. Besides, we discuss the effect of fusion
module on recognition performance and detect the robustness
of the system.

A. RADAR WAVEFORM DATASETS
In the experiment, twelve kinds of simulated LPI radar signals
are generated for training and testing. In order to make the
simulated signal similar to the real signal, the parameter
values of the signal are randomly set within the specified
range, and white Gaussian noise with different SNR are
added to the signal. The parameters of each signal are shown
in Table 1. The signal sampling rate fs = 50MHz, and the
length of each signal N is between 600 and 1200. Each signal
has 2200 samples with the SNR value from -10 to 10 dB with
a step of 2 dB. After these signals are generated, we apply
the enhanced FSST to transform waveforms into T-F images
and resize T-F images to 256 × 256. We divide the datasets
into two parts, 70%of samples randomly selected for training,
the remaining 30% samples for testing.
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TABLE 1. Parameters of twelve types of LPI radar signals.

B. PERFORMANCE COMPARISON
To demonstrate the recognition performance of the pro-
posed algorithm, we compare the approach with CWD-CNN
[8], CWD-MFCNN [18], CWD-ResNet-SVM [15], FSST-
CNN [12], and FSST-SAE. The FSST-SAE method uses the
enhanced FSST to obtain 64 × 64 T-F images and applies
an SAE network [14] with two autoencoder layers for classi-
fication. For the network training, we select the Stochastic
Gradient Descent with Momentum (SGDM) algorithm as
the optimizer. The learning rate, epoch, and batch size are
set to 0.01, 6, and 32, respectively. In order to ensure the
reliability of the recognition performance, the experimental
results are averaged by ten times. The CNNs are trained on a
high computation PC with the central processing unit (CPU)
i7-7820HK@2.9GHz, with 6GBRAM, and the Cuda enabled
graphics processing unit (GPU) Nvidia GeForce GTX1080.

Figure 6 shows the overall recognition results of five
methods at different SNRs. As shown in Figure 6, when
the SNR > −2 dB, all five methods except CWD-ResNet-
SVMhave high recognition accuracy,more than 99% after six
epochs of training. With the decline of SNR, the recognition
curve has dropped significantly. The performance of CWD-
ResNet-SVM is relatively poor, followed by CWD-CNN, and
CWD-MFCNN has better performance than FSST-CNN and
FSST-SAE. The recognition performance of FSST-SAE is
slightly better than that of FSST-CNN, which benefits from
the enhanced spectrum of FSST. Compared with CNN, SAE
can achieve classification without data labels but takes longer
training time. The proposed method shows the best recog-
nition results, especially at low SNRs. When the SNR is -
6 dB, our method’s recognition accuracy is 97.9%, increasing
over the best results of the other four methods by 1.0%.

FIGURE 6. Performance comparison of six methods at different SNRs.

When the SNR is -8 dB, our method can still achieve
95.2% recognition accuracy, which exceeds CWD-MFCNN
by 2.4% and FSST-CNN by 11.3%. The results demon-
strate that the proposed approach has higher recognition
accuracy and stronger anti-noise ability than the existing
approach. The performance improvement benefits from two
aspects: the enhanced FSST has better anti-noise perfor-
mance, and the multi-resolution fusion structure is more con-
ducive to extracting effective features for recognition.

Figure 7 shows the recognition accuracy of twelve radar
signals at different SNRs. We find that Costas, LFM, and
P2 codes with apparent differences on T-F images can be
well recognized in the proposed method. P1, P4, T2, and
T4 codes with similar features are relatively difficult to clas-
sify than other codes at low SNRs. It should be noticed that
the recognition accuracy for P4 and T3 codes in this paper
have been greatly improved than the results of other methods.
The results demonstrate that the multi-resolution deep feature
fusion method can extract more detailed features, which is
helpful to identify similar signals.

Table 2 shows the confusion matrix of twelve kinds of
waveforms at SNR = −8dB. It is clearly that the codes with
similar T-F images are easily confused with each other, such
as P1 and P4 codes. For P1 code, 22.3% is misidentified as
P4 code, and for P4 code, 11.7% is misidentified as P1 code.
In addition, 5.7% of T4 codes are identified as T2 code. The
reason is that the severe noise makes the feature fuzzy and
reduces the recognition accuracy. We can further consider
radar signal denoising, which will greatly improve the recog-
nition performance.

C. THE EFFECT OF FUSION MODULES ON RECOGNITION
PERFORMANCE
In order to evaluate the effect of fusion modules on the recog-
nition performance in ourmethod, we drop the interactive fea-
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FIGURE 7. Recognition accuracy of twelve radar signals at different SNRs.

TABLE 2. Confusion matrix for waveform classification (SNR=-8dB).

ture fusion module and the classification fusion module in the
following experiments. We build three independent channels
through the down-sampling module, with input resolutions of
64 × 64, 128 × 128, and 256 × 256. Each channel uses the
same CNN structure and training parameters to train them
separately. For performance comparison, we denote the three
resolution recognition methods with no fusion modules as
FSST-CNN 64, FSST-CNN 128, and FSST-CNN 256, here
Xi = Fi(i = 1, 2, 3). In addition, we denote the three
resolution recognitionmethodswith interactive feature fusion
modules as FSST-CNN64+ IFF, FSST-CNN128 + IFF, and

FSST-CNN 256 + IFF. In FSST-CNN 64 + IFF, the fea-
tures {F1,F2,F3} from Channels 1, 2, and 3 are fused into
X1, as described in Equation (7). The output is obtained by
classifying the FC vector Y1. FSST-CNN 128 + IFF and
FSST-CNN 256 + IFF have similar fusion strategy, but the
module outputs are X2 and X3 respectively, the results are
obtained by the FC vector Y2 and the FC vector Y3.

Table 3 shows the effect of fusion modules on recog-
nition performance. As shown, the three methods with
no fusion modules have different recognition results at
low SNRs. At the same SNR, the recognition accuracy
of FSST-CNN 128 exceeds that of FSST-CNN 64 and
FSST-CNN 256. If the resolution is larger than 256 × 256,
it will not improve the recognition accuracy but increase
training parameters and training time. On the contrary, if the
resolution is less than 64 × 64, the extracted detailed fea-
tures are insufficient, resulting in limited recognition. So it
is reasonable to select 256 × 256, 128 × 128, and 64 × 64
as inputs for fusion. By adding an interactive feature fusion
module, the recognition performance of the threemethods has
been improved. For example, FSST-CNN 64+ IFF improves
the recognition accuracy by 1.9% than FSST-CNN 164 at
SNR of -10dB. With the addition of the feature and classi-
fication fusion modules, the proposed method improves by
approximately 2.9% accuracy than FSST-CNN 128 + IFF
when the SNR is −10 dB. These results demonstrate that
the multi-resolution fusion strategy can improve performance
more significantly at low SNRs.
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TABLE 3. Effect of fusion strategy on recognition performance.

FIGURE 8. Recognition accuracy of different numbers of training samples.

D. EXPERIMENT WITH ROBUSTNESS
While the multi-resolution fusion method exhibits its effec-
tiveness on a specific dataset composed of twelve types of
radar signals, we wonder whether it would still work well
on a new dataset and different training samples. To verify
the robustness of the recognition system, we generate a new
dataset with the same number of samples according to the
signal parameters in Table 1, and add random Gaussian white
noise with the SNR of −10dB ∼10dB to the waveforms. For
each radar waveform, we select 220 samples for testing and
set the number of training samples from 220 to 1760, with a
step of 220.

As shown in Figure 8, when the number of training
samples is more than 660, the accuracy curve tends to
steady, which indicates that the system has good stabil-
ity for classification. Furthermore, the recognition accu-
racy only slightly decreases when the sample number is
less than 660. It also shows that the method can achieve
excellent recognition performance in a small training set,
which is more important in the actual environment for radar
waveform recognition. This experiment shows that the pro-
posed method has better robustness, maintaining outstand-
ing performance in a new dataset and different training
samples.

VI. CONCLUSION
In this paper, we have presented a strategy for LPI radar
waveform recognition based on multi-resolution deep feature
fusion. The approach can identify twelve kinds of LPI radar
waveforms in a low SNR environment, including BPSK,
Costas, Frank, LFM, P1, P2, P3, P4, T1, T2, T3, and T4.
Simulation results show that the proposed technique has
classified all the radar waveforms with 95.2% recognition
accuracy at SNR of −8dB compared to the other methods.
Furthermore, the algorithm also has good robustness. Com-
pared with CWD, the enhanced FSST has a faster speed for
signal time-frequency analysis and is more suitable in real
waveform identification systems. The multi-resolution fea-
ture fusion strategy provides a feasible LPI radar waveform
recognition solution at low SNR levels. It can be used in
electronic reconnaissance to identify real-world radar signals.

REFERENCES
[1] A. Lokam, N. Murthy, and N. Sarma, ‘‘A novel method for recognition of

modulation code of LPI radar signals,’’ Int. J. Recent Trends Eng., vol. 1,
no. 3, p. 176, 2009.

[2] P. E. Pace, Detecting and Classifying Low Probability of Intercept Radar,
2nd ed. Norwood, MA, USA: Artech House, 2008.

[3] C. Xu, J. Zhang, Q. Zhou, and S. Chen, ‘‘Recognition of radar signals based
on AF grids and geometric shape constraint,’’ Signal Process., vol. 157,
pp. 30–44, Apr. 2019.

[4] Y. LeCun, K. Kavukcuoglu, and C. Farabet, ‘‘Convolutional networks and
applications in vision,’’ in Proc. IEEE Int. Symp. Circuits Syst., Jun. 2010,
pp. 253–256.

[5] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, ‘‘Ima-
geNet large scale visual recognition challenge,’’ Int. J. Comput. Vis.,
vol. 115, no. 3, pp. 211–252, Dec. 2015.

[6] C. Wang, J. Wang, and X. Zhang, ‘‘Automatic radar waveform recog-
nition based on time-frequency analysis and convolutional neural net-
work,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
Mar. 2017, pp. 2437–2441.

[7] M. Zhang, M. Diao, and L. Guo, ‘‘Convolutional neural networks for
automatic cognitive radio waveform recognition,’’ IEEE Access, vol. 5,
pp. 11074–11082, 2017.

[8] S.-H. Kong, M. Kim, L. M. Hoang, and E. Kim, ‘‘Automatic LPI radar
waveform recognition using CNN,’’ IEEE Access, vol. 6, pp. 4207–4219,
2018.

[9] J. Wan, X. Yu, and Q. Guo, ‘‘LPI radar waveform recognition based on
CNN and TPOT,’’ Symmetry, vol. 11, no. 5, p. 725, May 2019.

[10] X. Qin, X. Zha, J. Huang, and L. Luo, ‘‘Radar waveform recognition based
on deep residual network,’’ in Proc. IEEE 8th Joint Int. Inf. Technol. Artif.
Intell. Conf. (ITAIC), May 2019, pp. 892–896.

[11] Z. Qu, C. Hou, C. Hou, andW.Wang, ‘‘Radar signal intra-pulsemodulation
recognition based on convolutional neural network and deep Q-learning
network,’’ IEEE Access, vol. 8, pp. 49125–49136, 2020.

[12] G. Kong and V. Koivunen, ‘‘Radar waveform recognition using Fourier-
based syncrosqueezing transform and CNN,’’ in Proc. CAMSAP,
Dec. 2019, pp. 664–668.

[13] M. Zhang, M. Diao, L. Gao, and L. Liu, ‘‘Neural networks for radar
waveform recognition,’’ Symmetry, vol. 9, no. 75, pp. 1–20, 2017.

[14] M. Zhang, H. Wang, K. Zhou, and P. Cao, ‘‘Low probability of intercept
radar signal recognition by staked autoencoder and SVM,’’ in Proc. 10th
Int. Conf. Wireless Commun. Signal Process. (WCSP), Oct. 2018, pp. 1–6.

[15] Q. Guo, X. Yu, and G. Ruan, ‘‘Lpi radar waveform recognition based on
deep convolutional neural network transfer learning,’’ Symmetry, vol. 11,
no. 540, pp. 1–14, 2019.

[16] L. Gao, X. Zhang, J. Gao, and S. You, ‘‘Fusion image based radar sig-
nal feature extraction and modulation recognition,’’ IEEE Access, vol. 7,
pp. 13135–13148, 2019.

[17] Y. Xiao, W. Liu, and L. Gao, ‘‘Radar signal recognition based on trans-
fer learning and feature fusion,’’ Mobile Netw. Appl., vol. 25, no. 4,
pp. 1563–1571, Aug. 2020.

VOLUME 9, 2021 26145



X. Ni et al.: LPI Radar Waveform Recognition Based on Multi-Resolution Deep Feature Fusion

[18] X. Ni, H. Wang, Y. Zhu, and F. Meng, ‘‘Multi-resolution fusion convo-
lutional neural networks for intrapulse modulation LPI radar waveforms
recognition,’’ IEICE Trans. Commun., vol. E103.B, no. 12, pp. 1470–1476,
2020.

[19] T. Oberlin, S. Meignen, and V. Perrier, ‘‘The Fourier-based synchrosqueez-
ing transform,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), May 2014, pp. 315–319.

[20] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie,
‘‘Feature pyramid networks for object detection,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 2117–2125.

[21] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1–9.

[22] G. Vanhoy, T. Schucker, and T. Bose, ‘‘Classification of LPI radar signals
using spectral correlation and support vector machines,’’ Anal. Integr.
Circuits Signal Process., vol. 91, no. 2, pp. 305–313, May 2017.

[23] X. Gu, F. Deng, X. Gao, and R. Zhou, ‘‘An improved sensor fault diagnosis
scheme based on TA-LSSVM and ECOC-SVM,’’ J. Syst. Sci. Complex.,
vol. 31, no. 2, pp. 372–384, Apr. 2018.

[24] S. Escalera, O. Pujol, and P. Radeva, ‘‘Separability of ternary codes for
sparse designs of error-correcting output codes,’’ Pattern Recognit. Lett.,
vol. 30, no. 3, pp. 285–297, Feb. 2009.

XUE NI received the B.S. degree in communica-
tion engineering and the M.S. degree in communi-
cation information system from Hohai University,
Changzhou, China, in 2006 and 2009, respectively.
She is currently pursuing the Ph.D. degree with the
College of Communications Engineering, Army
Engineering University of PLA, Nanjing, China.
Her research interest includes intelligent recogni-
tion of radar signals.

HUALI WANG received the Ph.D. degree in elec-
tronic engineering from the Nanjing University of
Science and Technology, China, in 1997. He is
currently a Professor with the College of Commu-
nications Engineering, Army Engineering Univer-
sity of PLA, Nanjing, China. His research interests
include statistical and array signal processing.

FAN MENG received the M.S. degree in commu-
nication and information system from Hohai Uni-
versity at Changzhou, Changzhou, China, in 2009.
He is currently a Senior Engineer with the Nanjing
Marine Radar Institute, China. His research inter-
est includes radar signal processing.

JING HU received the B.S. and M.S. degrees from
the Nanjing University of Posts and Telecommuni-
cations, Nanjing, China, in 2003 and 2007, respec-
tively. She is currently pursuing the Ph.D. degree
with the College of Communications Engineering,
Army Engineering University of PLA, Nanjing.
Her current research interests include wireless
communications, satellite communications, and
communication anti-jamming.

CHANGKAI TONG received the B.S. degree from
Naval Aeronautical and Astronautical University,
Yantai, China, in 2009, and the M.S. degree from
the Naval Research Academy, Beijing, China,
in 2015, respectively. He is currently pursuing
the Ph.D. degree with the College of Communi-
cations Engineering, Army Engineering Univer-
sity of PLA, Nanjing, China. His current research
interest includes deep learning brain–computer
interface.

26146 VOLUME 9, 2021


