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ABSTRACT The sine cosine algorithm (SCA) is a newly emerging optimization algorithm. It is easy for sine
cosine algorithm (SCA) to sink into premature of the algorithm and obtain a slower convergence rate when
solving the complicated optimization problems, especially highly ill-posed problems. A novel modified sine
cosine algorithm (MSCA) is put forward for solving the optimization problems. To our limited knowledge,
the linear searching path and empirical parameter have not been applied to the related improved sine cosine
algorithm. The proposed MSCA improves the search path of original SCA by introducing linear searching
path and empirical parameter, effectively avoiding sinking into the local optimal. In addition, the proposed
algorithm changes the definition of convergence factor. Two kinds of tests, including 23 benchmark functions
test and actual engineering problem tests are adopted to prove the performance of the MSCA. In addition,
the performance of the proposed MSCA is compared with SCA by using benchmark functions on different
dimensional (D = 30, 50,100 and 500). As expected, the result of comparisons show that the proposed
MSCA can better avoid the local optima than both the SCA and other population-based algorithms. And

MSCA can obtain the faster convergence than SCA on different dimensions.

INDEX TERMS Sine cosine algorithm, linear searching path, nature-inspired algorithm, optimization.

I. INTRODUCTION

The theory of optimization has been widely used in the
actual engineering fields. By building suitable mathematical
model according to concrete problems, in order to minimize
(sometimes maximize) the fitness function of the concrete
problem, many actual engineering problems belong to opti-
mization problems. Examples include structural mechanics,
power systems and so on [1], [2].

According to the academic results of the researchers,
stochastic optimization methods regard the optimization
problem as a black box, as illustrated in Figure 1. This
means that there is no need for rigorous mathematical model
derivation. Only it is necessary to continuously adjust the
algorithm parameters according to the optimization results
to obtain the purpose needed. Another advantage of treating
the problem as a black box is flexibility, which means that
stochastic algorithms can be conveniently applied to solve
various engineering difficulties in different fields [3], [4].

In the past few decades, the research on stochastic opti-
mization algorithms has become a hot research, and continu-
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FIGURE 1. Stochastic optimization algorithm considers the system as
black box.

ously improving the performance of optimization algorithms
has become the research goal of researchers [5]. Commonly
used algorithms include genetic algorithm (GA), particle
swarm optimization (PSO) and differential evolution (DE).
Meanwhile, nature-inspired algorithms are gradually rising,
such as whale optimization algorithm (WOA), grey wolf
optimizer (GWO) and sine cosine algorithm (SCA) [6]-[11].
Several common algorithms are introduced in the following
paragraphs.

Particle swarm optimization (PSO) is a global optimiza-
tion algorithm, which was proposed by J. Kennedy and
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R.C. Eberhaxt in 1995 [12]. It was designed to simulate the
unpredictable foraging movement of a flock of birds. Imagine
such a condition: all birds initially fly in search of food
aimlessly, until one of them finds a little of food, then other
birds have a trend to approach it and search its surrounding
environment to form a specific flock of birds [13]. At the
same time, because each bird tries to stop in the flock without
colliding with each other, they determine their own flight
direction and speed according to their own previous knowl-
edge. When a bird finds the most satisfactory food at present,
it will attract the other flock fly to the neighborhood, and
the birds are continuously searching for places where more
satisfactory food may exist as they approach them. Finally,
the birds find the most plentiful foraging locations.

Inspired by this model, people use information society
sharing to learn from the surrounding successful people,
while maintaining a certain degree of autonomy based on
individual experience and cognition, and ultimately the group
finds the best [14], [15]. The above process is abstracted to
obtain particles in a multidimensional space without volume
and mass at a certain speed. The basic PSO algorithm tra-
verses the search space based on its own and other particle
history information [16]. Researchers have been working on
the improvement of the PSO algorithm, such as GPSO, CPSO
and CLPSO [17], [18].

Genetic algorithm (GA) belongs to a type of random search
and optimization method which simulates biological evolu-
tion theory and its underlying genetic mechanism to solve
optimization problems [19]. It was originally inspired by
Michigan University professor Holland who proposed it in
the 1970s and was enriched and applied by Goldberg and
others [20].

Together with evolutionary strategies and evolutionary
rules, it constitutes the foremost framework of genetic algo-
rithms. GA has its solid biological foundation, namely, group
random search strategy and the exchange mechanism of
group individual information, which is in line with the cog-
nitive view of the biological intelligence generation process;
it does not rely on additional gradient information, and is
available for any functions, and can be easily used in parallel
computing [21], [22]. These advantages make GA become
one of the best methods for solving complex optimization
problems, widely used in path planning, engineering design,
nonlinear problem, multi-objective problem, pattern recogni-
tion and other fields [23].

Differential evolution (DE) was proposed by Storn and
Price in 1995. Differential evolution (DE) is a familiar opti-
mization algorithm [24]. The algorithm principle of DE is
very similar to GA. They all mainly include three pro-
cesses: mutation, hybridization and selection, as shown in
the Figure 2. But the specific process definitions of the algo-
rithm are different. The method of DE algorithm to generate
the initial population is to encode by using floating point
vectors. [25]-[28].

Whale optimization algorithm (WOA) is a novel optimiza-
tion algorithm, which was proposed by Mirjalili in 2016 [29].
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FIGURE 2. Three main processes of DE algorithm.

FIGURE 4. Foraging behavior of wolves.

The algorithm simulates the hunting behavior of humpback
whales. It is divided into three stages: encircling, hunting
and attacking prey. A corresponding theoretical model is
established to achieve the best solution to an actual problem.
According to the characteristics of humpback whale prey-
predation behavior, the WOA mainly includes three stages:
surrounding prey, bubble net hunting and prey search [30].
The bubble-net feeding behavior is as shown in Figure 3.
(Figure 3 is from [29, Fig. 2])

Compared to other traditional optimization methods, WOA
has the superiorities of simple structure, simple principle,
fewer parameters, and strong optimization ability [31], [32].
The algorithm has been widely applied in water resources
optimization configuration and truss design, fault diagnosis,
photovoltaic cell parameter estimation and many other engi-
neering issues [33].

The gray wolf optimization is a nature inspired opti-
mization algorithm, which was proposed by Mirjalili et al.
in 2014 [34]. The algorithm is inspired by the predation action
and method of gray wolves, as the Figure 4 shows: (The
Figure 4 is from [34, Fig.2]).

The gray wolf optimization algorithm is roughly divided
into five steps: social caste system, surrounding prey, hunt-
ing, attacking and searching [35]. Gray wolves strictly obey
the social dominance hierarchy. When the gray wolves are
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searching for the prey they need, they will slowly approach
the prey and then surround the prey [9]. Gray wolves gener-
ally identify the prey first and then surround it. During each
iteration, the three best gray wolves are kept, and the positions
of the remaining search agents are updated based on their
location information. When the prey is no longer moving,
the gray wolf will attack to capture the prey [36], [37].

The sine cosine algorithm (SCA) is a novel optimization
algorithm, which was proposed by Mirjalili in 2016 [38].
It summarizes and absorbs the iterative strategy of part of
the swarm intelligent optimization algorithm. It takes a set
containing a specific number of random solutions as the
initial solution set of the algorithm, repeatedly evaluates the
fitness of the solution through the objective function and
randomly follows a specific update strategy to iterate the
solution set, and finally obtains the optimal solution or a
satisfactory solution that meets the fitness requirements [39].
Like most swarm intelligence optimization algorithms, SCA
relies on an iterative strategy to achieve a random search
in the solution space, and cannot guarantee that the opti-
mal solution is found in one operation. But when the initial
value setting and the number of iterations setting are large
enough, the ability of obtaining the optimal solution is greatly
improved.

SCA summarizes and deconstructs the iteration strategies
of the previous intelligent optimization algorithms into two
threads. First, in the global search thread, it applies large
random fluctuations to the solution in the current solution set
to search for unknown regions in the solution space. Second,
in the local development thread, it applies a weak random
disturbance to the solution set to fully search the neighbor-
hood of the current solution. The periodic volatility of the
trigonometric functions is used to construct an iterative equa-
tion that realizes the two thread functions of global search
and local development. The succinct update iterative equa-
tion is used to impose disturbance and update the solution
set [40]-[42].

In addition, other evolutionary computation algorithms,
such as monarch butterfly optimization (MBO) [43], earth-
worm optimization algorithm (EWA) [44], elephant herding
optimization (EHO) [45], moth search algorithm (MSA) [46]
and rhino herd (RH), were all proposed for global optimiza-
tion, inspired from the biological evolution and behaviors.
And they have been also widely used in the engineering prob-
lems [47], [48]. The good performances have been shown in
the actual engineering applications.

To summarize, every random optimization algorithm has
advantages and disadvantages. According to the theory of
“No Free Lunch”, there is no optimization algorithm that
is available for the whole optimization problems effectively.
The capacity of the random optimization algorithm algo-
rithms is decided by their ability of global search and local
search to search solutions.

Since the original SCA was proposed, many researchers
have begun to work on the improvement of SCA, in order to
further improve the performance of the algorithm. Nenavath
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and Jatoth proposed a hybrid algorithm, called SCA-DE [49],
which introduced the differential evolution (DE) into SCA.
A combination algorithm, called GWO-SCA, was proposed
by N Singh and SB Singh [50]. It hybridized the Grey
Wolf Optimizer (GWO) and Sine Cosine Algorithm (SCA).
Numerical results proved that the proposed algorithm can
solve benchmark functions and engineering applications
effectively. The Improved SCA (ISCA) [51] was proposed,
which changed the position searching equation by intro-
ducing an inertia weight, in order to avoid falling into
local optima. Researchers proposed a novel improved sym-
metric SCA (SSCA-APS) to improve the algorithm perfor-
mance [42]. In the proposed algorithm, adaptive probability
selection was proposed.

However, due to the existence of the absolute value item
in the traditional SCA position updating path, the traditional
SCA in engineering applications, especially the highly non-
linear and highly ill-posed problems, is easy to fall into the
premature of algorithm and cannot find the global optimum
well. The searching path cannot constrain the search direction
of the algorithm well. At the same time, as the dimensionality
increases, the convergence speed of traditional SCA will
decrease.

As itis all known, in the existing SCA improvement strate-
gies, linear search paths and empirical factor haven’t been
used to improve performance. In this article, the linear search
path and empirical parameter are used to improve the per-
formance of traditional SCA, which has better global search
capability and can obtain the more stable solution, effec-
tively avoiding falling into the local optimal. In the testing
of 23 benchmark functions and engineering design testing,
it is proved that the proposed MSCA obtains the better per-
formance. At the same time, compared with traditional SCA,
MSCA has a better convergence rate. In addition, the highly
ill-posed inverse scattering problem in physics is used as an
optimization verification for the first time. It is proved that the
proposed algorithm can solve highly ill-conditioned problems
compared to traditional algorithms well.

The chapters of the article are arranged as follows. Part 11
describes the traditional sine cosine algorithm. Part III
explains the modified algorithm, including the search path
and convergence factor in detail. Part IV discusses the numer-
ical results of the comparison with other algorithm, including
benchmark function tests and actual engineering problem.
Part V concludes with contributions and the outlook of
research.

Il. TRADITIONAL SINE COSINE ALGORITHM

For the traditional sine cosine algorithm, it was the first time
that adaptive sine and cosine mathematics parameters were
introduced into the position updating formula. The formula
of position updating is shown as follows (more details of the
SCA are shown in the reference [38]):

, 14 <05 )

it _ | Xi e xsinGr) |rsPt — X!
, 1r4>0.5

P X!+ x cos(rp) x |r3P§ - X/
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Here, r» € [0,2x], is a random variable. r3 is a ran-
dom variable. r4 is used to choose different search paths,
sine or cosine, according to different random values in Eq. (1).
P; is the objective solution.

rq is a number which is decreased from m to O during the
process of iterations to make the algorithmic search process
balanced. It is shown as follows:

n@=mx(1-—) @

Imax

where i is the present iteration, imax is the total number of
iteration, and m > Q.
The pseudo code of SCA is shown as follows:

Algorithm Since Cosine Algorithm
1. Initialize a set of search agents (solutions) (X)
2. repeat
3. Evaluate each of the search agents by the objective
function
4. Update the best solution obtained so far (P = X*)
5. Update the parameters r1, 12, r3, and r4
6. Update the poison of search agents using Eq. (1)
7. until (t < maximum number of iterations)
8. Return the best solution obtained so far as the global
optimum

In the reference [38], the excellent performance of SCA
has been proved and applied on the airfoil design problem
successfully.

llIl. PROPOSED ALGORITHM
A. IMPROVED POSITION-UPDATING EQUATION
Although it has been proved that traditional SCA possesses
obvious superiority in solving optimization problems, which
means it has better convergence rate and higher accuracy.
Because of the existence of the absolute value term and the
trigonometric function term in the position updating equa-
tions, the original SCA search path is nonlinear, it is difficult
to limit the algorithm search direction when solving com-
plex optimization problem. The search path does not search
towards the global best. Sometimes the result obtained is only
a local optimum when solving multi-parameter optimization
and highly ill-conditioned problems. which can be found in
the part I'V. In addition, in the reference [38], the benchmark
function test on SCA only uses 30 search agents, and does
not analyze the problems of multi-dimensional situations.
In fact, in the benchmark function test, the convergence rate
of traditional SCA will decrease as the number of dimensions
increases.

As it is all known, the search path of the PSO algorithm is
a classical linear search path. Considering this problem, this
article improves the equation (1) by introducing the linear
path into SCA, inspired from particle swarm optimization
(PSO).

Compared with the search path of traditional SCA, the new
search path retains the random selection of sine and cosine
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FIGURE 5. Traditional and improved range change.

original SCA

FIGURE 6. Comparison of different search paths.

parameters and the dual path characteristics, cancels the
absolute value and changes the definition of the convergence
factor.

The path search expression is as follows:

Xik+l
. rle.k—I-cl X sin(ry) X (P’ljm_i —Xik), r3<0.5 3)
rle.k—I-cl X cos(rp) X (P]l;est—i — Xl.k), r3>0.5

where X; is the location of the present optimal solution, k is
the number of present iteration, P; is the optimal solution.

The parameter rq is called convergence factor. It is a num-
ber which makes the prospection and development balanced.

Through the association of the linear path and the original
path, the search will be more rigorous and suitable for the
complex optimization problem. The search range will find
the global optimum in a more precise range. as illustrated
in Figure 5. (The curve A is from [38])

As shown in the Figure 6, the point A is the global optimum
which needs to be found. The search path of original SCA
requires constant oscillations to find the global optimum. Due
to the introduction of the linear path, the degree of oscillation
of the proposed improved path is significantly lower than
that of the traditional path, and the search speed is improved.
Therefore, the global optimum can be found efficiently by the
proposed SCA.

In the searching path of original SCA, there is only an
optimal value Pi, this is not enough when solving complicated
problems. By using the empirical parameter, the knowledge
and information about what had previously searched and
obtained can be used as the guide for accurate iteration [52].

Therefore, empirical parameter is introduced into the
search path to improve the accuracy of search. The empirical
parameter had been applied in the field of antenna pattern
optimization, and achieved good results [37], [53]. It was a
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parameter that could optimize the search path and reduce the
search error, which was from the previous iteration. The final
path search expression is as follows:

rlXik + ¢ x sin(rp) x (Plgmfi —Xik)
gk ] teax sin(ry) x (Ef,., — XF), r3<0.5
! rle.k +¢1 x cos(r) x (P],jm_i —Xik)
4+ ¢y x cos(rp) X (E,fes[ —Xl.k), r3>0.5
4)

In the equation (4), r; is the convergence factor, r, €
[0, /2], r3 is a random number, which is used to control the
choice of sine or cosine paths. ¢ and c; are constants which
can be adjusted according to actual problems. E is empirical
parameters which is obtained from previous iteration. P; is
the optimal solution.

Through the introduction of the linear search path,
the search of the optimization algorithm will be more effi-
cient. Through the introduction of empirical parameter, under
the joint constraints of £ and P, the accuracy of the search
will be improved and the global optimum can be found faster.
Through such improvements, the algorithm will be better
suited to complex optimization problems.

B. IMPROVED CONVERGENCE FACTOR
In addition, in this work, the definition of related parame-
ters is adjusted. Meanwhile, it is very important to define
a convergence factor which has a better performance in the
optimization algorithm.

In the equation (4), r; is defined as follows:

t

71 = I'max- (Imax- rmin)f (5)

where rmax and ryjp, are constants, which can be set according
to specific problem.

In equation (4), only one parameter m can be adjusted.
Through this modification, the value of the convergence fac-
tor will be more flexible. By defining rmax and rp;p, it can be
adapted to more optimization situations.

At the beginning of the iteration, a larger convergence
factor is helpful for improving the global search capability.
As the number of iterations increases, the convergence factor
can quickly decrease to a smaller value. The choice of the
smaller value and the slow decreasing speed are useful to
improving the final optimization result of the algorithm.

The pseudo code of the proposed MSCA is shown as
follows:

The flowchart of the proposed algorithm is shown as
follows:

IV. NUMERICAL SIMULATION AND COMPARISON

In this part, two different types of test cases are applied to
prove the capacity of the proposed MSCA, namely bench-
mark function test and actual engineering problem test. How-
ever, due to the randomness of the calculation results of the
stochastic optimization algorithm, when using the benchmark
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Initialize the population X (i=1,2,---,n)
Calculate the fitness of each search agent

"
X' =the best search agent
while (t < maximum number of iterations)

for each search agent

Update 1, ryand r,

if(r<05)
Update the position of the current search agent by the Eq. (4)
of the sine coefficient

else if (r, > 0.5)
Update the position of the current search agent by the Eq. (4)

of the cosine coefficient
End for
Check if any search agent goes beyond the search space and amend it
Calculate the fitness of each search agent, Update X" if there is a better solution
t=t+1
end while
return X*

FIGURE 7. The pseudo code of the proposed MSCA.

( start )

| initial population ‘
|
:

| fitness calculation |

sine search path

| cosine search path |

I
}

\ solving border violations |

max iteration reached
| get the optimal solution Gbest |

end

FIGURE 8. The flowchart of the MSCA.

function test, appropriate, sufficient and different types of
benchmark functions should be used. According to the sum-
mary of different articles, such as [29], [34] and [38], this
article uses 23 commonly used benchmark function tests with
different characteristics.

In the performance verification of the stochastic optimiza-
tion algorithm, except for a certain number and type of
benchmark functions verification, several actual engineering
verifications are also needed to ensure that the proposed
algorithm can also obtain better performance in engineering
applications. At the same time, the actual engineering prob-
lems are optimization problems with many constraints, which
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TABLE 1. The Source of Inspiration for the Algorithm Used.

Algorithm The source of inspiration
PSO foraging behavior of the birds
GA the evolutionary laws of organisms in nature
DE similar to the GA
WOA predation behavior of the whale
GWO the behavior of grey wolf hunting prey
SCA sine function and cosine function

are especially suitable for performance comparison among
different algorithms.

In the verification of engineering problem, inverse scatter-
ing (IS) problem, pressure vessel design problem, tension/
compression spring design and welded beam design prob-
lem are used respectively. These four engineering problems
belong to the fields of electromagnetic field, structural design
and mechanics respectively. They are representative of a
certain degree, and the inverse scattering problem is highly
ill-conditioned, and is particularly suitable for verification of
optimization algorithms. In addition, this is the first time that
the inverse scattering problem of the electromagnetic field is
used as a verification for the optimization algorithms.

A. BENCHMARK FUNCTIONS TEST

1) COMPARISON WITH OTHER RANDOM

OPTIMIZATION ALGORITHMS

The 23 well-known benchmark test functions, collected from
references [29], [34] and [38], are applied. F/ to F7 belong to
the unimodal benchmark functions. F8 to F13 belong to the
multimodal benchmark functions and Fi4 to F23 belong to
the fixed-dimensions multimodal benchmark function. The
selected test functions and the parameters are both summa-
rized in Table 3,4 and 5. Several three-dimensional images of
typical functions are shown in the Figure 9.

The optimal value comparison results of the selected algo-
rithms and the proposed MSCA are presented in Table 6.
Table 7 concludes the performance comparison between the
different algorithms.

“Better” means that the optimal value of the function
obtained is smaller than the algorithm used for performance
comparison, ‘“Equal” means that the optimal value obtained
by the two algorithms is equal, and ‘““Worst” means that the
optimal value of the function obtained is greater than the
algorithm used for performance comparison.

For the purpose of solving the benchmark functions test,
the population size is set to 50 and the total number of
iterations is set to 1000. The proposed algorithm is compared
with PSO, GA, DE, WOA, GWO and SCA.

The source of inspiration for the algorithm used are shown
in the Table 1. The parameter settings of the algorithm used
for performance comparison are shown in the Table 2.
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First of all, from the optimal solution and statistical results,
compared with PSO and GA, the performance of the pro-
posed MSCA is significantly better. Although PSO and GA
are commonly used optimization algorithms, they have not
shown good performance in benchmark function tests. This
is due in part to the linear search path, more flexible param-
eter selection method of MSCA and the introduction of
empirical parameters; secondly, compared to DE and GWO,
although the algorithm still has advantages, but in terms of
fixed-dimensions multimodal benchmark, performance has
declined. It can also be seen that compared to WOA, the pro-
posed MSCA obtains the better performance on 14 functions,
which is because that the MSCA has a simpler path search
method. Although WOA also has high efficiency, its search
process is relatively cumbersome.

According to the research results of the researchers,
the excellent results of DE are mainly due to its flexible
coding method and excellent performance to solve 0-1 prob-
lems. The two new natural heuristic optimization algorithms,
WOA and GWO, are inspired by the predation laws of the
biological world, and they are also of great application value.
Finally, through the performance comparison with traditional
SCA, only three benchmark functions have test performance
worse than traditional SCA. The performance comparison
with traditional SCA in detail is shown in the next part. To
summarize, the performance of the proposed MSCA algo-
rithm in benchmark function testing is relatively superior.

2) COMPARISON WITH TRADITIONAL SCA

IN DIFFERENT DIMENSION

In addition to compare with other optimization algorithms,
it is essential to compare the proposed MSCA with original
SCA from the two aspects of optimal function value and
convergence rate. Table 8 reports the comparison results of
the optimal function values between SCA and MSCA.

In order to fairly compare the performance of the proposed
MSCA and original SCA, the same algorithm parameters
are set for SCA and MSCA. For each benchmark function,
the overall size is set to 50. And verification is from four
different dimensions, namely dimensions 30, 50, 100 and
500, and the maximum number of iterations in all simulations
is 1000.
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TABLE 2. The Parameter Settings of the Algorithm Used.

Algorithm parameter settings N
w=0.68
PSO cl1=0.5 50
c2=0.5
Pc=0.8
GA Pm=0.2 50
gap=0.9
Mutation rate: FO = 0.5
DE - 50
Cross probability: CR = 0.9
b=1
WOA 50
p €01
rl € (0,1)
GWO 50
2€(0,1)
SCA a=2 50
I'max = 0.9
Proposed Algorithm I'min = 0.4 50
cl=c2=0.5

%y

Fi2ix,

i ww
(F10) (F12)

FIGURE 9. Several three-dimensional images of typical functions.

From the results in Table 8 of benchmark test functions,
for D = 30, (FI-F13, F15-F18). For the F8 and FI8 tests,
the performance of the traditional SCA is better than the
proposed MSCA. The test results of the two algorithms are
the same on F16. In the remaining benchmark function tests,
the performance obtained by MSCA is better than original
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SCA. The optimal function values obtained by MSCA are
closer to the theoretical solution.

For D = 50, for the F16 and F18 tests, the performance
of the traditional SCA is better than the proposed MSCA.
In the remaining benchmark function tests, the performance
obtained by MSCA is better than original SCA.
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TABLE 3. Unimodal Benchmark Functions Used for Validation.

Function dim range f min
F(x)=" x; 10 [-100,100] 0
B =" x|+~ 10 [-10,10] 0
=) (ZIH x;)’ 10 [-100,100] 0
F,(x)=max {|x,|,1 <i<n} 10 [-100,100] 0
Fi(x0) =2 [100(x,,, +x7) + (x, = 1)" ] 10 [-30.30] 0
F(x)=>" ((x,+0.5]’ 10 [-100,100] 0
F(x)= z; ixf +random[0,1) 10 [-1.28,1.28] 0
TABLE 4. Multimodal Benchmark Functions Used for Validation.
Function dim range f min
F(x)=Y" —xsin(y|x|) 10 [-500,500]  —418.9829x5
Fy(x)=Y" [ % —10cos(27x,)+10 ] 10 [5.12,5.12] 0
F,,(x) =—20exp(-0.2 12’; x1)— exp(l D cos(2zx,))+20+e 10 [-32,32] 0
n=—"mr n=—"mr
1 n 2 n X,
F.(x)= toxi - © cos(—L) +1 10 -600,600 0
100 = 2000 2 ~ T cos( 7 [-600.600]
Fy(0) =2 {10sin(zy,)+ 3 (v, = DI1+10sin* (2,1 + (v, =1} + " u(x,10,100,4) 10 [-50,50] 0
n 1= =
k(x,—a)",x,>a
x +1
v =1+—"—u(x,,a,k,m)= 0,-a<x,<a
k(x,—a)",x, <-a
Fy(x) =0.1{sin’ Bzx)) + D" (x, = D’[1+sin’ Bzx, + D]+ (x, 1[I +sin’Qzx, )]} + D u(x,,5,100,4) 10 [-50,50] 0

For D = 100, for the F16 and FI8 tests, the performance
of the traditional SCA is better than the proposed MSCA.
In the remaining benchmark function tests, the performance
obtained by SCA is worse than MSCA.

For D = 500, for the F17 and FI8 tests, the performance
of the traditional SCA is better than the proposed MSCA.
The test results of the two algorithms are the same on F16.
In the remaining benchmark function tests, the performance
obtained by SCA is worse than MSCA.

To summarize, F16, F17 and FI8 are fixed-dimensions
multimodal benchmark functions. In the tests of different
dimensions, the performance of traditional SCA is better
than the proposed MSCA. But in other benchmark functions,
MSCA has achieved better performance.

For further illustration, the convergence speed of the SCA
and MSCA on eight test functions (F3, F5, F7, F9, F10, F12,
F13 and F15) are shown in Figure 10.

From Figure 10, It can be concluded that, compared with
the original SCA, the proposed MSCA can obtain a better
convergence speed. This also proves that the original SCA
does have the drawback of decreasing convergence rate as
the dimensionality increases (as introduced in the part III. A).
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By introducing the linear search path and empirical param-
eter, the convergence efficiency of original SCA has been
improved.

From Tab. 8 and Fig 9, it can be concluded that the pro-
posed MSCA can obtain a better function optimal value and
converge rate. This can also illustrate the advantages of the
modified linear position searching equation and empirical
parameter which were introduced.

B. SEVERAL ENGINEERING PROBLEMS

1) INVERSE SCATTERING PROBLEM

The theory of inverse scattering has been widely used in

many engineering fields, such as medical imaging, ground-

penetrating radar and others. Inverse scattering belongs to the

inverse problem. However, due to the nonlinearity and highly

ill-conditioned nature of inverse scattering problem, it is easy

to obtain the local optimum by using traditional methods.
the Lippman-Schwinger equation is as follows:

E(r) = Eine(r) + iopto / Gr PG dr (6)
D

where J(r") = —iwso[e,(r') — 11E#).
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TABLE 5. Fixed-Dimensions Multimodal Benchmark Function Used for Validation.

Function dim range i
Fa(x)= (% 7 m)‘ 2 [-65.536,65.536] 1
Fy=>" {al. - %T 4 [-5.51 0.00030
i i3 4
F(x)=4x} -2.1x} +%x16 +x,x, —4x] +4x; 2 [-5,5] ~1.0316
F (%) =(x, —%xﬁ+%xl —6)2+10(1—$)cosxl +10 2 [-15.15] 0.398

Eo(x) =[1+(x, +x, +1)*(19—14x, +3x] —14x, +6x,x, +3x7)]

X[30+(2x, —3x,)* x (18— 32x, +12x° +48x, —36x,x, + 27x2)] ? 221 30000
Fo(x)= —z; G exp(—z:j:1 a,(x; - p,j)z) 3 [0,1] -3.86
Fy(0)==31 coxp(=Y." a,(x,~ p,)") 6 [0.1] 332
Fy0=-3" [(X-a)X-a) +c] 4 [0,10] 10.1532
Fp@)=-Y" [(X-a)X -a)" +c T 4 [0,10] ~10.4028
Fa0=-Y"[(X-a)X-a) +¢] 4 [0,10] 105363

TABLE 6. The Optimal Solution of the Benchmark Function.

F PSO GA DE WOA GWO SCA ;rg‘;ﬂ(i’fhe:l
FI 1.3913E-04 2.0561E-08 5.6793E-23 8.1819E-178 7.8393E-147 21749E-32  4.3280E-154
F2 0.0029 2.0942 3.5840E-12 5.4076E-119 5.2849E-81 9.1887E-21 5.5052E-73
F3 22345 74.0078 2.6863E-12 17304 7.1560-67 1.8916E-15  6.3984E-141
F4 3.4385 13.2390 2.1594E-08 26777 7.2759E-48 2.3561E-10 3.3269E-36
Fs 8.3497E+02 20,9672 0.5759 5.0475 6232 63353 0.0000
F6 2.4025E-07 3.1117E-08 3.1923E-12 1.0655E-06 3.7257E-07 03425 0.0000
F7 0.0459 0.2060 0.0128 4.2038E-05 2.3381E-04 0.0039 7.4453E-07
F8 2.7685E+03 -867.9147 -4.1898E+03 -3062.1843 -2640.5536 24473544 -4.1898E+03
F9 24.8739 26.8638 24.3654 0.0000 0.0000 0.0000 0.0000

F10 3.6305E-05 19.8723 1.0563E-11 4.4409E-15 4.4409E-15 4.4409E-15 8.8818E-16
FII 0.0541 10504 0.4794 0.0000 0.0000 0.0000 0.0000
Fi2 1.1038E-05 0.0026 5.6473E-24 1.3546¢-05 2.0347E-07 0.0442 4.7116E-32
Fi3 4.7847 10.7892 2.0775E-23 2.2492¢-05 6.6773E-07 0.1841 1.3498E-32
Fl4 10.7632 7.8740 0.9980 0.9980 29821 0.9980 0.9980
FI5 0.0083 7.6363E-04 3.0749E-04 7.7468E-04 3.0749E-04 5.4538E-04 3.1036E-04
FI6 -1.0316 -0.9999 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316
F17 0.3979 0.3979 0.3979 0.3979 0.3979 0.39871 0.3979
Fi8 3.0000 3.000 3.0000 3.0000 3.0000 3.0000 3.0007
F19 -3.8628 -1.4856 -3.8628 -3.8610 3.8628 -3.8541 -3.8531
F20 -3.3220 -1.0000 -3.3220 -3.3220 13.3220 -3.0012 -3.2645
P21 -2.6829 -1.0000 -10.1532 -10.1531 -10.1531 -0.49729 -10.1532
F22 -10.4029 -1.0000 -10.4029 -10.4029 -10.4026 44104 27519
F23 28711 -1.0000 1105364 -10.4029 1105362 -5.6398 -10.5364
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TABLE 7. The Statistics of Comparison for the Performance With Different Algorithms.

Algorithm Better Equal Worst

Proposed Algorithm versus PSO 17 2 4

Proposed Algorithm versus GA 22 1 1

Proposed Algorithm versus DE 12 6 5
Proposed Algorithm versus WOA 14 3 6
Proposed Algorithm versus GWO 12 7 4

Proposed Algorithm versus SCA 16 4 3

TABLE 8. Comparison With Traditional SCA in Different Dimensions.
D=30 D=50 D=100 D=500
F
sca it sCA it SCA et SCA g

FI1 8.4046E-05 1.2933E-73 0.22191 1.8139E-80 1885.5243 1.9094E-60 1.3811E+05 6.9985E-30
F2 1.1124E-06 1.4234E-71 0.0073 1.5440E-51 0.27042 9.9180E-54 125.9699 2.0270E-24
F3 1.9548E+03 2.3605E-91 9109.6261 5.7509E-92 2.3568E+05 7.7030E-50 5.3577E+06 1.0663E-22
F4 26.7163 5.4836E-08 51.5433 4.7829E-06 82.7196 5.3759E-06 99.0895 0.4715
F5 33.5098 0.0000 3.1184E+05 48.4953 8.4868E+07 9.9436E-18 1.2176E+09 2.0734E-18
F6 4.5926 0.0000 9.4791 0.0000 2.1335E+03 0.0000 2.0473E+05 0.0000
F7 0.023733 1.0012E-04 0.079571 2.3172E-05 32.3317 1.4162E-04 8504.9833 7.0122E-05
F8 -3881.3488 -5.4177E+03 -5007.1743 -2.0949E+04 -7049.4654  -4.1898E+04 -1.7662E+04  -2.0949E+05
F9 9.0125 0.0000 119.8821 0.0000 400.1272 0.0000 816.3688 497.4795
F10 0.0025 4.4409E-16 20.3685 8.8818E-16 20.5735 4.4409E-15 20.7361 4.4409E-15
Fl1 0.0072 0.0000 0.041677 0.0000 58.9534 0.0000 227.7139 0.0000
Fi2 0.3732 1.5705E-32 3.9337E+05 9.4233E-33 2.4297E+08 4.7116E-33 3.7681E+09 9.4233E-34
FI3 2.3252 1.3498E-32 11.4874 1.3498E-32 2.5002E+08 1.3498E-32 7.0251E+09 1.3498E-32
FI5 5.7174E-04 3.4147E-04 8.1117E-04 3.1047E-04 6.3321E-04 3.1743E-04 4.3516E-04 3.0976E-04
Fl6 -1.0316 -1.0316 -1.0316 -1.0315 -1.0316 -1.0315 -1.0316 -1.0316
F17 0.3987 0.3979 0.39921 0.3980 0.39869 0.3979 0.3980 0.3984
F18 3.0000 3.0163 3.0000 3.0065 3.0000 3.0146 3.0000 3.0074

In the equation (6), &, is unknown that needs to be solved.
Other physical quantities are known.

The model of inverse scattering problem is shown in
Figure 11. The data of scattering field is obtained by several
receiving antennas, and then the permittivity distribution of
the scatterer can be calculated by the data of scattering field.
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Consider a problem of two-dimensional inverse scattering.
The scatterer is a square object, which has uniform permit-
tivity distribution. The conductor center point of coordinate
is located in (0, 0). In order to measure the performance
of the proposed algorithm in different dimensions, the scat-
terer is divided into small pieces of 3*3, 4*4 and 6*6
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FIGURE 10. The convergence value of SCA and proposed algorithm for typical functions.
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TABLE 9. The Results of Optimal Solution and Optimal Function Values.

Dim algorithm max min f min MSE
DE 3.0647 2.9429 2.7652x 107 9.9790x 10
GA 4.5347 1.0098 0.0185 1.3434
9 PSO 47115 1.4601 0.0040 0.9110
SCA 43473 2.0740 0.0252 0.4827
MSCA 3.0138 2.9880 7.3203 x 10- 8.5876x10°
DE 4.6879 1.5817 4.6206 x 107 0.5671
GA 43230 1.0000 0.0381 0.9541
16 PSO 45014 1.3863 0.0013 0.6605
SCA 4.7315 1.4890 0.0587 1.1980
MSCA 3.0000 3.0000 8.9913x 10~ 5.5780x107""
DE 43075 1.2902 1.3355% 1076 0.5351
GA 5.0000 1.0000 0.0533 3.1065
36 PSO 4.8897 1.1209 0.0548 1.0911
SCA 4.9900 1.0000 0.1520 1.6690
MSCA 3.0009 2.9988 2.6222x 107 2.1421x1077
TABLE 10. The Experimental Results of MSCA and Other Algorithms for Pressure Vessel Design Problem.
Optimal values for variables
Algorithm Optimal cost
Ts Th R L
WOA (Mirjalili & Lewis, 2016) 0.8125 0.4375 42.0982699 176.638998 6059.7410
MVO (Mirjalili et al., 2016) 0.8125 0.4375 42.090738 176.73869 6060.8066
CPSO (He & Wang, 2007) 0.8125 0.4375 42.091266 176.7465 6061.0777
GSA (Rashedi et al., 2009) 1.125 0.625 55.9886598 84.4542025 8538.8359
GA (Coello & Mezura-Montes, 2002) 0.8125 0.4375 42.097398 176.65405 6059.9463
ES (Mezura-Montes & Coello, 2008) 0.8125 0.4375 42.098087 176.640518 6059.7456
ACO (Kaveh & Talatahari, 2010) 0.8125 0.4375 42.098353 176.637751 6059.7258
CGDA (Baykasoglu, 2012) 0.8125 0.4375 42,0975 176.6484 6059.8391
CSA (Gandomi et al., 2013) 0.8125 0.4375 42,0984 176.6366 6059.7140
BA (Gandomi et al., 2013) 0.8125 04375 42.0984 176.6366 6059.7143
MFO (Mirjalili, 2015) 0.8125 0.4375 42.098445 176.636596 6059.7143
HPSODE (Liu et al., 2010) 0.8125 0.4375 42.098446 176.636596 6059.714335
CDE (Hang et al., 2007) 0.8125 0.4375 42.0984 176.6376 6059.7340
UABC (Brajevic & Tuba, 2013) 0.8125 0.4375 42.098446 176.636596 6059.714335
AFA (Baykasoglu & Ozsoydan, 2015) 0.8125 0.4375 42,0984 176.6366 6059.7143
CSA (Askarzadeh, 2016) 0.8125 0.4375 42.0984 176.6366 6059.7144
TEO (Kaveh & Dadras, 2017) 0.8125 0.4375 42,0984 176.6366 6059.71
GWO (Mirjalili et al., 2014) 0.8125 0.4375 42.0989181 176.758731 6051.5639
EEGWO (Long et al., 2018) 13.09291 6.792196 42.09758 176.6495 6059.8704
SCA (Mirjalili, 2016) 0.817577 0.417932 41.74939 183.5727 6137.3724
ISCA(Wen Long et al, 2018) 12.96419 7.150134 42.09829 176.6392 6059.7489
ROL-GWO(Wen Long et al, 2019) 12.73387 6.781898 42.09825 176.6397 6059.7528
MSCA (this work) 0.8125 0.4375 42.0984 175.0000 6011.400
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incentive source
A\

measuring point

FIGURE 11. The model of scattered field.

(Dimension=9,16 and 36). The relative permittivity of the
conductor is the parameter waiting to be reconstructed.

An incentive source with the frequency of 3GHz is
adopted. Measuring points are evenly arranged on a circle,
which the radius is 0.5m, as shown in the Figure 11. The
relative permittivity of the scatterer is 3 and the relative
permittivity of the surrounding free space is 1.

The object function is defined as follows:

Y Yo ELN G — EL ()]
- L M -
Yt Yot | EL )|

where E}, is the known solution of the scattered field and E!
is the value of the scattered field calculated from during the
algorithm iteration process.

Mean squared error (MSE) can be used as an indicator to
measure the robustness and error of the calculation results.
It is defined as follows:

f )

I e
MSE_HZ[S, &l (8

i=1

where ¢; is optimal solution of permittivity, & is a known
constant which equals 3.

The performance of the proposed MSCA is compared with
DE, GA, PSO and SCA. The results of optimal solution
maximums, minimums, optimal function values and mean
squared error (MSE) are listed in Table 9. The selection of the
maximum and minimum values is to measure the stability of
the results. The convergence curve of Dim=9,16 and 36 are
shown in Figure 12,13 and 14. The number of iterations is
set to 1000, and the number of populations is set to 50. (The
results in the table retain four significant numbers)

From the results of optimal function values, it can be
observed that although the optimal function value of DE is
better than the proposed algorithm, the solution obtained by
the proposed algorithm MSCA is closer to the theoretical
value compared with the other four algorithms, considering
from the stability and error of the solution in the case of three
different dimensions.

From the results of convergence speed and mean squared
error (MSE), it is obvious that PSO and SCA have a faster
convergence rate. However, the PSO and SCA are stuck in
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FIGURE 15. The model of pressure vessel design problem.

=

algorithm premature, the MSE of the proposed MSCA is
better than other four algorithms. To summarize, the proposed
MSCA can solve the inverse scattering problem well.

2) PRESSURE VESSEL DESIGN PROBLEM

Figure 15 shows the model of this design problem. This
problem is a common test in the optimization algorithm. It is
involved in many literatures about optimization algorithm.
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TABLE 11. The Experimental Results of MSCA and Other Algorithms for Tension/Compression Spring Design Problem.

Optimal values for variables

Algorithm Optimal cost
d D P

WOA (Mirjalili & Lewis, 2016) 0.051207 0.345215 12.54854 0.0126763
MVO (Mirjalili et al., 2016) 0.05251 0.37602 10.33513 0.012790
CPSO (He & Wang, 2007) 0.051728 0.357644 11.244543 0.0126747
GSA (Rashedi et al., 2009) 0.0500 0.317312 14.22867 0.0128739
GA (Coello & Mezura-Montes, 2002) 0.051989 0.363965 10.890522 0.012681
ES (Mezura-Montes & Coello, 2008) 0.051643 0.3556 11.397926 0.012698
HS (Mahdavi et al, 2007) 0.051154 0.349871 12.076432 0.0126706
CGDA (Baykasoglu, 2012) 0.0516925 0.3568108 11.2835059 0.012665
BA (Gandomi et al., 2013) 0.05169 0.35673 11.2885 0.0126652
MFO (Mirjalili, 2015) 0.051994457 0.36410932 10.868421862 0.0126669

HPSODE (Liu et al., 2010) 0.0516888101 0.3567117001 11.289319935 0.0126652329
CDE (Hang et al., 2007) 0.051609 0.354714 11.410831 0.0126702
UABC (Brajevic & Tuba, 2013) 0.051691 0.356769 11.285988 0.012665
AFA (Baykasoglu & Ozsoydan, 2015) 0.051667 0.356198 11.319561 0.0126653
CSA (Askarzadeh, 2016) 0.051689 0.356717 11.289012 0.0126652
TEO (Kaveh & Dadras, 2017) 0.051775 0.358792 11.168390 0.012665
GWO (Mirjalili et al., 2014) 0.05169 0.356737 11.28885 0.012665
EEGWO (Long et al., 2018) 0.051673 0.35634 11.3113 0.012665
SCA (Mirjalili, 2016) 0.05078 0.334779 12.72269 0.0127097
ISCA(Wen Long et al, 2018) 0.0520217 0.364768 10.8323 0.012667
ROL-GWO(Wen Long et al, 2019) 0.0517234 0.357538 11.2416 0.012666

MSCA (this work) 0.0509 0.3111 10.1592 0.0098

It is a four-variable optimization problem: Ts, Th, R and L,
as shown in Figure 15. The description of related issues and
the optimization results of other algorithms in Table 10 are
from references [51,5.7.1] and [37].

Ts is the shell thickness. Th is the head thickness. R is the
inner radius and L is cylindrical part length.

The mathematical formulation is defined as follows:

Consider X =[x1 xp x3 x4]=[Ts T, R L],
Minimize f(X) = 0.6224x1x3x4 + 1.7781x2x3
+3.1661x7xs + 19.84x7x3
Subject to g1(X) = —x1 +0.00193x3 < 0
22(X) = —x3 +0.00954x3 < 0
&aﬁ?wﬁm—gm§+u%mgo
g4(X) = x4 —240 < 0

where 0 < x1,x <99, 10 < x3, x4 < 200.
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The results of proposed MSCA and other 22 optimization
algorithms, which were proposed previously, are listed in the
Table 10. As shown in Table 10, the MSCA can obtain better
results compared to the other optimization algorithms listed.
The proposed MSCA can obtain the smallest optimal cost
under the premise of satisfying the constraints of the problem.

3) TENSION/COMPRESSION SPRING DESIGN PROBLEM
Figure 16 shows the model of this design problem. This
question belongs to the scope of mechanics. This problem
has three variables: D, P, d. The definition of variables,
the description of related issues and the optimization results
of other algorithms in Table 11 are from references [51,5.7.2]
and [37].

The mathematical definition of it is shown as follows:

Consider X =[x1 x» x3]=[d D P]
Minimize f(X) = (x3 + 2)xox7
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TABLE 12. The Experimental Results of MSCA and Other Algorithms for Welded Beam Design Problem.

Optimal values for variables

Algorithm Optimal cost
h i t b
GA (Deb, 2000) 0.2489 6.1730 8.1789 0.2533 2.4331
HS (Lee & Geem, 2005) 0.2442 6.2231 8.2915 0.2443 2.3807
SA (Atiqullah & Rao, 2000) 0.2471 6.1451 8.2721 0.2495 2.4138
SBM (Akhtar et al., 2002) 0.2407 6.4851 8.2399 0.2497 2.4426
SCA (Ray & Liew, 2003) 0.2444 6.2380 8.2886 0.2446 2.3854
IPSO (He et al., 2004) 0.2444 6.2175 8.2915 0.2444 2.3810
NOSA (Liu, 2005) 0.2444 6.2175 8.2915 0.2444 2.3810
DFSA (Hedar & Fukushima, 2006) 0.2444 6.2158 8.2939 0.2444 2.3811
DEDS (Zhang et al., 2008) 0.2444 6.2175 8.2915 0.2444 2.3810
EMEA (Zhang et al., 2009) 0.2443 6.2201 8.2940 0.2444 2.3816
ISA (Gandomi, 2014) 0.2443 6.2199 8.2915 0.2443 2.3812
MTSA (Babalik, et al., 2018) 0.24415742 6.22306595 8.29555011 0.24440474 2.38241101
ISCA (Wen Long,et al., 2018) 0.24435 6.2178 8.2919 0.24437 2.3810
EEGWO (Long et al., 2018) 0.2444 6.2170 8.2928 0.2444 2.3813
ROL-GWO (Wen Long,et al., 2019) 0.24434 6.2188 8.2916 0.24437 2.3811
MSCA (this work) 0.1250 0.8130 8.5336 0.2764 1.6948

Ak

FIGURE 16. The model of tension/compression spring design problem/.

3
Subject to g1(X) =1 — B S

71785x])

452 — X1X) 1
gX) = —2——— 5 <0

12566(xx] —x7)  5108x;

140.45x,

G =1- -2 <
X5X3

g4(X) = autx <0

where 0.05 < x1 <2,0.25 <x; <1.30,2.00 < x3 < 15.
The results of proposed MSCA and other 21 optimization
algorithms, which were proposed previously, are listed in the
Table 11. As shown in Table 11, the MSCA can obtain better
results compared to the other optimization algorithms listed.
The proposed MSCA can obtain the smallest optimal cost
under the premise of satisfying the constraints of the problem.

4) WELDED BEAM DESIGN PROBLEM

Figure 17 shows the model of this design problem. This
problem has four variables: h, I, t and b. More details on
this design problem are in [45] and the optimization results
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FIGURE 17. The model of welded beam design problem.

of other algorithms in Table 12 are from references [51,5.7.3]
and [37].

The results of proposed MSCA and other 15 optimization
algorithms, which were proposed previously, are listed in the
Table 12. As shown in Table 12, the MSCA can obtain better
results compared to the other optimization algorithms listed.
The proposed MSCA can obtain the smallest optimal cost
under the premise of satisfying the constraints of the problem.

V. CONCLUSION
In this article, a modified SCA is proposed. The linear search
path and empirical parameter have been introduced for the
first time to improve the accuracy of search direction for
optimization problems with different dimensions and highly
ill-posed actual problems.

The numerical results of benchmark function tests for
the proposed MSCA are compared with original SCA and
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other widespread algorithms. From these numerical results,
it can be proved that the MSCA has the better performance
than the original SCA and other population-based algorithms.
Additionally, the results of the MSCA in solving actual prob-
lems are compared with several algorithms and obtains better
results.

In addition, except the algorithms used in the article, some
other intelligence algorithms can also be used to solve the
actual engineering problems, such as monarch butterfly opti-
mization (MBO), earthworm optimization algorithm (EWA),
elephant herding optimization (EHO), moth search algorithm
(MSA) and rhino herd (RH). And the good performance can
be obtained.

In future work, continuous learning and inspiration from
the algorithms mentioned above is the driving force for
improvement. And more applications such as signal process-
ing, image processing, big data analysis, neural network and
engineering structure design need to be applied to prove the
performance of MSCA and continuously improve existing
algorithms.
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