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ABSTRACT In the strapdown inertial navigation system, the accuracy of the solving attitude and position
is closely related to the quaternion update algorithm. For this reason, what method is used to update the
quaternion has become an important project. At present, the primary method is to update the quaternion by
solving the equivalent rotation vector. A new quaternion update method is proposed in this paper. By using
the third-order and fifth-order Taylor series to approximate the solution of the quaternion differential
equation, two attitude quaternion update equations are derived. For single sample and two samples two cases,
the derived formula is completely consistent with the common formula derived based on the equivalent
rotation vector method. For the three samples in the coning motion environment, the fifth-order formula
is derived in this paper, the error analysis method is applied to assess the accuracy of the formula, the two
coefficients of the formula correction is optimized, and the drift rate error and drift rate are calculated, which
are compared with the drift rate errors of the optimized three-sample equivalent rotation vector algorithm.
The expressions for calculating the drift rate errors of the two are the same, and the calculation results are the
same. In order to simplify the calculation, the established fifth-order formula is simplified to fourth-order one
in this paper, but the drift rate error and drift rate remain unchanged. Finally, simulations and experiments
demonstrate the correctness of the attitude quaternion update method proposed in this paper. The attitude
quaternion update method proposed in this paper has certain theoretical research and application value for the
attitude and position calculation of strapdown inertial navigation application, as well as the further studies
of integrated navigation algorithm, and enriches the theoretical system of inertial navigation.

INDEX TERMS Attitude quaternion, Taylor series, algorithm, drift error.

I. INTRODUCTION
The navigation algorithm of strapdown inertial naviga-
tion system is composed of attitude algorithm, speed algo-
rithm and position algorithm, among of which, attitude
algorithm is always the most important research content.
This is because the attitude algorithm not only directly
determines the accuracy of the navigation attitude angle,
but also has a vital influence on the output accuracy of
speed and position. The commonly used attitude algorithms
include Euler method, directional cosine method, quaternion
algorithm, etc.

The Euler angle algorithm directly calculates the course
angle, pitch and roll angle by solving the Euler angle
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differential equation, which has the simple and clear relation-
ship and the intuitive concept, easy to understand. The orthog-
onalization is not required during the calculation process,
but it contains trigonometric operation, which brings certain
difficulties to real-time calculation. When the pitch angle is
close to 90◦, the equation degenerates, which is equivalent
to the locking of the inertial platform in the platform inertial
navigation. Hence, this method is only suitable for the situ-
ation where the horizontal attitude changes little, not for the
attitude determination of the full attitude carrier [1].

The directional cosine method solves the differential equa-
tion of attitude matrix, avoiding the degeneration of the
equation in the Euler angle algorithm, and can work in full
attitude. However, the differential equation of attitude matrix
is essentially the linear differential equation set containing
9 unknowns. Comparedwith the quaternionmethod, it has the
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large calculation amount and difficult real-time calculation,
so it is not practical.

The quaternion method is only required to solve the linear
differential equation set with four unknowns, with smaller
calculation amount than the directional cosine method, and
the simple algorithm, easy to operate. It is a practical
engineering method. However, the quaternion method is
actually the single-sample algorithm in the rotation vector
method, with the insufficient degree of compensation for
non-commutativity errors caused by limited rotation, so it
is only suitable for the attitude calculation of low dynamic
carrier. For highly dynamic carrier, the algorithm drift in
attitude calculation will be serious. In order to solve these
problems, scholars introduced the concept of rotation vector
and conducted a lot of studies on attitude algorithm based on
rotation vector [2], [3].

Chelnokov consider equations and algorithms describing
the operation of strapdown inertial navigation systems (SINS)
intended for determining the inertial attitude parameters
(the Rodrigues-Hamilton (Euler) parameters) and the appar-
ent velocity of a moving object. The construction of these
equations and algorithms is based on the Kotelnikov-Study
transference principle, Hamiltonian quaternions and Clifford
biquaternions, and differential equations in four-dimensional
(quaternion and biquaternion) orthogonal operators [4]. For
the navigation algorithm of the strapdown inertial navigation
system, by comparing to the equations of the dual quaternion
and quaternion, the superiority of the attitude algorithm based
on dual quaternion over the ones based on rotation vector in
accuracy is analyzed in the case of the rotation of navigation
frame [5]. In Ghanbarpourasl’s study, due to the observability
problem, a new robust multiplicative quaternion Kalman fil-
ter is designed for the alignment of a stationary platform [6].
The traditional velocity integration algorithms in a strapdown
inertial navigation system are to approximate the rotational
vector which related to the transformation matrix and then
integrate the transformed specific force vector over the veloc-
ity update interval. In order to eliminate approximate integra-
tion error existed in the traditional algorithms, a new velocity
integration algorithm with a time-varying slew rate vector
is developed in Yueyang’s paper [7]. Quaternion equations
are proposed for the ideal operation of spatial inertial navi-
gation systems with an azimuthally stabilized platform and
a gyrostabilized platform that keeps its orientation invariant
in inertial space, quaternion equations for the ideal operation
of strapdown inertial navigation systems in the regular four-
dimensional Kustaanheimo-Stiefel variables with considera-
tion of zonal, tesseral, and sectorial harmonics of the Earth’s
gravitational field [8].

Bortz at first proposed the equation for solving the rotation
vector in 1971 [9]–[11], and on this basis, in 1983 Miller
proposed a three-sample cone optimization algorithm with
optimal performance under coning motion [12], and then
foreign scholars have gradually proposed other improved
cone algorithms to further enhance the accuracy of the algo-
rithm, such as: enhanced three-sample cone algorithm [13],

four-sample cone algorithm [14], N-sample cone algorithm
general expression [15], the cone algorithm to determine the
optimal coefficient according to the frequency response char-
acteristics of the gyroscope [16], Mao presents a framework
for a strapdown Inertial Navigation System (INS) algorithm
design by using Lie group and Lie algebra [17] etc. The
rotation vector method can adopt multi-sample algorithm
to achieve effective compensation for non-commutativity
errors. The algorithm relationship is simple and easy to oper-
ate. With the optimization of coefficients, the algorithm drift
is minimized in the same sample algorithm. Therefore, it is
especially suitable for attitude update of carrier with frequent
angle maneuvering and severe angular vibration.

Originally demonstrated by Euler and later derived by
Rodriguez, every two finite rotations in space can be repre-
sented by a single equivalent rotation. Zarrouk presents a new
geometric method to derive both the coordinates of the vector
direction and the angle of the equivalent rotation of a rigid
body that undergoes two successive finite rotations [18].

Both the quaternion method and the rotation vector method
realize the attitude update by calculating the attitude quater-
nion. However, the quaternion method directly solves the atti-
tude quaternion differential equation, but the rotation vector
method solves the attitude quaternion by solving the rotation
vector. Hence, the algorithm concepts of the two are not the
same. The accuracy of the solving attitude and position is
closely related to the quaternion update algorithm. Therefore,
how to update the quaternion has become an important issue.

Among these algorithms, the quaternion algorithm is
most preferred due to the fewer calculation parameters
and no singularity. The key to the issue is to imple-
ment the attitude quaternion update algorithm to over-
come the non-commutativity error caused by finite rotation.
The equivalent rotation vector algorithm adopts the sec-
ond term of Equation (1) (the third term is also used in
some expressions) [19] to calculate a correction to deal with
the non-commutativity error, and it has achieved excellent
results.

8̇ = ω +
1
2
8× ω + A8× (8× ω) (1)

wherein,8 is the equivalent rotation vector corresponding to
the angular position change of the carrier coordinate system
from tk to tk+1, and ω is the angular velocity of the carrier in
this period of time.

This paper attempts to use Taylor series to approxi-
mate the solution of the quaternion differential equation
to derive the attitude quaternion update expression to deal
with this non-commutativity error. For the two cases of the
current collected gyro output 1θ(T ) plus the gyro output
sample 1θ (T − h) in previous period and the two sam-
ples (1θn1,1θn2), the third-order Taylor series expansion
is adopted in this paper to derive a quaternion expression
for attitude change. For the three samples under the cone
motion environment, the fifth-order Taylor series expansion
is adopted in this paper to derive a quaternion expression for
attitude change. The error analysis method is used to evaluate

26222 VOLUME 9, 2021



D. Zhang et al.: Research on the Update Method of Attitude Quaternion for Strapdown Inertial Navigation

the accuracy of the expression, the two coefficients of correc-
tion value of the expression are optimized, and the drift rate
error and drift rate are calculated. In order to simplify the cal-
culation, the established fifth-order expression is simplified
to fourth-order one in this paper, but the drift rate error and
drift rate remain unchanged. The attitude quaternion update
method proposed in this paper has certain theoretical research
and application value for the attitude and position calcula-
tion of strapdown inertial navigation application, as well as
the further studies of integrated navigation algorithm, and
enriches the theoretical system of inertial navigation.

II. THE THIRD-ORDER TAYLOR SERIES EXPRESSION OF
ATTITUDE CHANGE QUATERNION
The attitude quaternion is updated from Q(tk ) to Q(tk+1),
which can be shown in Equation (2).

Q(tk+1) = Q(tk )⊗ q(h) (2)

wherein,

q(h) = cos
8

2
+
8

8
sin

8

2
(3)

wherein,Q(tk ) andQ(tk+1) is the attitude quaternion at tk and
tk+1, respectively; h = tk+1 − tk , q(h) is the attitude change
quaternion during [tk , tk+1],8 = |8|.
The current mainstreammethod is to update the quaternion

by solving the equivalent rotation vector. The new quater-
nion update method proposed in this article approximates
the solution of the quaternion differential equation with the
third-order and fifth-order Taylor series to derive the attitude
quaternion update formula.

This attitude change quaternion q(h) meets the differential
equation, shown in Equation (4).

q̇(t) = q(t)⊗
ωbnb
2

(4)

wherein, ωbnb is the carrier angular velocity, which represents
the projection of the carrier coordinate system’s rotational
angular velocity relative to the navigation coordinate system
in the carrier coordinate system. The simplified zero scalar
quaternion ω =

[
0 ωx ωy ωz

]T is used to replace ωbnb, and
change the above expression to uppercase.

Q̇ = Q⊗
ω

2
(5)

At the interval [T ,T + h], the third-order Taylor series
expansion that approximates the solution of Equation (5) is
shown in Equation (6).

Q(T + h) = Q(T )+ hQ̇(T )+
h2

2!
Q̈(T )+

h3

3!

...
Q(T ) (6)

Solving Equation (5) respectively for the second, third,
fourth, and fifth-order derivatives are

Q̈ =
1
2
(Q⊗ ω)(1) =

1
2
[Q̇⊗ ω + Q⊗ ω̇]

= Q⊗ (
ω ⊗ ω

4
+
ω̇

2
) (7)

...
Q =

1
2
(Q⊗ ω)(2)

=


1
2
[Q̈⊗ ω + 2Q̇⊗ ω̇ + Q⊗ ω̈]

= Q⊗
(
(
ω ⊗ ω

4
+
ω̇

2
)⊗

ω

2
+

1
2
(ω ⊗ ω̇ + ω̈)

)

(8)

For higher-order derivative, the Leibniz solution expres-
sion can be applied to obtain

(uv)(n)= [C0
nu

(n)v+ C1
nu

(n−1)v̇+ . . .+ Cn−1
n u̇v(n−1)

+Cn
nuv

(n)] (9)

Q(4)
=

1
2
(Q⊗ ω)(3)

=
1
2
[C0

3

...
Q⊗ ω+C1

3 Q̈⊗ ω̇+C
2
3 Q̇⊗ ω̈+C

3
3Q⊗

...
ω]

=Q⊗


ω ⊗ ω ⊗ ω ⊗ ω

16
+
ω̇ ⊗ ω ⊗ ω

8

+
ω ⊗ ω̇ ⊗ ω

4
+
ω̈ ⊗ ω

4
+

3ω ⊗ ω ⊗ ω̇
8

+
3ω̇ ⊗ ω̇

4
+

3ω ⊗ ω̈
4
+

...
ω

2


(10)

Q(5)
=

1
2
(Q⊗ ω)(4)

=Q⊗



ω ⊗ ω ⊗ ω ⊗ ω ⊗ ω

32
+
ω̇ ⊗ ω ⊗ ω ⊗ ω

16

+
ω ⊗ ω̇ ⊗ ω ⊗ ω

8
+
ω̈ ⊗ ω ⊗ ω

8

+
ω ⊗ ω ⊗ ω ⊗ ω̇

4
+
ω̇ ⊗ ω ⊗ ω̇

2

+ω ⊗ ω̇ ⊗ ω̇ + ω̈ ⊗ ω̇ +
3ω ⊗ ω ⊗ ω̈

4
+
3ω ⊗ ω̈

2
+
ω ⊗

...
ω

2
+

...
ω

2


(11)

Simplify the above two equations according to the quater-
nion operation rules to obtain

Q(4)
≈ Q⊗

[
(1θ0)4

16
1+

ω̄ × ¨̄ω

2

]
(12)

Q(5)
≈ Q⊗

[
(1θ0)4

32
[1θ ]+

˙̄ω × ¨̄ω

2

]
(13)

Substitute Equation (5), (7) and (8) into Equation (6) and
sort out to obtain

Q(T + h)

= Q(T )⊗


1+

1
2

(
(ωh+

1
2
ω̇h2 +

1
6
ω̈h3)

)
+
1
8
ω ⊗ ωh2 +

1
48
ω ⊗ ω ⊗ ωh3

+
1
24
ω̇ ⊗ ωh3 +

1
12
ω ⊗ ω̇h3

 (14)
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According to the quaternion algorithm, calculate each item
in the equation separately

1
2

(
ωh+

1
2
ω̇h2 +

1
6
ω̈h3

)

=
1
2

h∫
0

(
ω + ω̇τ +

1
2
ω̈τ 2

)
dτ =

1
2
[1θ ] (15)

ω ⊗ ωh2

=

[
(0+ ωxi+ ωyj+ ωzk)⊗ (0+ ωx i+ ωyj+ ωzk)h2

= −(ω2
x + ω

2
y + ω

2
z )h

2
= − |ωh|2 = −1θ201

]
(16)

ω̇ ⊗ ωh3

=

[
(0+ ω̇x i+ ω̇yj+ ω̇zk)⊗ (0+ ωix + ωyj+ ωzk)h3

= −(ω̇xωx + ω̇yωy + ω̇zωz)h3 + ˙̄ω × ω̄h3

]
(17)

Equation (18) and (19) can be obtained in same way as

ω ⊗ ω ⊗ ωh3 = −(1θ0)2[1θ ] (18)

ω ⊗ ω̇h3 = −(ωx ω̇x + ωyω̇y + ωzω̇z)h3 + ω̄ × ˙̄ωh3

(19)

Given ˙̄ω × ω̄ = −ω̄ × ˙̄ω, perform the transformation as

1
24
ω̇ ⊗ ωh3 +

1
12
ω ⊗ ω̇h3

= −
1
24

(ωx ω̇x + ωyω̇y + ωzω̇z)h3 +
1
24
ω̄ × ˙̄ωh3 (20)

In actual engineering applications, h takes small value,
h3 can be considered as a high-level small amount of h2,
which can be ignored, so there is Equation (21) as[
1
8
(ω2

x + ω
2
y + ω

2
z )h

2
−

1
24

(ωxω̇x + ωyω̇y + ωzω̇z)h3
]

≈
1
8
(1θ0)21 (21)

Substitute Equation (15) to (21) into (14), and per-
form approximation to obtain the quaternion attitude update
expression as

Q(T + h)

=

[
(1−

(1θ0)2

8
)1+(

1
2
−
(1θ0)2

48
)[1θ ]+

1
24

(ω̄× ˙̄ω)h3
]

×Q(T ) (22)

Change Equation (22) to lowercase as

q(T + h)

=

[
(1−

(1θ0)2

8
)1+(

1
2
−
(1θ0)2

48
)[1θ ]+

1
24

(ω̄ × ˙̄ω)h3
]

× q(T ) (23)

Or

q(n+ 1)

=

[
(1−

(1θ0)2

8
)1+(

1
2
−
(1θ0)2

48
)[1θ ]+

1
24

(ω̄ × ˙̄ω)h3
]

× q(n) (24)

wherein, [1θ ] =


0 −1xθ −1θy −1θz
1θx 0 1θz −1θy
1θy −1θz 0 1θx
1θz 1θy −1θx 0

,1θx ,1θy,
1θz is the angular increment of gyro at x, y and z axis,
respectively. 1

24 (ω̄ × ˙̄ω)h
3 is one motion correction.

III. COMPARISON WITH THE COMMONLY USED
ATTITUDE CHANGE QUATERNION EXPRESSION
A. COMPARISON OF SINGLE-SAMPLE EXPRESSION
In the current period, only one set of three gyro outputs of the
system is sampled once. In order to enhance the calculation
accuracy, the gyro output collected in the previous period is
also used to form a one-plus-one condition where the gyro
angular velocity output is considered constant ω̄ = a, then
ω̄ × ˙̄ωh3 = [1θ (T − h) × 1θ (T )]. Then Equation (23)
becomes

q(T + h) =
[
(1−

(1θ0)2

8
)1+ (

1
2
−

(1θ0)2

48
)[1θ ]

+
1
24

[1θ (T − h)×1θ (T )]
]
q(T ) (25)

Or

q(n+ 1) =
[
(1−

(1θ0)2

8
)1+ (

1
2
−

(1θ0)2

48
)[1θ ]

+
1
24

[1θ (n− 1)×1θ (n)]
]
q(n) (26)

In this case, Equation (27) is provided in Ref[1]

q(t) = q(t − TAUS )

·

{
1+

1
2
1φb(t)−

1
8
1φ2 −

1
48
1φ21φb(t)

+
1
24
1φb(t − TAUS )×1φb(t)

}
(27)

Equation (28) is provided in Ref[1]

q(n+ 1) =
{
(1−

(1θ0)2

8
)1+ (

1
2
−

(1θ0)2

48
)[1θ ]

+
1
24

[1θ (n− 1)×1θ (n)]
}
q(n) (28)

It can be seen that there is no difference in the above
three equations except the slightly different text symbols
and writing methods used. The correctness of the quaternion
updatemethod proposed in this paper under the single-sample
case is proved.

B. COMPARISON OF TWO-SAMPLE EXPRESSION
The two samples is to collect the gyro output twice at an
equal interval h

/
2 in an update period h. In this case, the gyro

angular velocity output is considered as the linear function of
time: ω = a+2bτ . The angular increment of gyro output and
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relevant expression is shown as follows:

1θn = 1θn1 +1θn2

1θn1 =

h
2∫

0

(a+ 2bτ )dτ =
1
2
ah+

1
4
bh2

1θn2 =

h∫
h
2

(a+ 2bτ )dτ =
1
2
ah+

3
4
bh2

(29)

Equation (30) can be obtained from Equation (29).{
bh2 = 2(1θn2 −1θn1)
ah = 31θn1 −1θn2

(30)

Considering

ω̄ × ˙̄ωh3 = [(a+ 2bτ )× 2b] = 2(a× b)

= (61θn1 − 21θn2)× (21θn2 − 21θn1)h3

= 8(1θn1 ×1θn2) (31)

Substitute the result to Equation (24) to obtain

q(n+ 1)

=

[
(1−

(1θ0)2

8
)1+ (

1
2
−

(1θ0)2

48
)[1θ ]

+
1
3
(1θn1 ×1θn2)

]
q(n) (32)

The expression provided in Ref[1] is as follows

q(n+ 1)

=

[
(1−

(1θ0)2

8
)1+ (

1
2
−

(1θ0)2

48
)[1θ ]

+
1
3
(1θn1 ×1θn2)

]
q(n) (33)

Equation (32) are identical to (33), so the correctness of
the quaternion update method proposed in this paper under
the two samples is proved.

IV. THREE-SAMPLE ATTITUDE CHANGE QUATERNION
EXPRESSION
A. THE FIFTH-ORDER TAYLOR SERIES APPROXIMATION
OF THE SOLUTIONS OF QUATERNION DIFFERENTIAL
EQUATION
At the interval [T ,T+h], the third-order Taylor series expan-
sion that approximates the solution of Equation (5) is shown
in Equation (34).

Q(T + h) = Q(T )+ hQ̇(T )+
h2

2!
Q̈(T )+

h3

3!

...
Q(T )

+
h4

4!
Q(4)(T )+

h5

5!
Q(5)(T ) (34)

Substitute Equation (5), (7)-(13) to Equation (34), sort out
and simplify to obtain

Q(T + h)

=


(1−

(1θ0)2

8
+

(1θ0)4

384
)1+ (

1
2
−

(1θ0)2

48

+
(1θ0)4

3840
)[1θ ]+

1
24

(ω̄ × ˙̄ω)h3 +
1
48

(ω̄ × ¨̄ω)h4

+
1
240

( ˙̄ω × ¨̄ω)h5


×Q(T ) (35)

wherein, 1
24 (ω̄ × ˙̄ω)h

3
+

1
48 (ω̄ × ¨̄ω)h

4
+

1
240 ( ˙̄ω × ¨̄ω)h

5 is
called the quaternion correction of the three-sample attitude
changes of the carrier cone motion.

B. CALCULATION FOR QUATERNION CORRECTION OF
ATTITUDE CHANGE
At the interval [t, t + h], the gyro angular velocity output can
be fitted with a parabola:

ωbnb(tn + τ ) = a+ 2bτ + 3cτ 2, 0 ≤ τ ≤ h (36)

The angular increment of gyro output is

1θ (τ ) =
∫ τ

0
ω(tn + τ )dτ (37)

The so-called three samples refers to the three angular
increments of gyro output at the equal interval, that is

1θ1=

∫ h
3

0
(a+2bτ+3cτ 2)dτ=

1
3
ah+

1
9
bh2+

1
27
ch3

1θ2=

∫ 2h
3

h
3

(a+2bτ+3cτ 2)dτ=
1
3
ah+

3
9
bh2+

7
27
ch3

1θ3=

∫ h

2h
3

(a+2bτ+3cτ 2)dτ=
1
3
ah+

5
9
bh2+

19
27
ch3

(38)

Solving the simultaneous equations (38) to obtain
ah =

11
2
1θ1 −

7
2
1θ2 +1θ3

bh = −91θ1 +
27
2
1θ2 −

9
2
1θ3

ch =
9
2
1θ1 − 91θ2 +

9
2
1θ3

(39)

Based on Equation (36), we can get
1
24

(ω̄ × ˙̄ω)h3 =
1
24

(ah)× (2bh2) =
1
12

(a× b)h3

1
48

(ω̄ × ¨̄ω)h4 =
1
48

(ah)× (6ch3) =
1
8
(a× c)h4

1
240

( ˙̄ω × ¨̄ω)h5 =
1
240

(2bh2)× (6ch3) =
1
20

(b× c)h5

(40)

Substitute a, b and c obtained from Equation (39) to (40)
to obtain the correction as
1
24

(ω̄ × ˙̄ω)h3 +
1
48

(ω̄ × ¨̄ω)h4 +
1

240
( ˙̄ω × ¨̄ω)h5

=
1
12

(a× b)+
1
8
(a× c)+

1
20

(b× c)
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=
57
160

(1θ1×1θ2)+
33
160

(1θ1×1θ3)+
57
160

(1θ2×1θ3)

=
33
160

(1θ1 ×1θ3)+
57
160

[1θ2 × (1θ3 −1θ1)] (41)

Substitute Equation (41) to (35) to derive the fifth-order
Taylor series expansion of the quaternion for attitude update
as

Q(T + h)

=


(1−

(1θ0)2

8
+

(1θ0)4

384
)1+ (

1
2
−

(1θ0)2

48

+
(1θ0)4

3840
)[1θ ]+

33
160

(1θ1 ×1θ3)+
57
160

×[1θ2 × (1θ3 −1θ1)]


×Q(T ) (42)

Compare Equation (42) and (A-6) to obtain the quaternion
expression for the three-sample attitude change as

q(h)

=


(1−

(1θ0)2

8
+
(1θ0)4

384
)1+(

1
2
−
(1θ0)2

48
+
(1θ0)4

3840
)

× [1θ ]+
33
160

(1θ1 ×1θ3)+
57
160

× [1θ2 × (1θ3−1θ1)]


(43)

wherein, 33
160 (1θ1 × 1θ3) +

57
160 [1θ2 × (1θ3 − 1θ1)] is

correction. The coefficients k1 = 33
/
160 and k2 = 55

/
160

are to be analyzed and optimized.
Equation (43) is rewritten into matrix form as

q(h) =



(1−
(1θ0)2

8
+
(1θ0)4

384
)

(
1
2
−

(1θ0)2

48
+
(1θ0)4

3840
)1θx+k11θ ′x+k21θ

′′
x

(
1
2
−

(1θ0)2

48
+
(1θ0)4

3840
)1θy+k11θ ′y+k21θ

′′
y

(
1
2
−

(1θ0)2

48
+
(1θ0)4

3840
)1θz+k11θ ′z+k21θ

′′
z


(44)

wherein, k11θ ′ + k21θ ′′ is correction item. According to
Equation (A-11) and (A-12), Equation (45) and (46) can be
obtained.

k11θ ′ = k1

1θ ′x1θ ′y
1θ ′z



= k1


F2 sin(

2ωh
3

)

−2FE sin(
ωh
3
) sinω(t +

h
2
)

2FE sin(
ωh
3
) cosω(t +

h
2
)

 (45)

k21θ ′′ = k2

1θ ′x1θ ′y
1θ ′z



= k2


2F2 sin(

ωh
3
)

−2FE sin(
ωh
3
) sinω(t +

h
2
)

2FE sin(
ωh
3
) cosω(t +

h
2
)

 (46)

C. QUATERNION ERROR ANALYSIS OF ATTITUDE CHANGE
AND OPTIMIZATION OF CORRECTION
Assume that q(h) is the true attitude change quaternion, q̂(h)
is the attitude change quaternion estimated by Equation (44),
and q̃(h) is the attitude change error quaternion. q̃(h) = q(h)⊗
q̂−1(h), then

q̃(h) = q(h)⊗ q̂∗(h) = M [q(h)]q̂∗(h) (47)

That is
q̃0
q̃1
q̃2
q̃3



=


q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0



×



(1−
(1θ0)2

8
+
(1θ0)4

384
)

−[(
1
2
−
(1θ0)2

48
+
(1θ0)4

3840
)1θx+k11θ ′x+k21θ

′′
x ]

−[(
1
2
−
(1θ0)2

48
+
(1θ0)4

3840
)1θy+k11θ ′y+k21θ

′′
y ]

−[(
1
2
−
(1θ0)2

48
+
(1θ0)4

3840
)1θy+k11θ ′y+k21θ

′′
y ]


(48)

wherein, q(h) is the quaternion of the real attitude change rep-
resented by Equation (A-6). If the estimated attitude change
quaternion q̂(h) does not contain error, the product of the
above Equation should be 1. If q̂(h) contains errors, it will
cause an error in the updated attitude quaternion Q(T + h).
The important factor affecting the error is the low-order item
in q̂(h), Thus, only the low-order term need to be consid-
ered, and the above formula is simplified into the following
formula
q̃0
q̃1
q̃2
q̃3

 =

q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 q2 q1 q0



×



1

−[
1
2
1θx +1θ

′
x +1θ

′′
x ]

−[
1
2
1θy +1θ

′
y +1θ

′′
y ]

−[
1
2
1θy +1θ

′
y +1θ

′′
y ]


(49)

Observing Equation (A-6), it can be seen that q2, q3 in
q(h) are periodic variable whose frequency is equal to the
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frequency of cone motion. Observing Equation (A-9) and
Equation (46) and (49), it can be seen that1θy,1θz,1θ ′y,1θ

′
z

and1θ ′′y ,1θ
′′
z are also the periodic variable whose frequency

is equal to the frequency of cone motion. Correspondingly,
q̃2, q̃3 in q̃(h) are also periodic variables. For Equation(49),
only q(h) can cause Q(T + h) to produce drift rate error, that
is the DC component with aperiodic term in Equation (A-6). q0 = 1− 2 sin2(

a
2
) sin2(

ωh
2
)

q1 = − sin2(
a
2
) sin(ωh)

(50)

Reflected in the quaternion q̃(h) of the attitude change
error, which is

q̃0 = q0 + q1[
1
2
1θx +1

′θx +1θ
′′
x ]

q̃1 = q1 − q0[
1
2
1θx +1

′θx +1θ
′′
x ]

(51)

Because a is a small amount, 2 sin2( a2 ) sin
2(ωh2 ) � 1,

then q0 = 1. Therefore, the main component of the error
quaternion can be derived as

q̃1 = q1 − [
1
2
1θx +1

′θx +1θ
′′
x ] (52)

The quaternion error of attitude change is written in stan-
dard form as

q̃1(h) =
1θεx

1θε
sin(

1θε

2
) (53)

wherein, 1θεx is the drift rate error on the x axis; 1θε is the
modulus of the drift error. According to Equation (53),
the drift rate error is concentrated on x axis. 1θεx/1θε ≈ 1
The error 1θε is small amount, so

q̃1(h) =
1θεx

1θε
sin(

1θε

2
) = sin(

1θε

2
) =

1θε

2
(54)

Then

1θε = 2q̃1 (55)

Substitute Equation (52) into (55) to obtain

1θε = 2q1 − [1θx + 21θ ′x + 21θ ′′x ] (56)

Substitute the corresponding1θx ,1θ ′x ,1θ
′′
x parameters in

Equation (A-9), (45), (46) and (50) into Equation (56) to
obtain the drift rate error expression as

1θε =

∣∣∣∣∣∣∣
−2 sin2(

a
2
) sin(ωh)+ 2ωh sin2(

a
2
)

−2F2k1 sin(
2ωh
3

)− 4F2k2 sin(
ωh
3
)

∣∣∣∣∣∣∣ (57)

wherein, F = 2 sin(a) sin(ωh6 ). The above expression can be
sorted as

1θe =

∣∣∣∣∣∣
−2 sin2(

a
2
) sin(ωh)+ 2ωh sin2(

a
2
)−

2F2k1 sin(
2ωh
3

)− 4F2k2 sin(
ωh
3
)

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣
−
1
2
a2 sin(ωh)+

1
2
a2ωh−

4k1a2 sin(
2ωh
3

) sin2(
ωh
6
)− 8k2a2 sin(

ωh
3
)

× sin2(
ωh
6
)

∣∣∣∣∣∣∣∣∣∣
= a2

∣∣∣∣∣∣∣
−
1
2
sin(ωh)+

1
2
ωh− 4k1 sin(

2ωh
3

)

×(1− cos(
ωh
3
)− 8k2 sin(

ωh
3
)(1− cos(

ωh
3
)

∣∣∣∣∣∣∣
= a2

∣∣∣∣∣∣∣
−
1
2
(ωh)+

1
2
ωh− 4k1[(

2ωh
3

)−
1
2
(ωh)−

1
2
(
ωh
3
)]− 8k2[(

ωh
3
)− (

ωh
3
)]

∣∣∣∣∣∣∣
(58)

Expand the sine function in the above expression in
increasing order to ωh series, and solve the coefficients of
each power ωh

(ωh)1 : 0

(ωh)3 : (−
1
3!
)
{
−
1
2
+

8
9
(k1 + k2)

}
(ωh)5 : (−

1
5!
)
{
−
1
2
+

40
27
k1 +

40
81
k2)
}

(ωh)7 : (
1
7!
)
(
−
1
2
+

7728
54× 81

k1 +
1008

54× 81
k2

)
Because (ωh) � 1, in order to make 1θe as small as

possible, the low power coefficient of ωh is required to be
zero. For this reason, the coefficient of (ωh)3 and (ωh)5 is
selected to be zero, to obtain

8
9
(k1 + k2) =

1
2

40
27
k1 +

40
81
k2 =

1
2

(59)

Solve the simultaneous expressions to get the optimization
coefficient of the correction:

k1 =
9
40

k2 =
27
80

(60)

Substitute k1, k2 into Equation (43) to obtain the final
expression of attitude change quaternion as

q(h) =



(1−
(1θ0)2

8
+

(1θ0)4

384
)1

+(
1
2
−

(1θ0)2

48
+

(1θ0)4

3840
)[1θ ]

+
9
40

(1θ1 ×1θ3)

+
27
80

[1θ2 × (1θ3 −1θ1)]


(61)

And the residual error of the quaternion expression for
attitude change as

1θe = a2
∣∣∣∣(ωh)7(− 1

7!
)
(
−
1
2
+

1
54× 81

(7728×
18
80

+ 1008×
27
80

)∣∣∣∣
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= a2
∣∣∣∣(ωh)7 1

5040
(−

1
2
+

1
54× 81

(7728×
18
80

+ 1008×
27
80

)

∣∣∣∣
=

a2(ωh)7

204120
(62)

The drift rate of the formula in the h interval is

1θ̇ε =
aω7h6

204120
≈ aω7h6 × 10−5 (63)

D. THE IMPROVED FOURTH-ORDER APPROXIMATE
CALCULATION
The quaternion expression for attitude change is derived in
Ref [12] as

q(h) = C, φS

C = cos(1
/
2φ0), S = (1

/
φ0) sin(1

/
2φ0),

φ0 = (φ.φ)1/2

φ = θ +
9
20
θ1 × θ3 +

27
40
θ2 × (θ3 − θ1) (64)

The fourth-order approximation is performed in Ref [12]
to the above expression to obtain

C = 1−
φ20
8
+
φ40
480

, S =
1
2
−
φ20
48

(65)

In Ref [12], if C = 1 −
φ20
222!
+ k

φ40
244!

, S = 1
2 −

φ20
48 , it can

be found that if k = 0.8, the coefficient of φ40 can be ‘‘0,’’
the calculation proves that 384/480 = 0.8 = k .
Based on the above information, ‘‘0’’ in Ref[12] means

that k 1
244!
= 0.8 × 1

384 = 2.0833 × 10−3. Compared to
the improvement of Ref[12], in Equation (61) derived, the
coefficient 1/3840 = 2.6 × 10−4 can be regarded as ‘‘0.’’
So Equation (61) can be approximated as

q(h) =

 (1−
(1θ0)2

8
+
(1θ0)4

480
)1+ (

1
2
−
(1θ0)2

48
)[1θ ]

+
9
40

(1θ1 ×1θ3)+
27
80

[1θ2 × (1θ3−1θ1)]


(66)

V. SIMULATION AND EXPERIMENTAL VERIFICATION
In order to prove the correctness of the attitude quaternion
updatemethod proposed in this paper, according to the deriva-
tion process of this paper, the attitude quaternion update equa-
tion derived from the method of approximating the solution
of the quaternion differential equation with the third and
fifth order Taylor series is used in this paper. The simulation
experiment and ground sports car experiment were carried
out respectively. The attitude update algorithm proposed in
this paper is compared with the fourth-order Runge-Kutta
method to solve quaternion differential equations and the
fourth-order Runge-Kutta method to solve Bortz equation.
It verifies the superiority of the proposed attitude quaternion
update method. Has a smaller error.

A. SIMULATION VERIFICATION
The single-sample, two-sample, and three-sample algorithms
of attitude update assume that the angular velocity of the
carrier between two adjacent sampling points is a constant,
a straight line, and a parabola. The angular velocity of the
carrier is not really as assumed, and the coefficients deter-
mined in the formulas cannot ensure that the algorithm drift is
minimized. For strapdown inertial navigation attitude update,
cone motion is the worst working environment condition,
which will induce serious drift of the mathematical platform.
Therefore, when the algorithm is optimized, the cone move-
ment is often used as the environmental condition. Thismeans
that if the algorithm drift can be ensured to be the smallest
under the environmental conditions of the cone movement,
then the algorithm drift can be ensured to be the smallest
under other environmental conditions. Therefore, the cone
motion environment is selected to simulate and verify the
method proposed in this paper.

FIGURE 1. Coning the motion diagram.

In order to demonstrate the effectiveness of the method
proposed in this paper, simulations are carried out in a cone
motion environment. The schematic diagram of cone move-
ment is shown in Fig.1. The simulation scene is set to cone
movement around the X axis, the half-apex angle is 1.5708◦,
the coning frequency is 2 Hz, and the sampling interval
is 0.01s.

For the three sub-samples in the cone motion environment,
this paper derives the fifth-order formula, applies the error
analysis method to evaluate the accuracy of the formula,
optimizes the two coefficients of the formula correction,
and calculates the drift rate error and drift rate. In order to
simplify the calculation, this article simplifies the established
fifth-order formula to fourth-order, but the drift rate error
and drift rate remain unchanged. Fig.2 shows the three-axis
attitude angle changes and coning noncommutativity drift
under the condition of cone motion. Fig.3 is the comparison
of the three axial attitude misalignment angles obtained after
optimization of the two coefficients of the correction amount
of the formula derived in this paper and the three axial attitude
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FIGURE 2. Triaxial attitude Angle and coning noncommutativity drift
under cone motion condition.

FIGURE 3. Modification optimization and non - optimization comparison.

misalignment angles obtained without optimization. It can be
seen from Fig.3 that when the two coefficients of the cor-
rection amount are not optimized, the pitch angle error, yaw
angle error, and roll angle error appear as divergent oscillation
and unilateral offset over time. These two phenomena respec-
tively represent the oscillation error and drift error of the
attitude error, and the oscillation error frequency is the same
as the cone movement frequency. After the two coefficients
of the correction amount are optimized, the misalignment
angles of the three axes are greatly reduced, which also shows
the effectiveness of the optimization method proposed in this
paper.

In order to illustrate the superiority of the algorithm pro-
posed in this paper, the algorithm proposed in this paper
was compared with the fourth-order Runge-Kutta method to
solve quaternion differential equations and the fourth-order
Runge-Kutta method to solve Bortz equation. Fig.4 shows the
comparison of themisalignment angles in the three axes of the
three attitude update algorithms in the case of a single sample.
It can be seen from Fig.4 that the three axis misalignments
calculated by the three attitude update algorithms in the case
of a single sample. The misalignments angles are basically
the same, that is, the results of the three algorithms are basi-
cally the same. Fig.5 shows the comparison of the three-axis

FIGURE 4. Comparison of three attitude updating algorithms of single
sample.

FIGURE 5. Comparison of three attitude updating algorithms of two
sample.

misalignment angles of the three attitude update algorithms in
the case of the tow sample. It can be seen from Fig.5 that in
the case of the two sample, the proposed attitude calculation
algorithm compares The fourth-order Runge-Kutta method
to solve quaternion differential equations and fourth-order
Runge-Kutta method to solve Bortz equation have a small
misalignment angle, which shows that the attitude update
algorithm proposed in this paper has more accurate results.,
Has a more superior solution performance.

For the three sub-samples in the cone motion environment,
this paper derives the fifth-order formula, applies the error
analysis method to assess the accuracy of the formula, opti-
mizes the two coefficients of the formula correction, and
calculates the drift rate error and drift rate, in order to sim-
plify the calculation, This article simplifies the established
fifth-order formula to fourth-order, but the drift rate error and
drift rate remain unchanged. The proposed algorithm is sim-
ulated and verified under cone motion conditions. Fig.6 is a
comparison of the three-axis misalignment angles of the three
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FIGURE 6. Comparison of three attitude updating algorithms of three
sample.

attitude update algorithms in the three-sample case. It can be
seen from Fig.6 that in the three-sample case, the proposed
attitude update algorithm on the three axes Compared with
the fourth-order Runge-Kutta method to solve quaternion dif-
ferential equations and the fourth-order Runge-Kutta method
to solve Bortz equation, the misalignment angle is smaller,
which shows that the attitude update algorithm proposed in
this paper is still under conemotion conditions. It has accurate
solution results and superior performance.

FIGURE 7. The car-mounted experimental platform used in this
experiment.

B. EXPERIMENTAL VERIFICATION
In order to illustrate the practicability of the method pro-
posed in this paper, the algorithm proposed in this paper is
verified through ground sports car experiments. Fig.7 shows

the vehicle-mounted experimental platform used in the exper-
iment, which mainly includes a self-developed miniature
inertial measurement unit containing a three-axis gyroscope
and a three-axis accelerometer and a high-precision reference
integrated navigation system. Among them, the sensor con-
figuration description in the self-developed miniature inertial
measurement unit is shown in Table 1. The high-precision
reference integrated navigation system is composed of
LCI-1 strategic-level IMU (inertial measurement unit),
Propak satellite receiver and two GNSS antennas, and is used
to provide high-precision attitude, speed and position refer-
ence for theminiature inertial measurement unit. The attitude,
speed and position accuracy provided by the high-precision
reference integrated navigation system are 0.01◦, 0.05m/s and
0.1m respectively. The total test time is 50s, and the sports car
test trajectory is shown in Fig.8.

TABLE 1. Sensor parameter configuration.

FIGURE 8. The test trajectory in the car-mounted experiment.

After the sports car experiment, the experimental data of
the inertial measurement unit and the high-precision ref-
erence integrated navigation system can be obtained. Use
the attitude update method proposed in this article to solve
the experimental data, and the results of the fourth-order
Runge-Kutta method to solve quaternion differential equa-
tions and fourth-order Runge-Kutta method to solve Bortz
equation comparing. The solution results of the three attitude
update methods are compared with the experimental results
of the high-precision reference integrated navigation system,
and the pitch angle error, roll angle error and yaw angle error
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FIGURE 9. Comparison of pitch angle error.

FIGURE 10. Comparison of roll angle error.

FIGURE 11. Comparison of yaw angle error.

of the three methods are obtained. Fig.9, Fig.10, Fig.11 are
the pitch angle error, roll angle error, and yaw angle error of
the three attitude update methods.

It can be seen from the figure that the fourth-order Runge-
Kutta method to solve quaternion differential equations has
the largest attitude angle error and the lowest attitude solu-
tion accuracy. The attitude angle error of the fourth-order
Runge-Kutta method to solve Bortz equation is smaller than
that of the fourth-order Runge-Kutta method to solve quater-
nion differential equations. The accuracy of the attitude
calculation is relatively good, but the accuracy improve-
ment is limited. The attitude update method proposed in this
paper has the smallest attitude angle errors in the three axes.
Therefore, the experimental results can show that the attitude
quaternion update method proposed in this paper has higher
attitude resolution accuracy, and also proves the effectiveness
of the attitude update method proposed in this paper.

VI. CONCLUSION
The new quaternion update method proposed in this paper
has conducted innovations in theory, and enriched the knowl-
edge system of inertial navigation theory. This paper mainly
focuses on the theoretical derivation, compares the results
of the deduction and existing calculation methods, and ver-
ified its correctness. The method proposed and the rotation
vector method both realize the attitude update by calculat-
ing the attitude quaternion. By using the third-order and
fifth-order Taylor series to approximate the solution of the
quaternion differential equation. The rotation vector method
solves the equivalent rotation vector to solve attitude quater-
nion. The calculation of two methods are different. For the
two cases of the current period output sample of the gyro,
and the previous period output sample and the two sam-
ples, the derived formula is completely consistent with the
common formula derived based on the equivalent rotation
vector method. For the three samples in the coning motion
environment, the fifth-order formula is derived in this paper,
the error analysis method is applied to assess the accuracy
of the formula, the two coefficients of the formula correction
is optimized, and the drift rate error and drift rate are cal-
culated, which are compared with the drift rate errors of the
optimized three-sample equivalent rotation vector algorithm.
The expressions for calculating the drift rate errors of the
two are the same, and the calculation results are the same.
In order to simplify the calculation, the established fifth-order
formula is simplified to fourth-order one in this paper, but
the drift rate error and drift rate remain unchanged. Finally,
through simulation and ground sports car experiments, the
three-dimensional attitude, pitch angle, roll angle and yaw
angle errors are calculated in the case of single, two and
three samples. And compared with two attitude update meth-
ods of fourth-order Runge-Kutta method to solve quaternion
differential equations and fourth-order Runge-Kutta method
to solve Bortz equation. The results show that the attitude
quaternion update method proposed in this paper has higher
posture resolution accuracy.

APPENDIX
Assuming that the carrier coordinate system o-xyz and the ref-
erence coordinate system o-XYZ coincide at t , the reference
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coordinate system rotates the angle a of the ray 0L relative to
the carrier coordinate system, which can be described by the
following rotation quaternion

Q(t) = cos
a
2
+ uRL sin

a
2

(A-1)

wherein, uRL is the unit vector along the direction of the ray,
and its expression is

uRL =

 0
cos(ωt)
sin(ωt)

 (A-2)

Then

Q(t) =


cos(

a
2
)

0

sin(
a
2
) cos(ωt)

sin(
a
2
) sin(ωt)

 (A-3)

Assuming that q(h) is the quaternion of attitude change that
connects the quaternion Q(t) at t and the quaternion Q(t + h)
at t + h, then

Q(t + h) = Q(t)⊗ q(h) (A-4)

Or

q(h) = Q−1(h)⊗ Q(t + h) = M[Q∗(t)]Q(t + h) (A-5)

Expand this expression to get the quaternion of the attitude
change during the update period as

q(h) =



1− 2
(
sin2(

a
2
) sin2(

ωh
2
)
)

− sin2(
a
2
) sin(ωh)

− sin(a) sin(
ωh
2
) sinω(t +

h
2
)

sin(a) sin(
ωh
2
) cosω(t +

h
2
)


(A-6)

According to the quaternion differential equation at t

Q̇(t) =
1
2
Q(t)⊗ [ω(t)]b (A-7)

To obtain the angular velocity of the moving body as

[ω(t)]b = 2Q−1(t)⊗ Q̇(t) =

 −2ω sin2(
a
2
)

−ω sin(a) sin(ωt)
ω sin(a) cos(ωt)

 (A-8)

the angular increment of the three gyros output in the interval
of time h

1θ =

t+h∫
t

ωb(τ )dτ =

1θx1θy
1θz



=


−2ωh sin2(

a
2
)

−2 sin(a) sin(
ωh
2
) sinω(t +

h
2
)

2 sin(a) sin(
ωh
2
) cosω(t +

ωh
2
)

 (A-9)

and the angular increments of the three gyros output in trisec-
tion h

/
3 time interval:

1θ i =

t+ i
3 h∫

t+ i−1
3 h

ωb(τ )dτ =

1θix1θiy
1θiz



=


−
2
3
ωh sin2(

a
2
)

−2 sin(a) sin(
ωh
6
) sinω(t +

2i− 1
6

h)

2 sin(a) sin(
ωh
6
) cosω(t +

2i− 1
6

h)


=

 −E
−F sinω(t + 2i−1

6 h)
F cosω(t + 2i−1

6 h)

, i = 1, 2, 3 (A-10)

wherein, E = 2
3ωh sin

2( a2 ), F = 2 sin(a) sin(ωh6 ) then

1θ1 ⊗1θ3

=

 0 −1θ1z 1θ1y
1θ1z 0 −1θ1x
−1θ1y 1θ1x 0

1θ3x1θ3y
1θ3z


=

 −1θ1z1θ3y +1θ1y1θ3z1θ1z1θ3x −1θ1x1θ3z
−1θ1y1θ3x +1θ1x1θ3y



=



F2 cosω(t +
h
6
) sinω(t +

5h
6
)

−F2 sinω(t +
h
6
) cosω(t +

5h
6
)

−FE cosω(t +
h
6
)+ EF cosω(t +

5h
6
)

−FE sinω(t +
h
6
)+ EF sinω(t +

5h
6
)



=



F2[
1
2
sinω(2t + h)−

1
2
sin(
−2ωh
3

)

−
1
2
sinω(2t + h)−

1
2
sin(
−2ωh
3

)]

FE[−2 sin(
ωh
3
) sinω(t +

h
2
)]

FE[2 sin(
ωh
3
) cosω(t +

h
2
)]



=


F2 sin(

2ωh
3

)

−2FE sin(
ωh
3
) sinω(t +

h
2
)

2FE sin(
ωh
3
) cosω(t +

h
2
)

 (A-11)

Write

1θ ′x1θ ′y
1θ ′z

 =


F2 sin(
2ωh
3

)

−2FE sin(
ωh
3
) sinω(t +

h
2
)

2FE sin(
ωh
3
) cosω(t +

h
2
)

 (A-12)
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In a similar way

1θ ′′x1θ ′′y
1θ ′′z

 =


2F2 sin(
ωh
3
)

−2FE sin(
ωh
3
) sinω(t +

h
2
)

2FE sin(
ωh
3
) cosω(t +

h
2
)

 (A-13)
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