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ABSTRACT In this article, input-to-state stability (ISS) and stabilization are examined for sampled-
data systems under deterministic aperiodic sampling and random sampling, respectively. Using the direct
design method, the sampled-data systems are transformed into switched systems with switched time-varying
delays. First, the ISS definition and criterion appropriate for these systems are provided. Based on this,
the ISS criterion on sampled-data systems under deterministic aperiodic sampling is given. Second, after the
stochastic ISS (SISS) definition and criterion are provided for switched nonlinear systems with randomly
switching delays, the SISS criterion for the sampled-data systems under random sampling is provided. All of
the ISS and SISS definitions are given in the form of KL function that is quite elegant and easy to work
with. Then, sufficient conditions for input-to-state stabilization are obtained for sampled-data linear systems
under deterministic aperiodic sampling and random sampling, respectively, via the Lyapunov-Krasovskii
method. Finally, based on the criteria, a piecewise controller is designed by the matrix inequality approach
for a sampled-data linear time invariant system, and simulation results are provided to illustrate our design
method. The main conclusion of this article is that sampling intervals will affect the controller design of the
systems, and the ISS properties are maintained using a piecewise controller.

INDEX TERMS Sampled-data system, input-to-state stability, aperiodic sampling, random sampling.

I. INTRODUCTION
Since the performance of actual control system is affected
by unmodeled dynamics, parameter perturbation, exoge-
nous disturbance, measurement error and other uncertainties,
research on the robustness of control system has been playing
an important role in the development of control theory and
technology. For nonlinear control system robustness analysis,
a new method from the perspective of input-to-state stability
(ISS), input-to-output stability (IOS) and integral input-to-
state stability (iISS) has been developed and a series of basic
theoretical results focusing on ISS-, IOS-lyapunov functions
have been obtained by many researchers such as Angeli,
Liberzon, Lin, Praly, and Sontag ( [2], [26]–[28], [34]–[40]).
The ISS concept has also been applied in many fields such
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as robotic systems [1], signal processing [3], tracking con-
trol [4], and swarm formation [32]. Additionally, the ISS
theory has been applied to the study of continuous-time
systems [35], [36], discrete-time systems [20], deterministic
systems, stochastic systems [43], [49], switched systems [29],
[44], [49], and impulsive systems [15]. For sampled-data
systems, the ISS and IOS have also been studied in [8], [18]
and [30], respectively.

Starting in late 1950s, computer control system have
appeared and developed rapidly and can be viewed as a
kind of hybrid system. In control engineering, such a hybrid
system is traditionally called the sampled-data system. For
the sampled-data system, the control action can only be
updated in the sampling instants. In [23] and [47], three com-
mon methods of sampled-data control system research have
been summarized by Lamnabhi-Lagarrigue et al.: (i) digital
redesign: a continuous time controller is designed and then
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implemented in discrete time; (ii) discrete design: a discrete
time controller is designed by using the discrete time model
of the controlled object; and (iii) direct design: the controller
is designed by using the precise sampled-data model of the
controlled object to satisfy the system’s stability and required
performance indexes. Unlike the other twomethods, although
the direct design method requires the most advanced design
techniques and is relatively difficult to apply, it does not
involve an approximate process and can better maintain the
stability and performance indexes. In recent years, for the
sampled-data control of switched system or time-delay sys-
tems, Li et al. have reported many results (See [24], [25] and
references therein). For the ISS study of the sampled-data
systems, only in [30], Nesic and Laila designed the input-to-
state stabilizing controller using the discrete design method.
Even in [42], although the input-to-state stability analysis was
performed by direct method, the controller design was also
based on the discrete design method. In addition, it must be
pointed out that all of the above studies on ISS focused on
the sampled-data control systems with a constant sampling
period.

However, due to sampling jitter, data loss or fluctuation
when the control algorithm and real-time scheduling pro-
tocol interact with each other in a network control system,
studies of the modeling of aperiodic sampled-data system
began to appear and research on these systems has becoming
increasingly popular. While the traditional sampling control
theory has been well-established, it cannot be used to deal
with the aperiodic sampled-data control system with time-
varying sampling interval. As pointed out in [50], for exam-
ple, the control of an aperiodic sampled-data system cannot
simply use the upper or lower bounds of the sampling period
to achieve robust control. Using several examples, Zhang and
Yu [48] and Gu et al. [14] respectively pointed out that the
evolution of sampling interval length will affect the stability
of the system and that the sampling interval length can be
used as a control parameter to stabilize the system. For the
stability and stabilization of sampled-data control system
with aperiodic sampling, Tang et al. [41] studied the random
stabilization using the input-delay method but only obtained
a common feedback controller; Hu et al. [17] studied the
robust sampled-data control problem for Markovian jump
linear systems, and found that the feedback gains of the
controllers depend on theMarkovian jump parameters but not
on the different sampling periods; Yang et al. [46] designed
multiple stabilization controllers that depend on the different
sampling periods for networked control systems, but the delta
operator approach was used that is a discrete design method.
Many recent developments in the studies of the stability of
systems with aperiodic sampling are reviewed in [16]. For
the ISS and stabilization of aperiodic sampled-data control
systems, further study is necessary to accurately represent the
influence of the length of the time-varying sampling interval.

In this article, the ISS and stabilization of sampled-data
systems under deterministic aperiodic sampling and random

sampling will be considered, respectively. First, the defi-
nition of ISS and the criterion of switched nonlinear sys-
tems with switched time-varying delays will be given. Based
on these definitions, the ISS criterion for the sampled-
data systems under deterministic aperiodic sampling will
be provided. Second, after providing the SISS definition
and criterion for switched nonlinear systems with randomly
switching time-delays, the SISS criterion for sampled-data
systems under random sampling will be provided. All of
the ISS and SISS definitions will be given in the form of
the KL function that is quite elegant and easier to work
with ( [49]). Then, sufficient conditions for input-to-state sta-
bilization will be obtained for sampled-data linear systems
under deterministic aperiodic sampling and random sampling
via the Lyapunov-Krasovskii method and the matrix inequal-
ity approach. Finally, a piecewise controller for input-to-state
stabilization will be designed due to the different sampling
periods.

The remainder of this article is organized as follows:
In Section II, after the aperiodic sampled-data systems are
transformed into switched nonlinear systems with switched
time-varying delays, the corresponding ISS definition and
criterion will be provided. Based on these definitions, the ISS
criterion on sampled-data systems under deterministic aperi-
odic sampling will be provided. In Section III, after the SISS
definition and criterion are provided for switched nonlinear
systems with randomly switching time-delays, the SISS cri-
terion for the sampled-data systems under random sampling
will be provided. Section IV presents sufficient conditions
for input-to-state stabilization of the sampled-data linear
systems under deterministic aperiodic sampling and ran-
dom sampling via the Lyapunov-Krasovskii method and the
matrix inequality approach. In Section V, for a sampled-
data linear system, a piecewise controller is designed due
to the different sampling periods using the matrix inequality
approach, and simulation results are provided to illustrate
our design method. Section V includes some concluding
remarks.
Note: Throughout the paper, R+ and N0 denote the set of

all nonnegative real numbers and natural numbers including
zero, respectively; Rn denotes the n-dimensional Euclidean
space with the Euclidean norm |x| = (

∑n
i=1 x

2
i )

1/2; Rn×m is
the set of all n×m real matrices, and the notationP > 0 (< 0),
for P ∈ Rn×n means that P is symmetric and positive (nega-
tive) definite. The superscript T stands for matrix transposi-
tion. In symmetric block matrices, we use ∗ as an ellipsis for
terms that are induced by symmetry. C([−r, 0];Rn) denotes
the set of the continuous functions that are defined on [−r, 0]
and take values in Rn. By L2([−r, 0];Rn) denotes the space
of square integrable functions φ : [−r, 0]→ Rn. A function
u is said to be essentially bounded if ess supt≥t0 |u(t)| < ∞,
and the essential supremum norm is denoted by the symbol
‖ ·‖∞. E(x) denotes the expectation of the stochastic variable
x. Finally, we denote the composition of two functions ϕ :
A→ B and ψ : B→ C by ψ ◦ ϕ : A→ C .
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II. SAMPLED-DATA SYSTEMS WITH
APERIODIC SAMPLING
A. DEFORMATION OF SAMPLED-DATA SYSTEMS WITH
APERIODIC SAMPLING
Consider the nonlinear system

ẋ = f (t, x(t), u(t),w(t)), (1)

where f (·) is a nonlinear function, x(t) ∈ Rn is the system
state, w(t) ∈ Rp is an exogenous signal, and u(t) = uc(x) is
ISS controller which has been designed. For state-feedback
sampled-data stabilization, only discrete measurement of x(t)
can be used for the control, that is we only have the measure-
ments x(tk ) at the sampling instants tk with 0 = t0 < t1 <
· · · < tk < · · · < lim

k→∞
tk = ∞.

u(t) = u(x(tk )), ∀ t ∈ [tk , tk+1), (2)

ẋ = f (t, x(t), u(x(tk )),w(t)), ∀ t ∈ [tk , tk+1). (3)

For t ∈ [tk , tk+1), define input delay η(t) = t − tk , and
the sampling interval length ηk = tk+1 − tk . It is observed
that η̇(t) = 1. It is assumed that ηk ∈ {η̄1, η̄2, · · · , η̄N }. Just
as pointed out in [50], the control of the aperiodic sampled-
data systemwill be affected by the different sampling periods.
Therefore, different controllers or controller gains are more
appropriate corresponding to the different sampling periods.
In this case, the closed-loop system of (3) can be reformulated
as the following switched system with time-varying input
delays

ẋ = f (t, x(t), uσ (t)(x(t − ησ (t)(t))),w(t)), ∀ t ∈ [t0,∞),

(4)

where the switching law σ (t) = i ∈ N = {1, 2, · · · ,N }, ui(·)
and ηi(t) = t − ti,k = t − tk respectively denote the different
controllers and the input delay η(t) with the corresponding
sampling interval length ηk = ti,k+1 − tk = tk+1 − tk =
η̄i. Then, the input delay η(t) is described as a piecewise
function. For every sampling interval, the closed-loop system
is related to an input-delay submodel

ẋ= f (t, x(t), ui(x(t − ηi(t))),w(t)), ∀t ∈ [tk , tk+1), (5)

where k = 1, 2, · · · , ηk = η̄i, and the whole closed-
loop system is equivalent to a switched system with infi-
nite submodels. When the submodel (5) is uniformly stable,
the stability of the sampled-data system can be determined by
the following switched nonlinear system with a finite mode
set N :

ẋ = f (t, x(t), ui(x(t − ηi(t))),w(t)),∀ t ∈ [tk , tk+1), ηk = η̄i.

(6)

Since the sampling period takes only finitely many values,
Zeno behavior does not occur for system (6).

B. ISS OF NONLINEAR SYSTEMS WITH
TIME-VARYING DELAY
To study the ISS of aperiodic sampled-data control
systems, we need the support of some basic theories of
ISS. Here, we consider the following time-varying delay
system

ẋ = f (t, x(t), x(t − τ (t)),w(t)), (7)

where x(t) ∈ Rn is the system state, w(t) ∈ Rp is an
exogenous signal, f : R × Rn

× Rn
× Rp

→ Rn is a
continuously differentiable function, f (t, 0, 0, 0) = 0 for
any t ∈ R, and τ (t) is a piecewise-continuous time delay
that satisfies 0 ≤ τ (t) ≤ r . Given a measurable locally
essentially bounded input w, system (7) with initial condition
xt0 = φ ∈ C([−r, 0];Rn) has a unique solution ( [22], chapter
3, Section 2.4).

The space of functions φ : [−r, 0] → Rn that are
absolutely continuous on [−r, 0), have a finite limθ→0− φ(θ )
and have square integrable first-order derivatives is denoted
by W with the norm

‖φ‖W =

(
φT (0)φ(0)+

∫ 0

−r
φ̇T (τ )φ̇(τ )dτ

)1/2

.

We also denote xt (θ ) = x(t + θ) (θ ∈ [−r, 0]).
For convenience, we shall introduce the following defini-

tions and a lemma:
Definition 1 [21]: A function ϕ(v) is said to belong to

the class K if ϕ ∈ C(R+), ϕ(0) = 0 and ϕ(v) is strictly
increasing in v. K∞ is the subset of K functions that are
unbounded. A function β : R+ × R+ → R+ is of class
KL, if β(·, t) is of class K in the first argument for each
fixed t ≥ 0 and β(s, t) decreases to 0 as t → +∞ for each
fixed s ≥ 0.
Definition 2 [12]: System (7) is said to be uniformly glob-

ally input-to-state stable (ISS) if there exist a KL function β
and a K function γ such that for any initial time t0 and any
initial state xt0 = φ ∈ C([−r, 0];Rn) and any measurable,
essentially bounded input w, the solution x(t, t0, φ) exists for
all t ≥ t0 and furthermore it satisfies

|x(t, t0, φ)| ≤ β(‖φ‖W , t − t0)+ γ (‖w‖∞).

Given a continuous functional V : R × W ×

L2([−r, 0],Rn)→ R+, define (see e.g., [22])

V̇ (t, φ, φ̇)

= lim sup
h→0+

1
h
[V (t + h, xt+h(t, φ), ẋt+h(t, φ))− V (t, φ, φ̇)],

where xt (t0, φ), for t ≥ t0, is the solution of system (7) with
the initial condition xt0 = φ ∈ W .
Lemma 1: ( [12]) Let there exists a locally Lipschitz with

respect to the second and the third argument functional V :
R × W × L2([−r, 0],Rn) → R+ such that the func-
tion v(t) = V (t, xt , ẋt ) is absolutely continuous for essen-
tially bounded measurable w. If there also exist functions
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α, α of class K∞, and functions α, χ of class K such
that

(i) α(|xt (0)|) ≤ V (t, xt , ẋt ) ≤ α(‖xt‖W ),

(ii) V̇ (t, xt , ẋt ) ≤ −α(‖xt‖W )

for V (t, xt , ẋt ) ≥ χ (‖w‖∞),

then system (7) is a uniformly globally ISS with γ = α−1◦χ .

C. ISS OF SAMPLED-DATA SYSTEMS UNDER
DETERMINISTIC APERIODIC SAMPLING
The Lemma 1 is an ISS criterion for a nonlinear time-delay
system (7). However, considering the switching in the system
(6), Lemma 1 is not sufficient for the study of ISS of nonlinear
sampled-data systems with aperiodic sampling intervals. For
convenience, we introduce the following general nonlinear
systems with time varying time-delays and switching param-
eters as follows

ẋ = fσ (t)(t, x(t), x(t − ησ (t)(t)),w(t)), (8)

where σ (t) is the switching signals with the values in
N = {1, 2, · · · ,N }. The switching between subsystems is
synchronous with the switching between the time delays.
This is a more general form of closed-loop system (4).
The maximum of the time delays induced by sampling,
maxi∈N {ηi(t)}, is also denoted as r similar to the time delay
in Subsection II-B. Using the multiple Lyapunov functions
method, the following ISS criterion can be obtained for the
further studies.
Theorem 1: Let there exist a set of locally Lipschitz with

respect to the second and the third arguments functionals
Vi : R ×W × L2([−r, 0],Rn)→ R+ (i ∈ N ) such that the
functions vi(t) = Vi(t, xt , ẋt ) are absolutely continuous for
essentially bounded measurable w. If additionally there exist
functions αi, αi of class K∞, and functions αi, χi of class K
such that

(i) αi(|xt (0)|) ≤ Vi(t, xt , ẋt ) ≤ αi(‖xt‖W ),

(ii) V̇i(t, xt , ẋt ) ≤ −αi(Vi(t, xt , ẋt ))

for Vi(t, xt , ẋt ) ≥ χi(‖w‖∞),

(iii) at each switching instant tl, (l = 0, 1, 2 · · · ),

max{vil−1 (tl), α ◦ χ (‖w‖∞)} ≥ vil (tl),

where il ∈ N means that the il-th subsytem be

activiated in [tl, tl+1),

then system (8) is uniformly globally ISS with γ = α−1 ◦ χ ,
where α = infi∈N αi, α = supi∈N αi, χ = supi∈N χi.

Proof:Denote3χ = {xt ∈ W : ‖xt‖W < χσ (t)(‖w‖∞)},
where the spaceW is defined before Definition 1. Let τ be the
first time when the solution xt = xt (t0, φ) enters 3χ . For all
t ∈ [t0, τ ],

v̇σ (t)(t) ≤ −ασ (t)(vσ (t)(t)).

Now let us construct a KL function to be a bound of vσ (t).
Let us suppose the above inequality holds for t ∈ [t0,∞).

At any time interval [tl, tl+1)(l ∈ N0), the il-th subsystem is
supposed to be activated, and the comparison principle in [21]
can be used. Then, there exists a class ofKL functions βi (i ∈
N ) such that

vi0 (t) ≤ βi0 (vi0 (t0), t − t0), t ∈ [t0, t1);

vi1 (t) ≤ βi1 (vi1 (t1), t − t1), t ∈ [t1, t2);
...

vil (t) ≤ βil (vil (tl), t − tl), t ∈ [tl, tl+1);
....

By condition (iii), the above inequalities and the properties of
KL function ( [21]),

β̃(v0, t − t0) ,

β(v0, t − t0), t ∈ [t0, t1);
β(β(v0, t1 − t0), t − t1), t ∈ [t1, t2);
...

β(· · ·β︸ ︷︷ ︸
l+1

(v0, t1 − t0), t − t1), t ∈ [tl, tl+1);

...

(9)

is well defined such that

vσ (t)(t) ≤ β̃(v0, t − t0), ∀ t ∈ [t0,∞),

where β = max{βi, i ∈ N }, v0 = vi0 (x0, t0). Due to the
β satisfying β(1, 0) = 1 and β ∈ KL, β̃ is continuous and
β̃ ∈ KL. Now, let us constrain the above inequality on [t0, τ ].
Therefore,

vσ (t)(t) ≤ β̃(v0, t − t0), ∀ t ∈ [t0, τ ].

Define β(r, s) = α−1 ◦ β̃(α(r), s), by condition (ii),

|x(t, t0, φ)| ≤ β(‖φ‖W , t − t0), ∀ t ∈ [t0, τ ], (10)

where β(r, s) ∈ KL can be known from Lemma 3.2 in [21].
On the other hand, when t ∈ (τ,∞), since v̇σ (t)(t) is

negative for xt outside the set 3χ , we have vσ (t)(t) <

χσ (t)(‖w‖∞), and

|x(t, t0, φ)| < α−1 ◦ χσ (t)(‖w‖∞). (11)

Combining (10) and (11), we have, for any t ∈ [t0,∞),

|x(t, t0, φ)| ≤ β(‖φ‖W , t − t0)+ γ (‖w‖∞). (12)

Therefore, system (8) is ISS with γ = α−1 ◦ χ . �
Remark 1: Unlike Lemma 1 in [12], Theorem 1 can be

applied to the judgment of the ISS property of a time-varying
delay systems with switching parameters. It can be applied
to the ISS analysis of our sampled-data control systems with
switching controllers or controller gains.
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III. SAMPLED-DATA SYSTEMS UNDER
RANDOM SAMPLING
For system (1), the sampling instants tk with 0 = t0 < t1 <
· · · < tk < · · · < lim

k→∞
tk = ∞ are random. To stress the

presence of the time delay due to sampling, we rewrite (4) as

ẋ(t) = f (t, x(t), uσ (t)(x(t − ησ (t)(t))),w(t)), (13)

where ησ (t)(t) = t − tk , for t ∈ [tk , tk+1), and the sampling
interval length ηk = tk+1 − tk . Due to the randomness of
tk , the input delay ησ (t)(t) and the sampling intervals are
random. Only the assumption that ηk ∈ {η̄1, η̄2, · · · , η̄N }
holds and is deterministic.

A. ISS OF NONLINEAR SYSTEMS WITH RANDOM DELAY
As a basis of ISS of sampled-data systems under random
sampling, the ISS of nonlinear systems with random delay
will be considered in this subsection. For convenience, some
definitions and preliminary results will be given first.

Consider the following nonlinear system with random
delay

ẋ = f (t, x(t), x(t − τ (t)),w(t)), (14)

where x(t) ∈ Rn is the system state, w(t) ∈ Rp is an
exogenous signal, f : R × Rn

× Rn
× Rp

→ Rn is a
continuously differentiable function, f (t, 0, 0, 0) = 0 for any
t ∈ R, and τ (t) is random time delay that satisfies 0 ≤ τ (t) ≤
r . Given a locally essentially bounded measurable input w,
system (14) with initial condition xt0 = φ ∈ C([−r, 0];Rn)
has a unique solution ( [22]). From Definition 4 in [19],
{(t, xt , τ (t)) : t ≥ t0} is a right-continuous strong Markov
process. The weak infinitesimal generator of this process can
be defined using the following average right-derivative:

LV (t, xt , τ (t))

= lim
h→0+

1
h
Etxτ {V (t + h, xt+h, τ (t + h))− V (t, xt , τ (t))}

for all continuous functionalsV mapping, where the subscript
denotes conditional expectation conditioned on the ‘‘present’’
state, (t, xt , τ (t)), and for which the limit function is itself
right-continuous in the mean with respect to Etxτ .
Remark 2: Generally, when considering a stochastic

differential equation, Wt is used to denote the filtration
generated by Brownian motion processes or ‘‘white noise’’
processes. However, here, the random delay itself is a process
that is measurable with respect to some filtration denoted by
Tt . Tt may have a different form from Wt . In this article,
the expectation (condition expectation) and infinitesimal gen-
erator is taken based on the filtration Tt .
Moreover, we indicate with the symbol ‖ · ‖M2 the well-

known norm (see [5], [9], [13] and [33]) induced by the inner
product in the Hilbert space M2 = Rn

× L2([−r, 0];Rn),

given by, for Y =
[
y0
y1

]
, with y0 ∈ Rn, y1 ∈ L2([−r, 0];Rn),

‖Y‖M2 =

(
yT0 y0 +

∫ 0

−r
yT1 (τ )y1(τ )dτ

)1/2

.

Definition 3: System (14) is said to be
(i) input-to-state stable in mean (ISSiM), if there exist func-
tions β ∈ KL and α, γ ∈ K∞ such that

α(E|x(t)|) ≤ β(E‖φ‖M2 , t − t0)+ γ (‖w‖∞);

(ii) stochastic input-to-state stable (SISS), if for any given ε >
0, there exist functions β ∈ KL and γ ∈ K∞ such that

P{|x(t)| ≤ β(E‖φ‖M2 , t − t0)+γ (‖w‖∞)}≥1− ε. (15)

For system (14) with w(t) ≡ 0, the SISS means glob-
ally asymptotically stability in probability (GASiP). Further,
if inequality (15) holds independently of t0, SISS means
uniformly GASiP. The following lemma is a criterion for
GASiP of system (14) with w(t) ≡ 0.
Lemma 2: Let there exist a locally Lipschitz with respect

to the second arguments functional V : R×C([−r, 0],Rn)×
R → R+ such that the function v(t) = V (t, xt , τ (t)) is
absolutely continuous for system (14) with w(t) ≡ 0. If there
also exist functions α(·), α(·) of class K∞, and function α of
class K such that α ◦ α−1 is convex and for all x ∈ Rn and
t ≥ t0

α(|xt (0)|) ≤ V (t, xt , τ (t)) ≤ α(‖xt‖M2 ), (16)

LV (t, xt , τ (t)) ≤ −α(‖xt‖M2 ), (17)

then system (14) with w(t) ≡ 0 is uniformly GASiP.
Proof: Define the time τl = inf{t ≥ t0 : ‖xt‖ ≥ l}. It is

a Markov time of the txτ -process. Thus, the minimum of t
and τr , denoted tl = min{t, τl} is also a Markov time for this
process.

Employing Dynkin’s Formula ( [31]), we obtain

EV (tl, xtl , τ (tl)) = EV0 + E
[∫ tl

t0
LV (s, xs, τ (s))ds

]
.

Upon letting l → ∞, t → ∞, using Fatou’s lemma ( [31])
on the left and monotone convergence on the right, and by
Fubini’s theorem ( [31]), we obtain

EV (t, xt , τ (t)) = EV0 + E
[∫ t

t0
LV (s, xs, τ (s))ds

]
= EV0 +

∫ t

t0
E [LV (s, xs, τ (s))] ds.

Therefore, EV (t, xt , τ (t)) is (locally) absolutely continuous,
for any t ≥ t0. It is easy to see that EV (t, xt , τ (t)) ≥ 0.
Moreover, by (16) and (17), we have

LV (t, xt , τ (t)) ≤ −α ◦ α−1(V (t, xt , τ (t))).

Then, similar to the proof of Theorem 1 in [49], for any ε ∈
(0, 1), there exists a KL function β such that

P{|x(t)| < β(E‖φ‖M2 , t − t0)} ≥ 1− ε, ∀ t ∈ [t0,∞).

Therefore, system (14) with w(t) ≡ 0 is uniformly GASiP.�
The key to Lemma 2 is the fact that the txτ -process is a

right-continuous strong Markov process, enabling the use of
Dynkin’s formula. Based on Lemma 2, we can further give
the criterion on SISS of system (14) as the following lemma.
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Lemma 3: Let there exist a locally Lipschitz with respect
to the second arguments functional V : R×C([−r, 0],Rn)×
R → R+ such that the function v(t) = V (t, xt , τ (t)) is
absolutely continuous for essentially bounded measurable w.
If additionally there exist functions α(·), α(·) of class K∞,
and functions α, χ of classK such that α ◦α−1 is convex and
for all x ∈ Rn and t ≥ t0

α(|xt (0)|) ≤ V (t, xt , τ (t)) ≤ α(‖xt‖M2 ),

‖xt‖M2 ≥ χ (‖w‖∞)⇒ LV (t, xt , τ (t)) ≤ −α(‖xt‖M2 ),

then system (14) is uniformly globally SISS with
γ = α−1 ◦ χ .

Proof: Based on Lemma 2, from Theorem 1 in [49] and
Lemma 1 in [12], this proof is readily available. It is omitted
here. �

B. ISS OF SAMPLED-DATA SYSTEMS UNDER
RANDOM SAMPLING
Based on the results of Subsection III-A, we can give the SISS
criterion on the closed-loop system (13).
Theorem 2: Let there exist a family of locally Lipschitz

with respect to the second argument functionals Vi : R ×
C([−r, 0],Rn) × R → R+ (i ∈ N ) such that the function
vi(t) = Vi(t, xt , ηi(t)) is absolutely continuous for measur-
able essentially bounded w. If additionally there exist func-
tions αi, αi of class K∞, and functions αi, χi of class K such
that αi ◦ α

−1
i is convex and for all x ∈ Rn and t ≥ t0

(i) αi(|xt (0)|) ≤ Vi(t, xt , ηi(t)) ≤ αi(‖xt‖M2 ),

(ii) LVi(t, xt , ηi(t)) ≤ −αi(Vi(t, xt , ηi(t)))
for Vi(t, xt , ηi(t)) ≥ χi(‖w‖∞),

(iii) at each switching instant tl(l = 0, 1, 2 · · · ),

max{E[Vil−1 (tl)], α ◦ χ (‖w‖∞)} ≥ E[Vil (tl)],

where il ∈ N means that the il-th subsytem be

activiated in [tl, tl+1),

then system (13) is uniformly globally SISS with γ = α−1 ◦
χ , where α = infi∈N αi, α = supi∈N αi χ = supi∈N χi.

Proof: From Theorem 4 in [49], Lemma 3 and the proof
of Theorem 1, this proof is readily available. It is omitted
here. �
Remark 3: Theorem 2 is a generalization of Lemma 1

in [12]. It can be applied to the systemswith randomdelay and
switching parameters, based on which the ISS of sampled-
data systems with piecewise controller and random sampling
can be studied.
Remark 4: In section III, the norm ‖·‖M2 for the functional

xt is used, whereas in section II, the norm ‖ · ‖W is used.
The use of the two types of norm arises from the demand on
the functional xt as can be observed from their definitions.
This point can be clearly found in [12] and [33]. Because
different Lyapunov functionals are chosen, leading to the
different demands on the functional xt , so that two different
norms are used in [12] and [33], respectively. In this section,
if the functional xt is absolutely continuous on [−r, 0), have

a finite limθ→0− xt (θ ) and have square integrable first-order
derivatives, the definition and results of this section also hold
with the norm ‖ · ‖M2 be replaced by ‖ · ‖W . In the next
section, due to the existence of the requirement of ẋt in
the Lyapuonov-Krasovskii functionals, norm ‖ · ‖W will be
used.

IV. ISS STABILIZATION OF SAMPLED-DATA LINEAR
SYSTEMS UNDER APERIODIC SAMPLING
In the above sections, for the sampled-data systems under
deterministic aperiodic sampling and random sampling,
the ISS problems are considered. Some criteria on ISS and
SISS are provided. In this section, based on the matrix
inequalities approach ( [12]), we will consider the exam-
ples of the ISS stabilization problem for sampled-data linear
systems under deterministic aperiodic sampling and random
sampling, respectively. To adapt to the characteristics of
aperiodic sampling and piecewise controller, a class of new
Lyapunov-Krasovskii functionals will be given.

A. CASE OF DETERMINISTIC APERIODIC SAMPLING
Consider a class of sampled-data linear systems with control
u(t) ∈ Rm and disturbance w(t) ∈ Rp given by

ẋ(t) = Ax(t)+ B2u(t)+ B1w(t), (18)

where x(t) ∈ Rn, A, B2, and B1 are matrices with appropriate
dimensions. Given a set of sampling state feedback control

u(t) = Kix(tk ), t ∈ [tk , tk+1), (19)

or in other way,

u(t) = Kix(t − ηi(t)), t ∈ [tk , tk+1), (20)

where ηi(t) = t− ti,k = t− tk denotes the input delay ησ (t)(t)
with the corresponding sampling interval length ηk = ti,k+1−
tk = tk+1 − tk = ηi (i ∈ N ).

We assume that Ki satisfy |Ki|2 ≤ K i, with some constants
K i > 0 (i ∈ N ). We apply the relation

Kix(t − ηi(t)) = Kix(t)−
∫ t

t−ηi(t)
Kiẋ(s)ds

and represent the closed-loop system (18) and (20) in the form

ẋ(t) = Ax(t)+B2Kix(t)−B2

∫ t

t−ηi(t)
Kiẋ(s)ds+B1w(t). (21)

We note that (21) is equivalent to (18) and (20).
Consider the following Lyapunov-Krasovskii functional

Vi(t) = xT (t)Px(t) (22)

+(ti,k+1 − t)
∫ t

t−ηi(t)
ẋT (s)KT

i RiKiẋ(s)ds,

where t ∈ [tk , tk+1), P and Ri are symmetric and positive
definite matrices. Since t−ηi(t) = ti,k and ti,k+1−t

−

i,k+1 = 0,
where t−i,k+1 is the left limit of t to ti,k+1, it is observed that

47662 VOLUME 9, 2021



P. Zhao et al.: ISS and Stabilization of Sampled-Data Systems Under Aperiodic Sampling and Random Sampling

Vi(ti,k ) = xT (ti,k )Px(ti,k ), Vi(t
−

i,k+1) = xT (t−i,k+1)Px(t
−

i,k+1)
and Vi(ti,k ) = Vj(t

−

i,k ). So, condition (iii) of Theorem 1 holds.

(ti,k+1 − t)
∫ t

t−ηi(t)
ẋT (s)KT

i RiKiẋ(s)ds

≤ η̄iλmax(Ri)K i

∫ t

t−ηi(t)
|ẋ(s)|2ds,

where λmax(Ri) denote the largest eigenvalue of the symmet-
ric matrix Ri.
Since λmin(P)|x(t)|2 ≤ xTPx ≤ λmax(P)|x(t)|2, we con-

clude that assumption (i) of Theorem 1 is satisfied with
α(|x|) = λmin(P)|x|2 and with α(s) = cis2, where λmin(P)
denote the smallest eigenvalue of the symmetric matrix P,
ci = max{λmax(P), η̄iλmax(Ri)K i}.
To satisfy the assumption (ii) of Theorem 1, we will find

conditions such that for some constant αi > 0,

V̇i(t)+ αiVi(t) < 0 for Vi(t) ≥ |w(t)|2.

For this to be true, by applying the S procedure ( [6], [45]),
we only need to find some positive constants λi such that the
following inequality holds.

Ui = V̇i(t)+ αiVi(t)+ λi(Vi(t)− |w(t)|2) < 0. (23)

Hence differentiatingVi(t) along the closed-loop system (21),
we obtain

Ui ≤ 2xT (t)P (Ax(t)+ B2Kix(t)+ B1 w(t)

−B2

∫ t

t−ηi(t)
Kiẋ(s)ds

)
+ (αi + λi)xT (t)Px(t)

+(αi + λi)(ti,k+1 − t)
∫ t

t−ηi(t)
ẋT (s)KT

i RiKiẋ(s)ds

−λi|w(t)|2 −
∫ t

t−ηi(t)
ẋT (s)KT

i RiKiẋ(s)ds

+(ti,k+1 − t)ẋT (t)KT
i RiKiẋ(t).

Then, applying Jensen’s inequality ( [14]),∫ t

t−ηi(t)
ẋT (s)KT

i RiKiẋ(s)ds ≥ η̄iζ
T
2iRiζ2i,

where ζ2i = 1
η̄i

∫ t
t−ηi(t)

Kiẋ(s)ds, we find that

Ui ≤ ζ T (t)9iζ (t)+ η̄iẋT (t)KT
i RiKiẋ(t), (24)

where

ζ T (t) =
[
xT (t), 1

η̄i

∫ t
t−ηi(t)

[Kiẋ(s)]T ds, wT (t)
]
,

9i =

911i −η̄iPB2 PB1
∗ −η̄iRi(1− (αi + λi)η̄i) 0
∗ ∗ −λiIp

 ,
911i = PA+ ATP+ PB2Ki+KT

i B
T
2 P+(αi + λi)P.

Setting the right-hand side of (24) for ẋ(t) into (23) and
applying Schur complements formula, we finally verify that

Ui < 0 for x(t) 6= 0 if the following nonlinear matrix
inequality (NLMI) holds:

M11i −η̄iPB2 PB1 M14i
∗ M22i 0 M24i
∗ ∗ −λiIp M34i
∗ ∗ ∗ −η̄iRi

 < 0, (25)

where

M11i = P(A+ B2Ki)+ (A+ B2Ki)TP+ (αi + λi)P,

M14i = η̄i(A+ B2Ki)TKT
i Ri,

M22i = −η̄iRi(1− (αi + λi)η̄i),

M24i = −η̄
2
i B

T
2K

T
i Ri,

M34i = η̄iBT1K
T
i Ri.

Then, along the trajectory of the submodel (21), it follows that
for Vi(t) ≥ |w(t)|2, Vi(t) ≤ e−αi(t−ti,k )Vi(tk ), t ∈ [tk , tk+1).
Inequality (25) may be considered as a NLMI, where αi

and λi are tuning parameters. From the above procedure,
conditions of Theorem 1 hold. We then have the following
lemma.
Lemma 4: Given the controller gainKi, if there exist matri-

ces P = PT > 0, Ri = RTi > 0 and constants λi, αi > 0
that solve (25), the i-th submodel in system (21) is ISS with
γ (s) = s2

λmin(P)
.

Based on Lemma 4, we give the stability criterion of
sampled-data system (18)-(20) in the following.
Theorem 3: For system (21), given the controller gains Ki

(i ∈ N ), if there exist matrices P = PT > 0, Ri = RTi > 0
and constants λi, αi > 0 that solve (25), sampled-data system
(18)-(20) is ISS with γ (s) = s2

λmin(P)
.

Proof: For any t ∈ [t0,∞), there exists k ∈ N0, such that
t ∈ [tk , tk+1). With Vi(t) in (22), it follows that Vσ (tk )(tk ) =
Vσ (tk−1)(t

−

k ) for any k , where σ (tk ) and σ (tk−1) ∈ N . Then,
from Lemma 4, it follows that for Vσ (t)(t) ≥ |w(t)|2,

Vσ (tk )(t)

≤ e−ασ (tk )(t−tk )Vσ (tk )(tk ) = e−ασ (tk )(t−tk )Vσ (tk−1)(t
−

k )

≤ e−ασ (tk )(t−tk ) × e−ασ (tk−1)(t
−

k −tk−1)Vσ (tk−1)(tk−1)
...

≤ e−αmin(t−t0)Vσ (t0)(t0),

where αmin = min
i∈N
{αi}. So, from α(|x|) = |x|2λmin(P), it is

obtained that for any t ∈ [t0,+∞),

|x(t)|2≤
1

λmin(P)
e−αmin(t−t0)Vσ (t0)(t0)+

‖w‖2∞
λmin(P)

≤
λmax(P)
λmin(P)

e−αmin(t−t0)|x(t0)|2 +
‖w‖2∞
λmin(P)

.

Therefore, the closed-loop system (18)-(20) is ISS with
γ (s) = s2

λmin(P)
. �

Furthermore, using the descriptor approach ( [11]), a new
sufficient condition for ISS of the i-th submodel in system
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(21) may be derived that in some cases leads to less restric-
tiveness. We add the right-hand side of 0 = 2[xT (t)PT2 +
ẋT (t)PT3 ]δi to Ui given by (23) where

δi = −ẋ(t)+ Ax(t)+ B2Kix(t)

−B2

∫ t

t−ηi(t)
Kiẋ(s)ds+ B1 w(t).

We can obtain that

Ui

≤ 2xT (t)Pẋ(t)+ 2[xT (t)PT2 + ẋ
T (t)PT3 ]

[
−ẋ(t)

+Ax(t)+ B2Kix(t)+ B1 w(t)− B2

∫ t

t−ηi(t)
Kiẋ(s)ds

]
+(αi + λi)xT (t)Px(t)− λi|w(t)|2

+(αi + λi)(ti,k+1 − t)
∫ t

t−ηi(t)
ẋT (s)KT

i RiKiẋ(s)ds

−

∫ t

t−ηi(t)
ẋT (s)KT

i RiKiẋ(s)ds

+(ti,k+1 − t)ẋT (t)KT
i RiKiẋ(t).

Then, applying Jensen’s inequality, we arrive to (24), where

ζ T (t) =
[
xT (t), ẋT (t), 1

η̄i

∫ t
t−ηi(t)

[Kiẋ(s)]T ds, wT (t)
]
,

9i =


911i 912i −η̄iPT2 B2 PT2 B1
∗ −PT3 − P3 −η̄iPT3 B2 PT3 B1
∗ ∗ −η̄iRi(1− (αi + λi)η̄i) 0
∗ ∗ ∗ −λiIp

,
and where

911i = PT2 (A+ B2Ki)+ (AT + KT
i B

T
2 )P2 + (αi + λi)P,

912i = P− PT2 + (AT + KT
i B

T
2 )P3.

From Schur complements formula, it follows thatUi < 0 for
x(t) 6= 0 if the following NLMI holds:
911i 912i −η̄iPT2 B2 PT2 B1 0
∗ −PT3 − P3 −η̄iPT3 B2 PT3 B1 η̄iK

T
i Ri

∗ ∗ −η̄iRi(1− (αi + λi)η̄i) 0 0
∗ ∗ ∗ −λiIp 0
∗ ∗ ∗ ∗ −η̄iRi


< 0. (26)

Furthermore, choosing P3 = εP2, where ε is a tuning
scalar parameter (which may be restrictive) and defining

Q2 = P−12 , P̄ = QT2 PQ2, R̄i = R−1i , Yi = KiQ2.

Multiplying (26) by diag{P−12 ,P−12 ,R−1i , Ip,R
−1
i } and its

transpose, from the right and the left, respectively, we obtain:
Theorem 4: Consider system (18) with sampling state

feedback controller (19). If for some tuning scalar parameter
ε there exist n×nmatrix 0 < P̄,Q2,m×mmatrices R̄i,m×n

matrices Yi and constants λi, αi > 0 such that for any i ∈ N ,
the following NLMIs are satisfied
011i 012i −η̄iB2R̄i B1 0
∗ −εQT2 − εQ2 −εη̄iB2R̄i εB1 η̄iY Ti
∗ ∗ −η̄iR̄i(1− (αi + λi)η̄i) 0 0
∗ ∗ ∗ −λiIp 0
∗ ∗ ∗ ∗ −η̄iR̄i


< 0, (27)

where

011i = (AQ2 + B2Yi)+ (QT2 A
T
+ Y Ti B

T
2 )+ (αi + λi)P̄,

012i = P̄− Q2 + ε(QT2 A
T
+ Y Ti B

T
2 ),

the sampled-data system (18)-(19) is ISS with γ (s) = s2
λmin(P)

and Ki = YiQ
−1
2 .

Remark 5: Based on the ISS criterion (Theorem 1),
Theorem 4 provides a sampling controller design method
for a sampled-data system (18)-(19) under deterministic ape-
riodic sampling. The designed sampling controller is not
a common controller for all of the sampling intervals. For
different sampling intervals, different controller gains are
designed that fully reflect the influence of the time delays
introduced by the sampling on the system.

B. CASE OF RANDOM SAMPLING
For a sampled-data linear system (18) with sampling state
feedback control (19) or (20), tk (k = 1, 2, · · · ) are assumed
to be random sampling instants, and correspondingly, ηi(t) =
t − ti,k = t − tk denotes the random time delay ησ (t)(t) with
the corresponding sampling interval length ηk = ti,k+1−tk =
tk+1 − tk = ηi (i ∈ N ).

Similar to the procedure of Subsection IV-A, choosing the
Lyapunov-Krasovskii functional (22), we obtain that along
the trajectory of the submodel (21), if (25) or (27) holds,
it follows that for Vi(t) ≥ |w(t)|2,

Vi(t) ≤ e−αi(t−ti,k )Vi(tk ), a.s. t ∈ [tk , tk+1).

For sampled-data system (18)-(19) under random sampling,
iterating the last inequality from k = 0 to k = Nσ (t) for an
arbitrary time t > t0, when Vσ (t)(t) ≥ |w(t)|2, we arrive at,

Vσ (t)(t) ≤ e−αmin(t−t0)Vσ (t0)(t0), a.s. t ∈ [t0,∞),

where αmin = min
i∈N
{αi}, Nσ (t) denotes the number of

samplings on the interval [t0, t). Since the initial con-
dition is deterministic, taking expectations on both sides
of the previous inequality, we obtain E[Vσ (t)(t)] ≤

e−αmin(t−t0)Vσ (t0)(t0), t ∈ [t0,∞). From α(|x|) =

|x|2λmin(P), it is obtained that for any t ∈ [t0,+∞),

E[|x(t)|2]

≤
1

λmin(P)
e−αmin(t−t0)Vσ (t0)(t0)+

‖w‖2∞
λmin(P)

≤
λmax(P)
λmin(P)

e−αmin(t−t0)|x(t0)|2 +
‖w‖2∞
λmin(P)

.
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FIGURE 1. Sampling periods of deterministic aperiodic sampling.

Therefore, the closed-loop system (18)-(19) is ISS in mean
square with γ (s) = s2

λmin(P)
. From the proof of Theorem 2

in [49], the closed-loop system (18)-(19) is also SISS. There-
fore, we reach the following conclusion.
Theorem 5: If the conditions of Theorem 4 hold,

the sampled-data system (18)-(19) under random sampling
is SISS.
Remark 6: In [7], the stability analysis and stabilization

of randomly switched systems were studied. For the ran-
domly switched systems, discrete switches are triggered by a
stochastic process. When the multi-Lyapunov functions were
chosen for stability analysis, each Lyapunov function has a
proportional relationship with the scaling factor µ > 1. Due
to the existence of the scaling factor, the stochastic process
that triggered the discrete switches will affect the stability
of the randomly switched systems. Here, since the selected
multi-Lyapunov functions are equal at the sampling instants,
the scaling factor µ can be considered to be 1. Therefore, for
any random sampling, our Theorem 5 holds.

V. SIMULATION EXAMPLE
Example 1: Consider the sampled-data linear system

(18)-(19) with A =

 0 1 0
0 0 1
2 1 −7

, B1 =

 1
1
1

, B2 =

 0
0
1

,

and Ki to be determined. The sampling periods η̄i take values
in the set {0.2, 0.5, 0.8} and are given at each time step k just
as in Fig. 1. Without control input, the system (18) will not be
stable. It is observed from Fig. 2 that the state of the system
with initial state x0 = [5, 8, 10]T is divergent.
Using the Matlab LMI Control Toolbox, we solve NLMIs

(27) in Theorem 4 with tuning of the scalar parameter ε = 1,
all the convergence indexes αi and parameters λi set to 0.1;
then, for every sampling period, we obtain the feedback gain
as follows

Ki =

K1 =
(
−3.7164 −7.5588 0.6983

)
, η̄1 = 0.2;

K2 =
(
−3.5941 −7.5230 −0.0852

)
, η̄2 = 0.5;

K3 =
(
−3.1137 −6.6080 −0.4003

)
, η̄3 = 0.8,

FIGURE 2. State response of system (18) without control input under
deterministic aperiodic sampling.

FIGURE 3. State response of system (18)-(19) under deterministic
aperiodic sampling.

and the closed-loop system (18)-(19) is ISS. It is observed
from Fig. 3 that when the sampling periods of 0.2, 0.5 and
0.8 are selected periodically as shown in Fig. 1, the system
state with initial x0 = [5, 8, 10]T will be ultimately bounded.
From Theorem 5, we also know that the system (18) under
random sampling is SISS. For random sampling period signal
shown as in Fig. 4, where the sampling periods of 0.2, 0.5 and
0.8 are chosen with a uniform distribution, the system state
with the initial state x0 = [5, 8, 10]T will be ultimately
bounded as shown in Fig. 5.
Remark 7: According to the theory of Lyapunov stability,

the Lyapunov function can be regarded as ‘‘energy’’. Here,
our Lyapunov functional selects a common P matrix and
a different Ri matrix. The term that contain Ri in the Lya-
punov functional can be viewed as the energy of the control
input that is necessary to stabilize the system. In Example 1,
the system is required to have the same relative stability
parameters. This is due to the different sampling interval
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FIGURE 4. Sampling periods of random aperiodic sampling.

FIGURE 5. State response of system (18)-(19) under random sampling.

lengths that require the design of different feedback controller
gains. As pointed out in [50] using an example, the control
of an aperiodic sampled-data system cannot simply use the
upper or lower bounds of the sampling period to control it
robustly. Even if the common controller exists, our Example 1
shows that we do not need to consume the control input
energy that is suitable for all sampling intervals to stabilize
the aperiodic sampling system. Greater energy savings may
be obtained when different sampling intervals correspond
to different feedback controller gains. Since only stability
and stabilization are considered in this article, in the future,
we can further consider how much energy can be saved by
using our piecewise controller design method compared with
the common-controller design method from the perspective
of optimal control.

VI. CONCLUSION
In this article, ISS and input-to-state stabilization of sampled-
data systems under deterministic aperiodic sampling and
random sampling have been studied, respectively. Using the

direct design method for sampled-data systems, the sys-
tems are transformed into switched nonlinear systems
with switched time-varying delays and randomly switching
delays, respectively. For these delay systems, the ISS, SISS
definitions and corresponding criteria have been provided.
Based on these definitions and criteria, the ISS and SISS
properties of the sampled-data systems under deterministic
aperiodic sampling and random sampling are studied, respec-
tively. As was pointed out, sampling periods will affect the
control of the sampled-data systems. It is found that by
using different controller gains for different sampling inter-
vals in the systems, the ISS and SISS properties can also be
guaranteed.
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