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ABSTRACT Big data analysis has become a crucial part of new emerging technologies such as the
internet of things, cyber-physical analysis, deep learning, anomaly detection, etc. Among many other
techniques, dimensionality reduction plays a key role in such analyses and facilitates feature selection and
feature extraction. Randomized algorithms are efficient tools for handling big data tensors. They accelerate
decomposing large-scale data tensors by reducing the computational complexity of deterministic algorithms
and the communication among different levels of memory hierarchy, which is the main bottleneck in modern
computing environments and architectures. In this article, we review recent advances in randomization for
computation of Tucker decomposition and Higher Order SVD (HOSVD). We discuss random projection
and sampling approaches, single-pass and multi-pass randomized algorithms and how to utilize them in the
computation of the Tucker decomposition and the HOSVD. Simulations on synthetic and real datasets are
provided to compare the performance of some of best and most promising algorithms.

INDEX TERMS Randomized algorithm, tensor decomposition, random projection, sampling, unfolding,
Tucker decomposition, HOSVD.

I. INTRODUCTION
Real world data often are multidimensional and naturally
are represented as tensors or multidimensional (multiway)
arrays. It is crucial to preserve the multidimensional struc-
ture of the data tensors in order to extract meaningful latent
variables and reveal the hidden structures of the data tensors.
Tucker decomposition [1]–[3] is a natural generalization of
the SVD to higher-order data tensors and has found various
applications such as reducing the number of parameters in
deep neural networks [4], [5], handwritten digit classifica-
tion [6], computer vision [7], recommender systems [8]–[11],
signal processing [12]–[14], etc. Deterministic algorithms
for decomposing large-scale data tensors into the Tucker
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format are prohibitive and require high memory and com-
putational complexity or only applicable for structured data
tensors [15], [16]. It has been proved that randomized algo-
rithms can tackle this difficulty by exploiting only a part of
the data tensors with applications in tensor regression [17],
tensor completion [18], [19] and deep learning [20]. Because
of this property, they scale quite well to the tensor dimensions
and orders. Two main features of the randomized algorithms
which make them suitable approaches for handling large-
scale data tensors are: 1) they are parallelizable and 2) they
reduce the communication among different levels of memo-
ries, which is the main bottleneck in modern computing envi-
ronments and architectures. In particular, the second property
is important for the data tensors stored out-of-cores, where,
the communication cost may exceed our main computations.
Due to the two mentioned benefits, in recent years, there is
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a growing interest in developing randomized algorithms for
the Tucker decomposition andHigher Order SVD1 (HOSVD)
[21]. Randomized algorithms for the Tucker decomposi-
tion are mainly categorized into four groups as follows
(see Figure 1 and Table 1)
• Random projection
• Sampling
• Count-sketch
• Random least-squares

FIGURE 1. Taxonomy of randomized algorithms for low-rank Tucker
approximation.

TABLE 1. Randomized Tucker references according to four categories.

Following the above categories, in this article, we sys-
tematically review a variety of randomized algorithms for
decomposing large-scale tensors in the Tucker and the
HOSVD formats.

The remainder of this article is structured as follows.
In Section II, we introduce preliminary concepts and nota-
tions used throughout the paper. In Section III, the ran-
domized algorithms for low-rank matrix approximation are
presented. In Section IV, the Tucker decomposition and the
HOSVD are briefly introduced. The randomized variants of
the deterministic Tucker and HOSVD algorithms are pre-
sented in Section V. An application of the randomized Tucker
algorithms is presented for fast computation of Canonical
Polyadic Decomposition (CPD) in Section VI. Further chal-
lenges and open problems are discussed in Section VII.
Extensive simulations on synthetic and real data tensors are
provided in Section VIII to compare the performance of
some of the presented randomized algorithms. Conclusions
are given in Section IX.

II. PRELIMINARY CONCEPTS AND NOTATIONS
In this section, we present some concepts and notations used
throughout the paper.

1It is also called MultiLinear SVD (MLSVD).

Tensors,2 matrices and vectors are respectively denoted by
underlined bold upper case letters, e.g., X, bold upper case
letters, e.g.,X and bold lower case letters, e.g., x. The number
of indices or modes of a tensor is called order. Fibers are first
order tensors produced by fixing all modes except one, while
slices are second order tensors generated by fixing all modes
except two of them.

The symbols ⊗, †, T denote the Kronecker product,
the Moore-Penrose pseudoinverse and the transpose of matri-
ces, respectively. The Frobenius norm of tensors and spectral
norm of matrices are respectively denoted by ‖.‖F and ‖.‖2.
In the case of vectors, ‖.‖2 denotes the Euclidean norm.

Tensors can be reshaped to matrices and this is called
unfolding, matricization or flattening, and the corresponding
generated matrices are called unfolding or flattening matri-
ces. In the context of tensor computations, unfolding matrices
are of interest because of their applications in computing
different types of tensor decompositions where low-rank
approximations of these matrices are required in each step
of the underlying algorithms. For example, it is known that
the factor matrices of the HOSVD are computed via the left
singular vectors of the unfolding matrices [21]. The HOSVD
is a direct generalization of the classical SVD of matrices
to tensors where instead of rank, multilinear rank or Tucker
rank is defined which is a N -tuple containing the rank of
unfolding matrices along different modes. There are several
types of the unfolding matrices including n-unfolding and
mode-n unfolding [41]. The first one is used in computation
of the Tucker decomposition and the HOSVD.

Given an N th-order tensor X ∈ RI1×I2×···×IN , then the
n-unfolding matrix of the tensor X is denoted by X(n) ∈

RIn×I1···In−1In+1···IN , whose components are defined as follows

X(n) (in, j) = X (i1, i2, . . . iN ) ,

where

j = 1+
N∑

k=1,k 6=n

(ik − 1) Jk , Jk =
k−1∏

m=1,m6=n

Im.

Although the unfolding operator can be defined in a gen-
eral setting (see [42]), however throughout the paper, we use
the n-unfolding.

Tensors and matrices can be multiplied in different modes
which have the same dimensions (sizes). This is called tensor-
matrix multiplication along mode n or n-mode (matrix)
product of a tensor by a matrix and is a generalization of
the matrix-matrix multiplication. To be precise, let X ∈

RI1×I2×···×IN and B ∈ RJ×In , then the tensor X and the
matrix B can be multiplied along mode n as X ×n B ∈
RI1×···×In−1×J×In+1×···×IN which is defined as follows(

X×nB
)
i1,...in−1,j,in+1,...,iN

=

IN∑
in=1

xi1,i2,...,iN bj,in ,

2Tensors are also calledmultidimensional arrays or multi-ways data. From
this perspective, vectors andmatrices are first order and second order tensors,
respectively.
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for j = 1, 2, . . . , J . Assume that tensor X and two matrices
A,B are of conforming sizes, then we have

X×nB×nA = X×nAB. (1)

If a tensor is multiplied with several matrices along all its
modes except one, then its n-unfolding can be computed as
follows

Y = X×1Q(1)
×2Q(2) . . .×NQ(N )

⇔

X(n) = Q(n)S(n)
(
Q(N ) ⊗ · · · ⊗Q(n+1) ⊗ Q(n−1) ⊗

· · ·⊗ Q(1)
)T
. (2)

III. RANDOMIZED LOW-RANK MATRIX ALGORITHMS
Randomized algorithms are utilized for finding low-rank
approximation of large-scale data matrices in reasonable
amounts of time andmemory. They have foundmany applica-
tions in the area of machine learning and data mining, where
we encounter large-scale matrices with more than hundreds
of millions nonzero entries. Clearly, deterministic approaches
are time-consuming in processing such data matrices and it is
required to reduce the computational cost and also memory
requirement of algorithms in order to process the data matri-
ces more efficiently. Randomized algorithms can be used in
such scenarios by finding a low approximation of unfolding
matrices X = X(n), n = 1, 2, . . . ,N using the following
formula

X ∼=
(
Q(1)Q(1)T

)
X
(
Q(2)Q(2)T

)
,

= X×1Q(1)Q(1)T
×2Q(2)Q(2)T , (3)

where Q(1)
∈ RIn×R̂n , Q(2)

∈ R

(∏
i6=n

Ii

)
×R̃n

(̂Rn, R̃n <

rank (X)) are approximate orthonormal bases for the column
and row spaces of the matrix X.

For an unfolding matrix X = X(n), the dimension of
the second mode is usually much larger than the first one,
i.e.,

∏
i6=n

Ii � In, and because of this, it is often enough tomake

reduction in the second mode and just consider Q = Q(1).
The main steps of the randomized algorithms for low-rank

matrix approximation are

• Reduction. Replacing an extremely large-scale matrix
with a new one of smaller size compared to the original
one capturing either the column or the row space of
the original data matrix as much as possible. This step
can be considered as a preprocessing step which makes
reduction in the data.

• SVD computation. Applying classical deterministic
algorithms, e.g., truncated SVD to a reduced data matrix
and finding its low-rank approximation.3

3In [43], randomization is also used in the second step. This is considered
as a two-step randomized algorithm for Nyström kernel matrix approxima-
tion. At the first step, authors use a sub-sampling approach after which they
apply randomized SVD instead of deterministic SVD.

• Recovering. Recovering the SVD of the original data
matrix from the SVD of the compressed one.

The first step can be done by following techniques
• Random Projection
• Sampling
• Count-Sketch.

A. RANDOM PROJECTION
The main idea of this technique is approximating the column
(row) space of a given matrix by few new columns (rows)
each of which is a linear combination of the columns (rows)
of the original data matrix, where the coefficients of the linear
combinations come from some probability distributions such
as Gaussian, Bernoulli or uniform distribution.4

This procedure is performed by multiplying a given matrix
by a random matrix from the right-hand or left-hand side.
It has been shown that this preserves the Euclidean distances
among columns or rows approximately5 [44], [45]. Let X ∈
RI×J be a given data matrix, and R be a target rank. In the
first stage of the random projection approach, we generate
a random matrix � = [ω1,ω2, . . . ,ωR] ∈ RJ×R whose
components are independent and identically distributed (i.i.d)
and taken from some probability distributions, e.g., Gaussian
distribution, and then multiply the matrixXwith the columns
ωr as follows

yr = Xωr ∈ RI , r = 1, 2, . . . ,R. (4)

The compact form of relation (4) is Y = X�, where Y =
[y1, y2 . . . , yR] ∈ RI×R. The matrixY has a smaller size than
the matrixX and is an approximation for the range ofX. Note
that the columns of the matrixY are generally not orthogonal
and in order to compute an orthogonal projection onto the
range of Y, it is necessary to generate a new orthonormal
basis of Y. This can be done by computing the economic QR
decomposition of the matrix Y as Y = QR and using the
matrixQ ∈ RI×R in subsequent computations. Here, we have

X ∼= QQTX, (5)

and having computed the SVD of the matrix B = QTX ∈
RR×J , as B = USVT , the SVD of the matrix X is recovered
as follows

X ∼= USVT , (6)

where U = QU. Note that the size of B is much smaller
than X and it is much easier to be handled.
Also, if we do not need the SVD of the original data

matrix X and just a low-rank approximation of it is required,
this can be easily achieved by the following approximation

X ∼= QB, B = QTX ∈ RR×J . (7)

Low-rank matrix approximation (7) is known as QB approx-
imation of the matrix X.

4It is mentioned in [46] that the difference among different random
matrices is negligible. We have also confirmed this in our simulations.

5Depending on which side the random matrix is multiplied.
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Remark 1 (Oversampling and Power Iteration Methods):
The oversampling and power iteration techniques can be
used to improve the solution accuracy of the randomized
algorithms. In the oversampling technique, additional ran-
dom vectors (R + p random vectors instead of R random
vectors) are used to better capture the range of a matrix. Also,
the power iteration technique is used when the decay rate of
the singular values are not very fast. This technique replaces
a matrix X by

(
XXT

)qX (q is a nonnegative integer number)
and randomized algorithms are applied to this new matrix.
Considering the SVD, X = USVT , we have

(
XXT

)qX =
US2q+1VT , and it is seen that the left and right singular
vectors of the new matrix are the same as those of the matrix
X, but the singular values of the later have a faster decay
rate. This can improve the solution accuracy obtained by the
randomized algorithms. Selection of the oversampling and
the power iteration parameters depend on factors such as the
matrix dimensions, the singular spectrum decay and the ran-
dom test matrices used in random projection. However, if the
Gaussian random matrices are used, it was experimentally
confirmed that oversampling p = 5, 10 and power iteration
q = 1, 2 are enough to achieve a good approximation [46].

The most computationally expensive and time-consuming
part of the random projection technique is multiplying an
original data matrix with random matrices. This costsO(IJR)
flops. In order to accelerate this step, structured random
matrices such as sparse random matrices [47], [48] and sub-
sampled random Fourier transform (or SRFT) [49], [50],
subsampled Hadamard transforms, sequence of Givens rota-
tions [50], [51] can be used which are established techniques
and used extensively in the literature [52]. For example,
the SRTF reduces the computation cost to O(IJ log(R)).
These computations can be further reduced by exploiting
compact random matrices [25], [27]. Randomized algo-
rithms reduce the asymptotic complexity of deterministic
algorithms for computation of the SVD from O (IJR) to
O
(
IJ log(R)+ (I + J )R2

)
[46].

The basic form of randomized SVD (BRSVD) algorithm
equipped with the oversampling and the power iteration
strategies is outlined in Algorithm 1 [46].

For stability issues, one should avoid computing
expression (XXT )qX, explicitly and it should be computed
sequentially using economic QR decomposition or LU
decomposition [46].

It has been proved that for oversampling parameter P ≥ 2,
power iteration q and target rank R, the accuracy of approxi-
mation (5) is

E
(∥∥∥X−QQTX

∥∥∥
2

)
≤

(
1+

√
R

P−1
+
e
√
R+ P
P

√
min(I , J )−k

)1/(2q+1)

σk+1

whereE denotes themathematical expectation with the Gaus-
sian random matrices and σR+1 is the (R + 1)-th largest
singular values of the matrix X [53]. So, a nearly optimal

Algorithm 1 Basic Randomized SVD Algorithm With
Oversampling and Power Iteration

Input : A data matrix X ∈ RI×J , target rank R,
oversampling parameter p and power iteration
parameter q

Output: SVD factor matrices
U ∈ RI×R,S ∈ RR×R,V ∈ RR×J

1 Generate a random matrix � ∈ RJ×(p+R) with
prescribed probability distribution

2 Form Y =
(
XXT

)qX�

3 Compute QR decomposition Y = QR
4 Compute B = QTX
5 Compute the full SVD of the matrix B = USV

T

6 Ũ = QU
7 U = Ũ(:, 1 : R), S = S(1 : R, 1 : R), V = V(:, 1 : R)

low-rank approximation can be achieved using the random-
ization framework.

If two dimensions of an unfolding matrix are large, then
it is possible to perform reduction on both sides. This can
be performed by two random matrices. The structure of two-
sided randomized algorithm is outlined in Algorithm 2 [46].
Both Algorithms 1 and 2 are randomized multi-pass algo-
rithms because they compute multiplication with the original
data matrix X in Line 4. These algorithms can be modified to
become single-pass, e.g., by considering in Algorithm 1

B ∼= (�2Q)†W, W = �2X, �2 ∈ RR×I , (8)

and in Algorithm 2

B ∼=
(
�2Q(1)

)†
W
(
Q(2)T�1

)†
, W = �2 X�1. (9)

The benefit of these approaches is that they avoid compu-
tation of terms QTX and QT

1XQ2 which may be computa-
tionally expensive, especially when the data matrix is stored
out-of-cores where the cost of communication may exceed
our main computations. Instead, in formulations (8) and (9),
the original data matrix X is sketched by the random projec-
tion technique and the corresponding matrix B is obtained by
solving some well-conditioned overdetermined linear least-
squares problems [54]. On the other hand, random matrix
multiplication can be performed relatively fast by employing
structured random matrices. We should note that this strat-
egy passes the original data matrix X only once because all
sketching procedures can be done in the first pass over the
raw data. Other types of single-pass techniques can be found
in [46], [54]–[58].

A main drawback of the random projection algorithms
described so far is that they need an estimation of the matrix
rank which may be a difficult assumption. To resolve this
difficulty, randomized rank-revealing algorithms, or equiv-
alently randomized fixed-precision algorithms have been
developed in [59], [60], where for a given approximation error
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Algorithm 2 Two-Sided Randomized SVD

Input : A data matrix X ∈ RI×J , target rank R
Output: SVD factor matrices

U ∈ RI×R,S ∈ RR×R,V ∈ RR×J

1 Draw prescribed random matrices
�1 ∈ RJ×R, �2 ∈ RI×R

2 Compute Y1 = X�1 and Y2 = XT�2
3 Compute economic QR decompositions
Y1 = Q(1)R1, Y2 = Q(2)R2

4 Compute B = Q(1)TXQ(2)

5 Compute the SVD of matrix B = USV
T

6 Set Ũ = Q(1)U and Ṽ = Q(2)V

bound, the rank and corresponding low-rank approximation
can be computed automatically.

B. SAMPLING TECHNIQUES
The other type of randomized algorithms for finding low-rank
approximations of matrices is based on selecting a part of its
columns or rows randomly. The previous approach does not
choose individual columns of thematrixX, but instead it finds
a set of linear combinations of columns (rows) capturing the
column (row) space of the matrix X with high probability.
Sampling technique is an alternative approach to the random
projection where instead of multiplying the original data
matrix with random matrices, some columns or rows of it
are selected and the original data matrix is compressed in
this manner.6 The procedure of column or row selection can
be performed based on different kinds of probability distri-
butions such as uniform distribution, leverage scores [62],
length squared [63], [64] and also with/without replacement.7

The accuracies of results highly depend on the probability
distribution used in the sampling procedure and either addi-
tive or relative approximation error can be achieved.
Let X ∈ RI×J be a given data matrix, and C be a matrix

containing the selected columns, then we have two kinds of
approximation as8 [68]
• Relative approximation9∥∥∥X− CC†X

∥∥∥
F
≤ (1+ ε)‖X− XR‖F , (10)

• Additive approximation∥∥∥X− CC†X
∥∥∥2
F
≤ ‖X− XR‖

2
F + ε ‖XR‖

2
F .

where XR is the best rank R-approximation of the
matrix X. Clearly, randomized algorithms with relative-error

6Component selection is another sampling approach where some compo-
nents (not necessarily fibers) of the original data matrix are selected using
some probability distributions [61]. This is also known as sparsification
procedure.

7It has been reported that for a fixed distribution, and when the columns
are uniformly correlated, the uniform sampling without replacement works
quite well in practice [65]–[67].

8The same concepts are used for spectral norm ‖.‖2.
9It is also called multiplicative error.

guarantees are of much more interest than the additive-error
ones. The number of selected columns should be large enough
to capture the range of a matrix and satisfy the relation (10).

The best existing random sampling algorithms use the
leverage score probability distribution [69] while their com-
putation is expensive because of the computation of the SVD.
In [69], a fast and computationally efficient approach has
been proposed for computing the leverage scores. In some
applications, we need interpretable low-rank matrix approx-
imations, and columns should be taken from the original
data matrix. Here, in the first step, the leverage scores of an
underlying data matrix can be computed by the randomized
SVD and then the columns of the original data matrix are
selected based on the leverage score probability distribution.
Note that exploiting random uniform sampling of columns
(fibers) provides relatively fast computation. However, this
method works well only if a data matrix has low coher-
ence [68] otherwise they do not provide a reliable compres-
sion. An alternative approach is to spread out the information
of the data matrix or uniformize it by a prior random pro-
jection. This preprocessing step allows applying the uniform
sampling [28].

The sampling low-rank matrix approximation is outlined
in Algorithm 3. It picks R columns of the matrix X and
constructs the matrixY [28], where in Line 3 of Algorithm 3,
the selected columns are scaled [28]. This scaling procedure
provides an unbiased estimator for the matrix-matrix multi-
plication [68].

Algorithm 3 Sampling Algorithm for Low-Rank Matrix
Approximation

Input : A data matrix X ∈ RI×J , R ∈ Z+ such that

1 ≤ R ≤ J ,
{
pj
}J
j=1 ,

J∑
j=1

pj = 1 and pj ≥ 0

Output: Low-rank matrix approximation
X ∼= QB, Q ∈ RI×R B ∈ RR×J

1 for r = 1, 2, . . . ,R do
2 Pick jr ∈ {1, 2, . . . , J} with Pr (jr = α) = pα

α = 1, 2, . . . , J
3 Set Ỹ(:, jr ) =

X(:,jr )√
Rpjr

4 end
5 Compute Ỹ = QR, B = QTX

C. COUNT-SKETCH
The random projection approach needs expensive multipli-
cation of an original data matrix with random matrices.
Count-sketch uses an alternative trick to generate a linear
combinations of the columns without multiplication with
random matrices. Count-sketch was originally introduced
in the context of data stream [70] and has been used to
speed-up the matrix-matrix computations [71]–[73]. Similar
to the random projection and the sampling approaches, the
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count-sketch technique aims at capturing the range of a given
matrix. It consists of the following three steps:
• Hashing procedure,
• Grouping together the columns with the same hash num-
bers,

• Signing the columns and summing each group as a
representative column.

Assume that we want to compute a rank-R approximation
of a matrix. In the hashing procedure, all columns of the
data matrix are labeled with numbers 1, 2, . . . ,R uniformly,
i.e., with probability 1/R.

In the second step, the columns with the same label
are grouped together and after signing the columns,10 the
columns in each group are summed up as representative
columns.

Clearly, the cost of the first step is negligible, and the
main operation in the second step is summing the columns
(with integer coefficients ±1). Compared to multiplying the
original data matrix by a random matrix, this technique can
significantly reduce the running time.

D. RANDOMIZED ALGORITHMS FOR SOLVING
LEAST-SQUARES PROBLEMS
In this section, we briefly describe the randomized algorithms
for solving large-scale least-squares problems. In the proce-
dure of computation of the Canonical Polyadic Decomposi-
tion (CPD) [74], [75] and the Tucker decomposition, we often
need to solve least-squares problems with tall and skinny
coefficient matrices, i.e., the number of rows is much more
than the number of columns. For example, the following two
matrices

N
�
i=1

Q(n) ∈ R

(
N∏
n=1

In

)
×Rn

, (11)

N
⊗
n=1

Q(n) ∈ R

(
N∏
n=1

In

)
×

(
N∏
n=1

Rn

)
, (12)

have tall and skinny structures where Q(n) ∈ RIn×Rn ,

In � Rn, and arise in the procedure of computation of the
CPD and the Tucker decomposition [76].

Consider the following least-squares problem

x = argmin
x
‖Ax − b‖2 , (13)

where the matrix A is either (11) or (12), the right-hand

side is b ∈ R
N∏
n=1

In
and the vector x ∈ RRn (or x ∈

R
N∏
n=1

Rn
) is the unknown vector needs to be determined. The

randomized or sketching techniques replace the least-squares
problem (13) by

x̃ = argmin
x
‖TAx− Tb‖2 , (14)

10By signing we mean multiplying the columns by ±1 uniformly. This is
also called binary Rademacher variable.

where

T : R
N∏
n=1

In
→ RL , L ≤

N∏
n=1

In,

is amapwhich reduces the dimensionality of thematrixA and
the right-hand side b, see Figure 2 for a graphical illustration.
The transformation T can be the random projection, the sam-
pling or the count-sketch technique discussed in Section III.
It is expected to find a solution x̃ of the least-squares
problem (14) which satisfies∥∥Ax̃− b

∥∥
2 ≤ (1+ ε)

∥∥Ax∗ − b
∥∥
2,

FIGURE 2. Illustration of randomized row sampling technique for solving
an overdetermined least-squares problem.

with a high probability where x∗ is the optimal solution
of least-squares problem (13) and ε > 0 is a given
tolerance [55].

In next section, we introduce the Tucker decomposition
and the HOSVD along with algorithms for their computa-
tions.

IV. TUCKER DECOMPOSITION AND HIGHER ORDER
SINGULAR VALUE DECOMPOSITION (HOSVD)
Let X ∈ RI1×I2×···×IN , then the Tucker decomposition of the
tensor X admits the following model [1]–[3]

X ∼= S×1Q(1)×2Q(2) · · · ×NQ(N ), (15)

where S ∈ RR1×R2×···×RN is a core tensor and Q(n) ∈
RIn×Rn , Rn ≤ In, n = 1, 2, . . . ,N are factor matrices.
A shorthand notation for the Tucker decomposition is

X ∼=
[[
S;Q(1),Q(2), . . . ,Q(N )

]]
.

HOSVD or equivalently Multilinear SVD (MLSVD) is
a constrained Tucker decomposition [21] that ensures the
orthogonality of factor matrices and all-orthogonality of the
core tensor.11 For a graphical illustration of the HOSVD for
a 3rd and a 4th-order tensors, see Figure 3.

Unlike the SVD, the core tensor S, in general, is not
diagonal or even not nonnegative, but it has pseudo-diagonal
property, which means that the Frobenius norm of slices in
each mode is non-increasing as the index is increased [21].
Also, another interpretation of this concept is that the

11A tensor is called all-orthogonal if all its slices in each mode are
mutually orthogonal [21].
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FIGURE 3. Graphical illustrations of the truncated HOSVD, upper is for a
fourth order tensors and bottom is for a third order tensors.

intensity (absolute value) of the components of the core
tensor S is mainly concentrated on one of the corners (posi-
tion (1, 1, . . . , 1)) and it decreases as the components move
away from this corner.

Due to the pseudo-diagonality property of the HOSVD
which plays a role similar to the singular values in the SVD,
a truncated version of the HOSVD is used in practice. To this
end, first the orthogonal matrices Q(n)

∈ RIn×Rn , n =
1, 2, . . . ,N in (15) are computed through the truncated SVD
(tSVD) or the randomized SVD (rSVD) algorithms for low-
rank approximation of the unfolding matrices as

X(n) ∼= Q(n)SnV(n) T ∈ RIn×I1···In−1In+1···IN , (16)

where V(n)
∈ RI1···In−1In+1···IN×Rn , Sn ∈ RRn×Rn and Rn is

the numerical rank of the unfolding matrix X(n). Then, due
to the orthogonality of the factor matrices Q(n)

∈ RRn×In ,

n = 1, 2, . . . ,N , the core tensor can be computed as

S = X×1Q(1)T×2Q(2)T · · · ×NQ(N )T ∈ RR1×R2×···×RN .

(17)

Since, we only need the left singular vectors in (16),
the eigenvalue decomposition (EVD) of the Gramian matrix
X(n)XT

(n) = Q(n)62Q(n)T can also be used in our computa-
tions. The Crank-Nicholson-like algorithm [77], [78], rank
revealing QR (LU) decompositions [79], [80] or Alternating
Least Squares (ALS) type techniques [81], [82] are other
possible technique for computation of the factor matrices.

The N -tuple (R1,R2, . . . ,RN ) is called multilinear
rank or Tucker rank of tensor X.

The truncated HOSVD does not provide the best multi-
linear rank approximation in the least-squares sense while a

quasi-best approximation can be achieved [21] as follows∥∥∥X− S×1Q(1)×2 · · · ×NQ(N )
∥∥∥
F
≤
√
N
∥∥X− XBest

∥∥
F ,

where Xbest is the best multilinear rank approximation of the
tensor X.

Substituting (17) in (15), we have

X ∼= X×1Q(1)Q(1)T×2Q(2)Q(2)T · · · ×NQ(N )Q(N )T . (18)

Note that if the factor matrices Q(n), n = 1, 2, . . . ,N are not
orthogonal and just have full column rank, then (17) and (18)
are replaced by12

S ∼= X×1Q(1)†×2Q(2)† · · · ×NQ(N )†, (19)

and

X ∼= X×1Q(1)Q(1) †×2Q(2)Q(2) † · · · ×NQ(N )Q(N ) †, (20)

where † is the Moore-Penrose pseudoinverse operator.
It is worth mentioning that if the dimension of a partic-
ular mode, say mode n, is relatively small, then we can
ignore reduction in the mentioned mode or, equivalently,
ignore its corresponding orthogonalmatrixQ(n) and remove it
from (18) and (20). In view of (18) and (20), it is seen that
to find an approximate HOSVD or an approximate Tucker
decomposition, good approximations for the range of unfold-
ing matrices are required. More precisely, the main problem
is how to find a good approximation for the range of unfold-
ing matrices X(n), i.e., Q(n). This problem can be formally
formulated as follows:

Given a data tensor X ∈ RI1×I2×···×IN and tolerance ε,
the problem is finding orthogonal matrices Q(n)

∈ RIn×Rn ,
satisfying∥∥∥X− X×1Q(1)Q(1) T · · · ×NQ(N )Q(N ) T

∥∥∥
F
≤
√
Nε, (21)

and in the case when Q(n) are not orthogonal∥∥∥X− X×1Q(1)Q(1)† · · · ×NQ(N )Q(N )†
∥∥∥
F
≤
√
Nε. (22)

We will return to these problems later in Section V.

A. SEQUENTIALLY TRUNCATED HOSVD (STHOSVD)
ALGORITHM
In formulation (16), low-rank approximations of the unfold-
ing matrices X(n) are required where all unfolding matri-
ces have the same number of elements as the original data
tensor X. A more efficient algorithm with a less computa-
tional complexity for computing the HOSVD is Sequentially
Truncated HOSVD (STHOSVD) algorithm [83]. Instead of
dealing with all unfolding matrices (all with the same num-
ber of elements as the original data tensor X) and finding
their low-rank matrix approximations, this algorithm reduces
the size of underlying unfolding matrices sequentially. More
precisely, at each iteration of the algorithm, a new unfolding
matrix which approximates a specific factor matrix has a

12If Q is full-rank then Q†Q = I, where I is the identity matrix of
conforming dimension.
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smaller size than the previous ones. This results in significant
speed-up with comparable accuracy or sometimes even better
accuracy.13 This procedure is described in Algorithm 4 [83].
It is worth mentioning that in Lines 4 of Algorithm 4, an
n-mode (matrix) product of the tensor S by the matrix Q(n)T

is required. This can be performed in an equivalent way. To be
more precise, let

[
Q(n),3(n),V(n)

]
be the factor matrices of

the truncated SVD of the unfolding matrix S(n). If Y ←
S×nQ(n) T then it is easy to show that Y(n) = 3(n)V(n) T .
This means that in Algorithm 4, in Line 3, if we compute all
factor matrices

[
Q(n),3(n),V(n)

]
, then Line 4 can be replaced

by S(n) = 3(n)V(n) T .
Another advantage of the STHSOVD compared to the

THOSVD is that in the STHOSVD algorithm, the core tensor
is automatically computed by the algorithm in the last step
while in the THOSVD algorithm, all factor matrices are
first computed and then the core tensor is computed through
formulation (17) or (19). This may lead to the intermediate
data explosion phenomenon [15]. Note that Algorithm 4,
starts from the first factor matrix and other factor matrices are
computed in ascending order, i.e. p = [1, 2, . . . ,N ], but other
orderings are also possible. It turns out that the ordering used
within the STHOSVD algorithm affects the approximation
accuracy and speed-up [83].

Algorithm 4 Sequentially Truncated HOSVD
(STHOSVD) Algorithm

Input : A data tensor X ∈ RI1×I2×···×IN and a tolerance
ε;

Output: Approximative HOSVD of the tensor X
X ∼=

[[
S;Q(1),Q(2), . . . ,Q(N )

]]
and multilinear

rank (R1,R2, . . . ,RN )
1 Set S = X
2 for n = 1, 2, . . . ,N do
3 [Q(n),∼,∼] = truncated-svd

(
S(n), εN

)
4 S = S×n Q(n)T

5 end

B. HIGHER ORDER ORTHOGONAL ITERATION (HOOI)
ALGORITHM
Unlike Eckart-Young property for matrices [84], neither the
truncated HOSVD (THOSVD) nor the sequentially truncated
HOSVD (STHOSVD) provides the best multilinear rank
approximation for higher order tensors. Several algorithms
have been developed for the computation of the best mul-
tilinear rank approximation among which we can mention
Newton-Grassmann algorithm [85], Riemannian trust-region
algorithm [86], Higher-Order Orthogonal Iteration (HOOI)
algorithm14 [87] etc. HOOI algorithm is the simplest kind of

13Although there is no theoretical evidence establishing better accuracy of
SHOSVD compared to the HOSVD, numerical simulations highly support
this. However, there are some examples for which the HOSVD provides
better accuracy compared to the SHOSVD [83].

14This algorithm is also known as Tucker-ALS algorithm.

these algorithms which is based on the idea of ALS technique
where at each iteration of the algorithm, all factor matrices
are fixed except one and it is updated by solving a least-
squares problem. To be more precise, consider the Tucker
decomposition (15) and apply the n-unfolding on both sides
of (15), as

X(n) = Q(n)S(n)
(
Q(N ) ⊗ · · · ⊗Q(n+1)⊗Q(n−1)⊗

· · ·⊗Q(1)
)T
,

for n = 1, 2, . . . ,N . Assume that the core tensor S and all but
one factor matrices

{
Q(p)

}
, p 6= n, are known. The unknown

factor matrix Q(n) can be computed by solving the following
least-squares problem15

Q(n) = argmin
Q∈RIn×Rn

∥∥∥A(n)QT
− XT

(n)

∥∥∥2
F
, (23)

where

A(n)
=

(
1
⊗

p=N ,p6=n
Q(p)

)
ST(n).

It can be shown that the solution to the least-squares
problem (23) is equivalent to finding Rn leading left singular
vectors of Z(n) [21] where

Z = X×p6=n
{
Q(p)

}T
. (24)

This procedure is repeated for all factor matrices Q(n)
∈

RIn×Rn , n = 1, 2, . . . ,N , sequentially and in an usual Gauss-
Seidel manner. After computing all factor matrices, the core
tensor S is updated in the following form

S = X×1Q(1)T · · · ×NQ(N )T . (25)

Also the computation of the core tensor S in (25), can be
equivalently computed by solving the following least-squares
problem

S = argmin
S∈RR1×R2×···×RN

‖B s(:)− x(:)‖22 , (26)

where

B =
1
⊗
n=N

Q(n),

and x(:) and s(:) are the vectorization of the tensors X and S,
respectively. This procedure is outlined in Algorithm 5 [87].

V. RANDOMIZED TUCKER DECOMPOSITION AND
RANDOMIZED HOSVD
It can be seen that the most computationally expensive part
of the HOSVD or the STHOSVD is low-rank matrix approx-
imation of the unfolding matrices. In randomized Tucker
algorithms or randomized HOSVD, the truncated (or eco-
nomic) SVD is replaced by the randomized low-rank matrix
algorithms. In this section, we discuss a variety of randomized
algorithms for computation of the Tucker decomposition and
the HOSVD.

15In [90], the l1-norm form of least-squares problem (23) is solved.
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Algorithm 5 Higher-Order Orthogonal Iteration (HOOI)
Algorithm

Input : A data tensor X ∈ RI1×I2×···×IN , and a
multilinear rank (R1,R2, . . . ,RN )

Output: Approximative Tucker representation of the
tensor X as X ∼=

[[
S;Q(1),Q(2), . . . ,Q(N )

]]
1 Initialize factor matrices Q(2), . . . ,Q(N ) with the
Truncated HOSVD or random matrices

2 while A stopping criterion is not satisfied do
3 for n = 1, 2, . . . ,N do
4 Z = X×p6=n

{
Q(p) T

}
;

5 Q(n) is constructed from Rn leading left singular
vectors of Z(n)

6 end
7 S = Z×1Q(1) T×2Q(2) T · · · ×NQ(N ) T

8 end

A. RANDOMIZED RANDOM PROJECTION TUCKER
DECOMPOSITION
Exploiting the idea of random projection, the randomized
variants of the HOSVD and the HOOI algorithms can be
straightforwardly developed. These algorithms are outlined
in Algorithms 6 and 7 [24], [26].

In Algorithms 6 and 7, the unfolding matrix is not nec-
essary to be computed explicitly. In [88], instead of W =

Z(n)�
(n), it is suggested to perform Z×p6=n

{
�
(n)
p

}
where

�
(n)
p ∈ RIn×Rn , p = 1, 2, . . . ,N are random matrices and

then compute the unfolding matrix W(n). In view of (2),
the later is equivalent to the multiplication of the unfold-
ing matrix W(n) to the Kronecker product of the random
matrices.16 This is a memory efficient approach it needs

O(
∑
p6=n

IpRp), while the former needs O(

(∏
p6=n

Ip

)
Rn). Also

a memory efficient variant of the power iteration expression(
Z(n)ZT(n)

)q
Z(n)�(n) in the tensor format is discussed in [89].

Both Algorithms 6 and 7 are nonadaptive because they
require an estimation of the multiliear rank (R1,R2, . . . ,RN )
which may be a difficult assumption in real applications. To
overcome this difficulty, it is possible to apply fixed precision
randomized algorithms [59], [60] within Algorithms 6 and 7
instead of standard (basic) randomizedAlgorithm 1. This idea
has been utilized in [23].

Also, a different strategy has been used in [22] for adap-
tively computing the multilinear rank of tensors. This idea
basically relies on solving the Problems (21) and (22) numer-
ically and finding orthonormal matrices Q(n). Using the fol-
lowing identity

∥∥X∥∥2F =∥∥∥X×n (Q(n)Q(n)T
)∥∥∥2

F
+

∥∥∥X×n (IIn−Q(n)Q(n)T
)∥∥∥2

F
,

16In [22], [25], the Khatri-Rao product of random matrices is used.

it can be shown that [83]∥∥∥X− X×1

(
Q(1)Q(1)T

)
×2 · · · ×N

(
Q(N )QN T

)∥∥∥2
F

≤

N∑
n=1

∥∥∥X− X×n
(
Q(n)Q(n)T

)∥∥∥2
F
,

for n = 1, 2, . . . ,N .
This implies that finding orthonormal factor matrices is

equivalent to finding the orthonormal matricesQ(n)
∈ RIn×Rn

that satisfy∥∥∥X− X×n
(
Q(n)Q(n)T

)∥∥∥2
F

=

∥∥∥X×n (IIn −Q(n)Q(n)T
)∥∥∥2

F
≤
ε

N
. (27)

The unfolding form of (27) is∥∥∥(IIn −Q(n)Q(n)T
)
X(n)

∥∥∥2
F
≤
ε

N
, (28)

and as a result, to find the factor matrix Q(n), it is sufficient
to compute an orthonormal matrix which captures the range
of the unfolding matrix X(n). Here, we can benefit from the
efficient and optimized randomized algorithms for matrices.
In [22], the sub-problem (27) which is in tensor form is
solved.

Algorithm 6 Random Projection HOSVD (RP-HOSVD)
Algorithm

Input : A data tensor X ∈ RI1×I2×···×IN , and a
multilinear rank (R1,R2, . . . ,RN )

Output: Approximative HOSVD of the tensor X as
X ∼=

[[
S;Q(1),Q(2), . . . ,Q(N )

]]
1 Z = X
2 for n = 1, 2, . . . ,N do
3 ComputeW(n) = Z(n) �

(n), where �(n) is an(∏
k 6=n Ik

)
× Rn random Gaussian matrix

4 Compute Q(n) as an orthonormal basis ofW(n) by
using, e.g., the economic QR decomposition;

5 end
6 Compute the core tensor as
S ≡ X×1Q(1)T

×2Q(2)T
· · · ×NQ(N )T

Similar to the HOSVD and the HOOI algorithms, a ran-
domized variant of the STHOSVD algorithm can also be
developed. Algorithm 8 is a random projection STHOSVD
algorithm in which Algorithm 1 is exploited for computing
low-rank approximations of the n-unfolding matrices [23].
The adaptive randomized STHOSVD is also proposed in [23]
wherein the randomized rank-revealing algorithms [59], [60]
are exploited instead of the Algorithm 1. All discussed algo-
rithms so far do not preserve the structure of the underlying
data tensor such as sparsity or nonnegativity. A structural
preserving variant of Algorithm 8 is developed in [23] where
the core tensor takes elements from the original data matrix.
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Algorithm 7 Random Projection HOOI (RP-HOOI)
Algorithm

Input : A data tensor X ∈ RI1×I2×···×IN , and a
multilinear rank (R1,R2, . . . ,RN )

Output: Approximative HOSVD of the tensor X as
X ∼=

[[
S;Q(1),Q(2), . . . ,Q(N )

]]
1 Initialize factor matrices Q(n)

∈ RIn×Rn as factor
matrices of the HOSVD or random Gaussian matrices;

2 while A stopping criterion is not satisfied do
3 for n = 1, 2, . . . ,N do
4 S = X×p6=n

{
Q(p) T

}
5 ComputeW(n) = S(n) �(n) where

�(n)
∈ R

∏
p6=n

Rp×Rn
is a random matrix drawn

from Gaussian distribution
6 Compute Q(n)

∈ RIn×Rn as an orthonormal basis
ofW(n), e.g., by using QR decomposition

7 end
8 S = S×N Q(N )T

9 end

Algorithm 8 Randomized Sequentially Truncated
HOSVD (R-STHOSVD) Algorithm

Input : A data tensor X ∈ RI1×I2×···×IN , and a
multilinear rank (R1,R2, . . . ,RN )

Output: Approximative Tucker representation of the
tensor X as X ∼=

[[
S;Q(1),Q(2), . . . ,Q(N )

]]
1 S = X(n)
2 for n = 1, 2, . . . ,N do
3 [Q(n),∼,∼] = Apply Algorithm 1 to the

n-unfolding matrix S(n) with target rank Rn
4 S = S×n Q(n)T

5 end

The algorithms and techniques discussed so far need to
pass the original data tensor X multiple times. This restricts
their applicability for the data tensors stored out-of-cores
because of high communication cost. Due to this issue,
we need to develop so-called randomized Pass-Efficient
algorithms where the original data tensor should be passed
as less as possible. For example, one possible option is using
Algorithm (2) or pass-efficient algorithms proposed
in [46], [55]–[58], for low-rank approximation of n-unfolding
matrices.

An elegant pass-efficient algorithm is developed [91] and
is described in Algorithm 9. It first captures the important
actions of the tensor X in each mode (Lines 1-2), i.e., the
range of unfolding matrices, and also their corresponding
interactions (Line 3), i.e., the compressed core tensor gen-
erated by multiplying the original data tensor with random
matrices in different modes. These are performed by multi-
plying the unfolding matrices by random matrices and at the
same time multiplying an original tensor by random matrices

along its different modes. The structure of this procedure is
described in Lines 1 and 3 of Algorithm 9 where

�n ∈ R

(∏
i6=n

Ii

)
×Kn

, �̃n ∈ RSn×In ,

andRn ≤ Kn ≤ Sn, n = 1, 2, . . . ,N .Here, (R1,R2, . . . ,RN )
is a target multilinear rank. Note that in Algorithm 9, Q(n) ∈
RIn×Kn , H ∈ RS1×S2×···×SN , and in order to obtain a trun-
cated HOSVD, the obtained core tensor S and its correspond-
ing factor matrices Q(N ) are truncated to multilinear rank
(R1,R2, . . . ,RN ).

Algorithm 9 Randomized Pass-Efficient Randomized
Algorithm for the Tucker Decomposition (R-PET)

Input : A data tensor X ∈ RI1×I2×···×IN , sketching
parameters K , S, S > K and a predefined
multilinear rank (R1,R2, . . . ,RN )

Output: Approximative Tucker representation of the
tensor X as X ∼=

[[
S;Q(1),Q(2), . . . ,Q(N )

]]
1 Compute factor sketches, Yn = X(n)�n, n = 1, 2, . . .
,N

2 Recover factor matrices,
[
Q(n),∼

]
= QR (Yn)

3 Compute core sketch H = X×1�̃1 × · · ·×N �̃N
4 Recover core tensor

S = H×1
(
�̃1Q(1)

)†
×2 · · · ×N

(
�̃NQ(N )

)†
5 Truncate the core tensor S and the factor matrices
Q(n), n = 1, 2, . . . ,N with multilinear rank
(R1,R2, . . . ,RN )

B. RANDOMIZED SAMPLING TUCKER DECOMPOSITION
In randomized sampling Tucker decomposition, each factor
matrix Q(n) is computed by sampling the columns of the cor-
responding unfolding matrix X(n) or equivalently sampling
the fibers17 of the original data tensorX. The structure of this
approach is outlined in Algorithm 10 [94]. After computing
an approximation for the range of unfolding matrices, they
can be used to find a Tucker approximation (18), although
they can also be orthogonalized by economic QR decompo-
sition to be used for computation of the HOSVD. Note that in
the R-ST algorithm, the factor matrices preserve the structure
of the original data tensor (nonnegativity, sparsity, smooth-
ness) but not necessarily the core tensor. As we mentioned
in Section III-B, the procedure of column or row selection
can be performed based on different kinds of probability
distributions such as uniform or other distributions and also
with or without replacement. Moreover, the algorithms natu-
rally provide either additive or relative errors. Sampling based
on the leverage scores are proposed in [32], [35], [36].

Cross-approximation18 [95]–[97], can be considered as a
sampling technique with a difference that the sampling pro-

17Algorithms based on sampling slices are proposed in [34], [92], [93],
but those in [92], [93] are not related to the Tucker decomposition.

18It is also called (pseudo)-skeleton decomposition or CUR
decomposition.
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Algorithm 10 Randomized Sampling Tucker
Approximation (R-ST)

Input : A data tensor X ∈ RI1×I2×···×IN , and a
predefined multilinear rank (R1,R2, . . . ,RN )

Output: Approximative Tucker representation of the
tensor X as X ∼=

[[
S;Q(1),Q(2), . . . ,Q(N )

]]
1 for n = 1, 2, . . . ,N do
2 Sample some columns of X(n) based on a probability

distribution and store them in the factor matrix
Q(n)
∈ RIn×Rn

3 end
4 Compute the core tensor S = X×1Q

†
1×2Q

†
2 · · · ×NQ

†
N

cedure is performed heuristically instead of randomly. Three
known heuristic algorithms are:
• Maxvol-based low-rankmatrix approximation [98], [99]
• Cross2D matrix approximation [100], [101]
• Discrete Empirical Interpolatory Method (DEIM)
[103], [104]

• Pivoted QR decomposition [105]
It is know that the quality of the cross approximation quite
depends on the module of the determinant of the intersection
matrix19 which is called matrix volume. More precisely, a set
of columns and rows should be selected with an intersection
matrix whose volume is as much as possible. Clearly, this is
an NP hard problem because we need to check the volume
of all possible intersection matrices produced by different
selection of columns and rows. However, heuristic algorithms
exist for computing suboptimal solutions.

Several generalizations of the matrix cross-approximation
to the low Tucker rank approximation are proposed in [29],
[31]. The proposed algorithms in [31] basically apply the
Cross2D algorithm [100], [101] to the unfolding matri-
ces sequentially where the long rows of the unfolding
matrices can be treated as slice matrices. Here again a
cross approximation of these slices are computed and this
idea totally reduces the computational complexity of the
cross-approximation. Two algorithms proposed in [29] are
based on the fiber selection and they do not apply cross-
approximation to unfolding matrices. The first algorithm is
analytic while second one is iterative (adaptive). The analytic
one is of less practical interest because it requires quite large
number of fibers, but the adaptive one is more efficient and
is a straightforward generalization of cross-approximation of
matrices to tensors. A similar approach is proposed in [102]
in the sense of number of selected fibers in each mode.

The fibers can also be sampled using the pivoted QR
decomposition applied to the unfolding matrices X(n).
Inspired by thematrix case [105],Higher Order Interpolatory
Decomposition (HOID) is proposed in [32]. Given an N th-
order tensor X ∈ RI1×I2×···×IN , the pivoted QR factorization

19By an intersection matrix, we mean a matrix which produced by the
intersection of sampled columns and rows.

is applied to the unfolding matrix X(n) ∈ RI1×J , (J =
∏
i6=n

Ii)

as

X(n)5 = QR, (29)

where 5 ∈ RJ×J and Q ∈ RIn×In are a permutation matrix
and an orthogonal matrix, respectively. The pivoted QR
decomposition can be computed using strong rank-revealing
QR (RRQR) algorithm [106]. The permutation matrix5 and
the corresponding orthogonal matrix Q are partitioned as
follows

5 = [51 52] , Q = [Q1 Q2] , (30)

where 51 ∈ RJ×K , 52 ∈ RJ×(J−K ), Q1 ∈

RIn×K , Q2 ∈ RIn×(In−K ). Here Equation (29) can be rewrit-
ten as

X(n) [51 52] = [Q1 Q2]
[
R11 R12
0 R22

]
, (31)

where R11 ∈ RK×K , R12 ∈ RK×(In−K ), R22 ∈

R(In−K )×(J−K ) and 0 ∈ R(In−K )×K with all entries equal to
zero. From (31), by straightforward computations, we have

Q(n)
≡ X(n)51 = Q1R11,

X(n)52 = Q1R12 +Q2R22 ∼= Q1R12,

if ‖R22‖2 is small enough. It can be seen that

X(n) ∼= [Q1R11, Q1R12]5T , (32)

and substituting Q1 = Q(n)R−111 in (32), we have

X(n) ∼= Q(n)FT , FT =
[
I R−111 R12

]
5T , (33)

which is a low-rank matrix approximation of the matrix X(n).
The matrix Q(n) which is a full-rank matrix20 can be used
as an approximation for the basis of the range of X(n). It is
worth mentioning that Q(n)

= X(n)(:,p) where p is the
indices of the selected columns and as a result it may not
be necessarily orthonormal. The HOID algorithm applies the
earlier procedure to all unfolding matricesX(n) and computes
the basis matrices Q(n). Afterwards, the core tensor S can be
computed by

S = X×1Q(1) †
×2 Q(2) †

· · · ×NQN †.

A randomized variant of this algorithm can be developed by
replacing randomized QR decomposition instead of the QR
decomposition. To this end, we should first make reduction
in the second mode of the unfolding matrices using random

projection as Y = X(n)� where � ∈ R
∏
i6=n

In×R
is a random

matrix after which the economic QR decomposition of the
matrix Y is computed as Y = QR. The orthonormal matrix
Q is an approximate orthonormal basis for the range of the
matrix X(n) which can be used in the above procedure. This
procedure is summarized in Algorithm 11. In situation that

20Because it is the multiplication of a nonsingular matrix and an orthog-
onal matrix.
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the singular values of the matrix X(n) do not decay very fast,
the orthonormal basismay not be accurate and power iteration
technique is required (see Remark 1).

If the dimension of the first mode is also large, it is sug-
gested in [107] to first make reduction in the first mode of the
matrix using random projection as Y = �X(n) where � ∈
R(R+P)×In is a random matrix (P is the oversampling param-
eter), after which the procedure described above is applied
to the matrix Y for column selection. It is shown that the
selected indices of columns for the matrix Y can be used for
the original data matrix X. More precisely, if Y ∼= Y(:,p)FT

then the indices p corresponding to the selected columns can
be used for the matrix X(n), i.e., X(n) ∼= X(n)(:,p)FT .
Remark 2: The procedure of column selection can be per-

formed using the leverage scores sampling or the DEIM
algorithm. These techniques were studied in [32].

Algorithm 11 Randomized Higher Order Interpolatory
Decomposition (HOID) (R-HOID) Algorithm

Input : A data tensor X ∈ RI1×I2×···×IN , and a
multilinear rank (R1,R2, . . . ,RN )

Output: Approximative Tucker representation of the
tensor X as

[[
S, Q(1),Q(2), . . . ,Q(N )

]]
1 for n = 1, 2, . . . ,N do
2 Compute a randomized interpolatory decomposition

of unfolding X(n) ∼= Q(n)FTn , where Q(n)
∈ RIn×Rn ,

are columns of X(n)
3 end
4 Compute the core tensor S ∈ RR1×R2×···×RN as

S ≡ X×1Q(1) †
×2 · · · ×NQN †

Other sampling techniques for the HOSVD and the HOOI
algorithms can be found in [33], [34], [37]. The proposed
algorithms in [33] are based on the sparsification idea where
in the first step, a sparse tensor is generated from the original
data tensor. Then, it is used for subsequent computations. The
idea of the stochastic gradient descent is used in [37], where
at each iteration only a subtensor of the original tensor is
considered. The randomized algorithms proposed in [34] are
based on sampling fibers instead of components.

C. RANDOMIZED LEAST-SQUARES TUCKER
DECOMPOSITION
At each iteration of the randomized Algorithm 7, several
multiplications with random matrices and also contraction
of the core tensor with factor matrices are required which
may be expensive if the algorithm needs many iterations
to converge. Motivated by this fact, in [38], a randomized
least-squares HOOI algorithm is proposed. This algorithm is
summarized in Algorithm 12 in which instead of exploiting
updating rules 4 and 7 in Algorithm 5, the equivalent least-
squares problems (23) and (26) are solved, respectively. To be
precise, instead of performing Lines 4-5 and 7 of Algorithm 5,

the least-squares problem (23) is solved by random least-
squares algorithms. Please note that the coefficient matrices
in least-squares problems (23) and (26) are not required to
be computed explicitly. Also, the TensorSketch [72] is used
in [38] to solve the underlying least-squares problem.

Algorithm 12 Randomized Least-Squares Higher Order
Orthogonal Iteration (HOOI) (R-LSHOOI) Algorithm

Input : A data tensor X ∈ RI1×I2×···×IN , and a
multilinear rank (R1,R2, . . . ,RN );

Output: Approximative Tucker representation of the
tensor X as X ∼=

[[
S;Q(1),Q(2), . . . ,Q(N )

]]
1 Initialize factor matrices Q(1),Q(2), . . . ,Q(N ) and core
tensor S with i.i.d uniformly random entries

2 while A stopping criterion is not satisfied do
3 for n = 1, 2, . . . ,N do
4 Compute Q(n) by solving least-squares problem

(23) via a sketching technique for
n = 1, 2, . . . ,N ;

5 end
6 Find the core tensor S by solving least-squares

problem (26) via sketching technique;
7 end

D. RANDOMIZED COUNT-SKETCH TUCKER
DECOMPOSITION
The count-sketch technique discussed in Subsection III-C,
can be straightforwardly generalized to tensors. Motivated
by the paper [108] in which the underlying least-squares
problems in the CP-ALS21 algorithm [76] are solved via
the sampling techniques, in [38], the count-sketch technique
is used to solve the least-squares problems (23) and (26).
More precisely, the reduction map T in the least-squares
problem (14), is the count-sketch operator. Because of a spe-
cial structure of the coefficient matrix of least-squares prob-
lems (23) and (26), sketching procedure can be performed
very fast by employing FFT [38].

The count-sketch technique is used in [109] for tensor
interpolative decomposition [110] and also in [111] for the CP
decomposition. The concept of Higher-order Count Sketch is
developed in [39] for higher order tensors to fully exploit the
multidimensional structure of the data tensor.

Another possible direction is using the count-sketch tech-
nique for low-rank matrix approximations of the unfold-
ing matrices which are required for tensor decomposition.
Here, the factor matrices are approximated by computing
low-rank approximation of the unfolding matrices using the
count-sketch technique and then the core tensor is computed
via (19).

21ALS means Alternating Least-Squares [76].

VOLUME 9, 2021 28695



S. Ahmadi-Asl et al.: Randomized Algorithms for Computation of Tucker Decomposition and HOSVD

VI. APPLICATION OF THE RANDOMIZED HOSVD IN FAST
CANONICAL POLYADIC DECOMPOSITION (CPD)
The idea of making a prior reduction in a raw data tensor
into the Tucker format and then decomposing its core tensor
in the CPD format, was first proposed by Bro in his PhD
thesis [112]. This technique is applicable only if the rank of
the tensor does not exceed its dimensions. Motivated by this
difficulty, a prior reduction in the Tensor Train format [113]
was recently suggested in [114]. In this section, we focus on
the former and discuss how randomization can be exploited
within the tensor decomposition procedure.

The main procedure of this technique is as follows
• Dimensionally reduction of a given data tensor using the
Tucker decomposition as a preprocessing step,

• Computing the CPD of the compressed core tensor of
the Tucker decomposition,

• Recovering the factormatrices of the CPD of the original
data tensor from the factor matrices of the CPD of the
core tensor.

Assuming that the data tensor has a low multilinear rank
approximation, the first step mentioned above can be done
through the randomized HOSVD algorithms. This makes
the decomposition procedure much faster compared with the
deterministic ones. This idea is used in [115].

Assume that the Tucker representation of a data ten-
sor X is computed as

[[
S;Q(1),Q(2), . . . ,Q(N )

]]
using one

of the randomized HOSVD or randomized Tucker decom-
position algorithms discussed in Section V. Let S ∼=[[
Ã(1), Ã(2), . . . , Ã(N )

]]
be the CPD of the compressed core

tensor S. Then, the CPD of the original tensor X can be
recovered from the CPD of the compressed tensor S. More
precisely, the CPD of the original tensor X is

X ∼=
[[
A(1),A(2), . . . ,A(N )

]]
,

where A(n) = Q(n)Ã(n), n = 1, 2, . . . ,N .
Remark 3: The idea of a prior reduction of a data tensor

into the TT format for computation of the CPDwas suggested
in [114]. Randomized variants of these algorithms can also be
developed.

VII. DISCUSSION ON FURTHER CHALLENGES
Recently, several scalable algorithms were proposed
in [116]–[118] for computation of the HOSVD. These algo-
rithms inherently do not have a randomized structure and
basically they exploit the idea of on-the-fly-computation and
parallel row-wise update rule roles to avoid the interme-
diate data explosion problem. Combining these algorithms
with randomized techniques is a potential topic needs to be
investigated. For example, this issue was recently studied
in [119]. Block Term Decomposition (BTD) [120]–[122]
is a generalization of the CP decomposition and the
Tucker decomposition and has found many applications
such as blind source separation [123], feature extraction
[124], electroencephalogram (EEG) analysis [125] etc.
Proposing randomized algorithms for this tensor decompo-
sition is a potential research topic needs to be investigated.

Motivated by some applications in Cyber-Physical-Social
Systems and Internet of Things (IOT), distributed algorithms
for computation of the HOSVD were recently developed
in [126]–[130]. The proposed algorithms mainly distribute
the unfolding matrices among several machines and inte-
grate their low-rank matrix approximations to find the
HOSVD approximation of the original data tensor. These
algorithm can be further improved by exploiting randomized
algorithms.

VIII. SIMULATIONS
In this section, we experimentally examine some of the
selected and most efficient randomized algorithms presented
in Section V and compare their performance and efficiency.
All numerical simulations were performed on a cluster with
508Gb RAM and 48 CPUs 1.2GHz. Although, the sampling
procedure can be done based on different types of proba-
bility distributions, but we used uniform distribution in our
computations. Note that in the case of randomized sampling
algorithms, we have used sampling without replacement as
it works better than sampling with replacement in machine
learning applications [65], [66]. We experienced the same
results.We have set oversamplingP = 10 and power iteration
q = 2 for all random projection algorithms (expect the noise-
less case where we have not used any oversampling or power
iteration parameter). For the R-PET algorithm (Algorithm 9),
we have used S = 2K + 1 in all experiments where for
each example, a specific K was used and for the STHOSVD
algorithm, we always considered the ascending order p =
[1, 2, . . . ,N ]. The relative error is used as a criterion to assess
the performance of the randomized algorithms for the Tucker
approximation and is defined as follows

E =

∥∥X− X̂
∥∥
F∥∥X∥∥F , (34)

where X is a given data tensor and X̂ is its Tucker approxi-
mation, respectively.

We also consider the case that the tensor X is corrupted by
a noise term as follows

Y = X+ γN, (35)

where N is a Gaussian random tensor22 and γ is a parameter
to change the noise level. The Signal-to-Noise Ratio (SNR)
measure is used to evaluate the noise level and is defined as
follows

SNR [dB] = 10 log

( ∥∥X∥∥2F∥∥γN∥∥2F
)
.

For the noisy case, the performance of an algorithm is evalu-
ated in terms of fit which is defined as follows

Fit = 1− E,

where E was defined by (34).

22A tensor whose elements are independent and identically distributed
(i.i.d) and taken from normal distribution with zero mean and variance 1.
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A. TEST 1 – SYNTHETIC DATA TENSORS
The synthetic data tensors used in our experiments are: ran-
dom tensors with low multilinear rank (noiseless and noisy
cases), random sparse tensors, Hilbert tensors and function
based tensors.

1) RANDOM LOW MULTILINEAR RANK TENSORS
In this experiment, we consider a 3rd order tensor
of size 1000 × 1000 × 1000 with multilinear rank
(20, 40, 30). We first randomly generate a Gaussian core
tensor S ∈ R20×40×30 and Gaussian factor matrices Q(1)

∈

R1000×20, Q(2)
∈ R1000×40 Q(3)

∈ R1500×30. Then, the fol-
lowing tensor

X =
[[
S;Q(1),Q(2),Q(3)

]]
, (36)

is generated and some of the deterministic and randomized
algorithms are applied on it. The running time and cor-
responding relative error of algorithms are averaged over
50 Monte Carlo simulations. To show the acceleration of
randomized algorithms against the deterministic counter-
parts, we first report the running time of the THOSVD
and the STHOSVD algorithms and their randomized vari-
ants. The results for the noiseless data tensor are displayed
in Figure 4 and the results for the noisy case (20 dB) are
displayed in Figure 5. For computing the leading singular
vectors of unfolding matrices, we used both the truncated
SVD (MATLAB function svds) and the EVD (MATLAB
function eigs) and compared their executive times. In dis-
played figures, the notations ‘‘svds’’ and ‘‘eigs’’ mean that
the underlying algorithms exploit the truncated SVD and the
EVD for computing the factor matrices, respectively. Our
results show that the EVD is much faster than using the
svds for computing the factor matrices and their randomized
versions make the algorithms much faster. The performance
comparison of deterministic and randomized algorithms for
the noiseless case are reported in Table 2. It is seen that ran-
domized algorithms provide approximately the same results
as the deterministic ones but with less computational time.
For the noisy data tensor with 20 dB, the fit of the THOSVD,
the STHOSVD algorithms and their randomized variants

FIGURE 4. Running time comparison of deterministic and randomized
variants of the THOSVD and the STHOSVD algorithms (svds and eigs
versions) for a noiseless random data tensor of size
1000 × 1000 × 1000 (109 enteries) and multilinear rank (20, 40, 30).

FIGURE 5. Running time comparison of deterministic and randomized
variants of the THOSVD and the STHOSVD algorithms (svds and eigs
versions) for a noisy random data tensor of size 1000 × 1000 × 1000 and
multilinear rank (20, 40, 30) with SNR=20 dB.

were almost the same and equal to 90% but the random-
ized algorithms were much faster as seen in Figure 5. For
the noiseless data tensor, we did not use any power itera-
tion or oversampling parameter. For the noisy case, we set
power iteration q = 2 and oversampling P = 10, and this is
why for a data tensor with the same size and multilinear rank,
more acceleration is achieved using randomized algorithms
for the noiseless data tensor compared to the noisy data tensor.

We also compared the performance of different random-
ized algorithms for the noiseless data tensor in Figure 6
(also roughly the same results were obtained for the noisy
data tensor and we skip them). The results show that the
R-STHOSVD algorithm (Algorithm 8) and the randomized
sampling Tucker (R-ST) algorithm (Algorithm 10) are the
fastest algorithms for computation of the HOSVD or the
Tucker decomposition. Note the R-ST algorithm based on
uniform sampling is also relatively fast but when the noise
level is relatively high or the singular values of unfolding
matrices do not decay very fast, its accuracy is degraded due
to additive error bounds. In such situations, the leverage-score

FIGURE 6. Running time comparison of various randomized algorithms
for a noiseless random data tensor of size 1000 × 1000 × 1000 and
multilinear rank (20, 40, 30).
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TABLE 2. Relative error comparison of different deterministic and randomized algorithms for computing low mutilinear rank approximation of data
tensors (36), (37), (38) and (39).

probability distribution can provide more accurate solutions
with relative error bound guarantee but requiring higher com-
putational cost.

2) FUNCTION BASED TENSORS
Consider a 3rd order tensor of size 1000×1000×1000 whose
components are generated as follows

X(i, j, k) =
1

5
√
i5 + j5 + k5

. (37)

It is shown in [131]–[137] that such a data tensor admits
a very low multilinear rank approximation since the
singular values of the corresponding unfolding matrices
decay very fast, (for more related function based tensors,
see [131]–[137] and the references therein). We set the
multilinear rank as (30, 30, 30) in our computations and
apply deterministic and randomized algorithms on the men-
tioned data tensor. The running time of the THOSVD,
the STHOSVD and their randomized variants are reported
in Figure 7. Also, the performance comparison of determin-
istic and randomized algorithms are reported in Table 2. Here
again the simulation results indicate the superiority of ran-
domized algorithms over the deterministic ones. To compare
the running time of different randomized algorithms, see
Figure 8. The results show that the R-STHOSVD and the
R-ST algorithms are the most efficient randomized algo-
rithms for the low multilinear rank approximation of the data
tensor (37).

FIGURE 7. Running time comparison of deterministic and randomized
variants of the THOSVD and the STHOSVD algorithms (svds and eigs
versions) for the function based tensor (37) of size 1000 × 1000 × 1000
and multilinear rank (30, 30, 30).

FIGURE 8. Running time comparison of various randomized algorithms
for the function based tensor (37) of size 1000 × 1000 × 1000 and
multilinear rank (30, 30, 30).

3) RANDOM SPARSE TENSORS
Consider the following data tensor

X =
10∑
i=1

γ

i2
xi ◦ yi ◦ zi +

200∑
i=11

1
i2
xi ◦ yi ◦ zi, (38)

where xi, yi and zi are sparse vectors with only 0.05 sparsity
(percent non-zero numbers). We set I1 = I2 = I3 = 1000 and
γ = 1000 and generate a 3rd-order tensor X. The parameters
used in this simulation are the same as previous experiments
and we use a multilinear rank R = (15, 15, 15). The run-
ning time of the THOSVD and the STHOSVD algorithms
and their randomized forms are reported in Figure 9. Also,
the performance comparison of deterministic and randomized
algorithms are reported in Table 2. Figure 9 and Table 2,
show that the randomized algorithms can significantly speed-
up the decomposition procedure with achieving roughly the
same accuracy as the deterministic algorithms. In Figure 10,
we make a comparison among different randomized algo-
rithms. The results show that the R-STHOSVD and the
R-ST algorithms are the most promising approaches for the
low multilinear approximation of the data tensor (38). It is
also seen that the randomized algorithms can achieve almost
the same accuracy as the deterministic ones but much faster.
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FIGURE 9. Running time comparison of deterministic and randomized
variants of the THOSVD and the STHOSVD algorithms (svds and eigs
versions) for the sparse tensor (38) of size 1000 × 1000 × 1000 and
multilinear rank (15, 15, 15).

FIGURE 10. Running time comparison of various randomized algorithms
for the sparse tensor (38) of size 1000 × 1000 × 1000 and multilinear
rank (15, 15, 15).

4) HILBERT TENSORS
An N th order Hilbert tensor is defined as follows

X(i1, i2, . . . , iN ) =
1

i1 + i2 + . . .+ iN − N + 1
, (39)

which is a natural generalization of Hilbert matrices (second
order tensors). We generate a 3th-order Hilbert tensor of size
1000 × 1000 × 1000 and use approximate multilinear rank
(20, 20, 20) within the randomized algorithms. The running
time of the THOSVD and the STHOSVD algorithms and
their randomized variants are reported in Figure 11. Also,
the performance comparison of deterministic and randomized
algorithms are reported in Table 2. Once again the superiority
of randomized algorithms over the deterministic ones is visi-
ble. In Figure 12, wemake a comparison among different ran-
domized algorithms. The results show that the R-STHOSVD
and the R-ST algorithms are the best and most efficient
algorithms for the low multilinear rank approximation of the
data tensor (39). It is seen that the randomized algorithms can
achieve almost the same accuracy as the deterministic ones
but much faster.

FIGURE 11. Running time comparison of deterministic and randomized
variants of the THOSVD and the STHOSVD algorithms (svds and eigs
versions) for the Hilbert tensor of size 1000 × 1000 × 1000 and
multilinear rank (20, 20, 20).

FIGURE 12. Running time comparison of various randomized algorithms
for the Hilbert tensor of size 1000 × 1000 × 1000 and multilinear
rank (20, 20, 20).

B. TEST 2 – REAL DATA TENSORS
1) COIL-100 DATA SET
Columbia object image library COIL-100 is a dataset which
consists of 7200 color images (100 objects under 72 different
rotations) [138]. Each image is of size 128 × 128 × 3 and
the whole dataset naturally can be represented as a 5th-order
tensor of size 128 × 128 × 3 × 72 × 100. The first
5 images and some random rotations are depicted in
Figure 13. We reshape this tensor to a 3rd-order tensor of
size 1024×1152×300 and apply THSOVD and STHOSVD
algorithms and their randomized variants on this 3rd order
data tensor. The speedup achieved by the R-STHOSVD
and the R-THOSVD for different uniform multilinear ranks
(R,R,R), R = 5, 10, 15, . . . , 30 are shown in Figure 14.
Also, the reconstructed images using the STHOSVD and
R-STHOSVD for multilinear rank (450, 450, 250) are dis-
played in Figure 16. The results indicate that the randomized
algorithms provide roughly the same performance as the
deterministic algorithms but in much less running times.

The running time comparison of various randomized
algorithms for multilinear rank (20, 20, 20) are reported
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FIGURE 13. The first 8 images of the COIL-100 dataset for three random
rotations.

FIGURE 14. The running time speed-up of randomized STHODV and
randomized THOSVD for decomposing COIL-100 for selected multilinear
rank (R, R, R).

FIGURE 15. The running time comparison of various randomized
algorithms for decomposing COIL100 data set and multilinear rank
(450, 450, 250).

in Figure 15. Our results again show the effectiveness
of the R-STHOSVD for decomposing large-scale data
tensors.

FIGURE 16. The reconstructed images using randomized and
deterministic STHOSVD algorithms for the first 8 images.

FIGURE 17. Visualization of the original frame number 50 of the
grayscale video.

2) NELL-2 DATA TENSOR (LARGE-SCALE SPARSE TENSORS)
In this experiment, we show the applicability and effec-
tiveness of the randomized algorithms for handling large-
scale sparse data tensors. To this end, we considered the
NELL-2 [139] which is accessible at the formidable
repository of open sparse tensors and tool (FROSTT)
database [140]. It is a 3rd order tensor of size 12092×9184×
28818 with 76879419 number of nonzero elements. The
NELL-2 dataset was tested on machine learning algorithms
which exploit relationship between variables [139]. It was
generated at Chicago university as a part of ‘‘Read the Web’’
project.

For this sparse data tensor, all the deterministic algorithms
introduced in the paper were not able to decompose the
mentioned data tensors in the Tucker format due to high
memory and computational complexity issues while the ran-
domized STHOSVD was able to decompose it. The running
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FIGURE 18. Visualization of the reconstructed frame number 50 using deterministic and randomized STHOSVD algorithms for different multilinear
ranks, a) Multilinear rank (50, 50, 50), b) Multilinear rank (100, 100, 100), c) Multilinear rank (150, 150, 150, ) d) Multilinear rank (200, 200, 200).

time and relative-error achieved by the RSTHOSVD algo-
rithm for the uniform multilinear rank (R,R,R), R =

100, 125, 150 . . . , 200 are reported in Table 3.

C. VIDEO DATASETS
In this experiment we compress a large-scale grayscale video
in the Tucker format. The data tensor was firstly used to
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TABLE 3. The running time (in second) and relative errors of the randomized STHOSVD Algorithm for NELL-2 dataset.

TABLE 4. The relative errors of deterministic and randomized algorithms for the grayscale video.

classify the frames in [38]. The original data tensor is a 4rd
order tensor of size 2200 × 1080 × 3 × 1980 consisting of
1980 RGB frames. For our task, we consider its grayscale
form which is of size 2200× 1080× 1980. The frame num-
ber 50 is displayed in Figure 17. We applied the THOSVD
and the STHOSVD algorithms on the mentioned grayscale
video for different uniform multilinear rank (R,R,R), R =
10, 20, . . . , 200. The relative error and running time compar-
ison are reported in Table 4. Also, the reconstructed images
using randomized and deterministic STHOSVD algorithms
are visualized in Figure 18. In both scenarios, it is seen that
the randomized algorithms achieve roughly the same relative
error as the deterministic algorithms but much faster.

IX. CONCLUSION
In this article, we reviewed and extended a variety of
state-of-the-art randomized algorithms for computing the
Tucker decomposition and the Higher Order SVD (HOSVD).
We studied both single-pass and multi-pass randomized algo-
rithms and also random projection and sampling techniques
for computing the Tucker decomposition and the HOSVD.
Simulations were conducted on synthetic and real datasets to
compare the performance and running time of the determin-
istic and the randomized algorithms with particular focus on

showing the superiority of randomized algorithms against the
deterministic ones.
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