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ABSTRACT In this paper, a new model combining four-directional total variation with overlapping group
sparsity is proposed, which not only suppresses the staircase effects introduced by traditional total variation,
but also fully utilizes the gradient neighborhood information on each pixel of the image. In order to decrease
the computation time of image denoising, the alternating directionmethod ofmultipliers (ADMM) is adopted
to divide the complex optimization problem into separate subproblems that are easy to solve. At the same
time, two-dimensional Fast Fourier Transform (FFT) and majorization-minimization (MM) are used to solve
the subproblems alternatively. Then, the proposed newmodel is compared with other state-of-the-art models.
Experiments show that the new model is robust in denoising. The new model not only excavates the gradient
information of the four directions on the image to remove the noise more effectively, but also better in
preserving image features, further reducing staircase artifacts.

INDEX TERMS Image denoising, four-directional total variation, overlapping group sparsity, ADMM.

I. INTRODUCTION
Due to the imperfection of an imaging system, images tend to
be corrupted by different levels of noise during the progress
of image capture, transmission, and storage, which can reduce
image quality and cause image degradation. Therefore, image
restoration as one of the processing technologies is significant
in image processing.

Image restoration is a classical ill-posed inverse prob-
lem [1]. The main purpose of image restoration is to obtain
an estimate of the original image from the degraded image.
There are many restoration methods to solve the ill-posed
inverse image problem. He et al. [2] presented a deep residual
learning framework to address the image degradation prob-
lem. Zhang et al. [3] proposed a deep convolutional neural
network denoising model (DnCNN) based on residual learn-
ing and batch normalization. The denoising effect of DnCNN
model is remarkable, but the training time is long due to its
full convolution network structure. Zhang et al. [4] also pro-
posed a new fast and flexible denoising convolutional neural
network model (FFDNet) with the use of noise level maps as
input. It can effectively deal with the noise of more complex
real scenes. Lysaker and Tai [5] combined total variation filter
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with a fourth-order partial differential equation (PDE) filter.
This method achieves a good trade-off between preserving
edges and suppressing the staircase effect. Zhou et al. [6]
presented an image denoising model with dual driving forces
of gradient and curvature, which significantly improved the
image clarity. A denoising model based on block matching
and 3Dfiltering (BM3D) is introduced in [7]. It achieves good
performance in image denoising.

Since most of the noise is random, the image signal has
obvious sparse characteristics in some transform domain or
gradient domain. The key to tackle the ill-posed problem is
regularization, that is, some prior information about the orig-
inal image is integrated into the solution of the inverse image
problem, so as to suppress noise and obtain a smooth (regular)
solution. Rudin et al. [8] introduced a total variation (TV)
model for image restoration, which is a typical regulariza-
tion method and widely used. This model has the ability to
preserve image features (edge, texture pattern), but it also
produces some unwanted staircase artifacts cause it assumes
the image as piece-wise smooth.

Based on that, many extended models of TV were pro-
posed to reduce the staircase artifacts. Hu et al. [9] proposed
a generalized higher degree total variation regularization
(HDTV), which utilizes high-order derivatives in all direc-
tions of the image to build a model to solve the optimization
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problem. The total generalized variation (TGV) proposed
by Bredies et al. [10] can suppress the staircase effects
by balancing the first and second derivative regularizations.
Liu et al. [11] proposed a generalized total variation-based
MRI denoising model, this model can reduce the noise
present in magnitude MR images effectively. Xu et al. [12]
applied the curvature term to removing multiplicative noise
and preserving smoothness. The nonlocal total variation
model (NLTV) [13] is a popular and effective denoising
model using the nonlocal gradient of the image as the regu-
larization term. Liu et al. [14] successfully applied the NLTV
model to Magnetic resonance image denoising.

A model composed of total variation and high-order total
variation is proposed in [15]. This hybrid model utilizes
total variation regularization term to preserve edges and uti-
lizes high-order total variation to reduce staircase artifacts.
Although using higher-order total variation instead of tra-
ditional total variation can alleviate staircase effects more
effectively, it will over smooth image edge for sharp image.
Chan et al. [16] added a box constraint to the TV model
(TV+BOX), so that the restored image could get a clearer
image with a certain interval. Chen et al. [17] used the split
Bregman iterative algorithm to solve the anisotropic TV so
as to reduce the computation time and have good restoration
with sharp edges.

Liu et al. [18] considered the total variation with overlap-
ping group sparsity (OGSTV) for image restoration under
Gaussian noise. This method extends the gradient of pixel
level to the overlapping group sparse gradient in order to
promote the difference between the smooth region and edge
region and better suppress staircase effects. Shi et al. [19]
adopted hyper-Laplacian prior with overlapping group spar-
sity for image restoration. The new model achieves a good
balance between preserving features and overcoming stair-
case effects. Adam et al. [20] combined non-convex higher
order TV with overlapping group sparsity to construct a
hybrid model (HNHOTV), so that it can maintain the uni-
formity of the staircase edge. Kumar et al. [21] proposed a
model of combing higher order fractional TV and overlap-
ping group sparsity to retain the texture pattern in the image
while decrease staircase artifacts. In our previous work [22],
we combined high-order total variation with overlapping
group sparsity (OGSHOTV). The mixture model could better
suppress the staircase effect and preserve the details in image
edges. Recently, overlapping group sparsity has been applied
to figure out Cauchy noise [23], Poisson noise [24], and
speckle noise [25], demonstrating its effectiveness.

The methods mentioned above merely contain gradient
information in the vertical and horizontal directions, but
ignores gradient in the diagonal and back-diagonal direc-
tions. Four-directional total variation (TV4) [26] can make
full use of the neighbor gradient information of each pixel.
A new four-directional total variation model proposed by
Liao et al. [27] takes gradient information in the diagonal
and back-diagonal directions into account. They solved the
optimization problem with gradient projection (GP) and also

given a complete mathematical proof for the first time. How-
ever, the efficiency of GP depends on the update rate. When
the update rate is too large, the gradient projection algorithm
does not converge; when the update rate is too small, the
operation efficiency is low. Wu et al. [28] proposed to group
fractional order total variation and four directions total vari-
ation into a hybrid model. To reduce the computation time,
they used split Bregman algorithm and fast Fourier trans-
form (FFT) to solve the problem. Cheng et al. [29] assumed
that the degraded image satisfies the periodic boundary condi-
tion, then they adopted FFT and alternating direction method
of multipliers (ADMM) to solve TV4 model. This model
reduces the calculation time greatly while relieves staircase
effects.

Based on prior researches, we propose a new hybrid model
called four-directional total variation with overlapping group
sparsity (OGSTV4) by taking advantage of TV4 and OGSTV
denoising model. The main contributions of this paper are as
follows:

(1) the new model combines gradient information of each
pixel in four directions (vertical, horizontal, diagonal
and back-diagonal) to form a new sparse regularize
constraint, that is, non-separated group gradient.

(2) To reduce computation time of image restoration,
we use ADMM algorithm to divide the constrained
optimization problem into separate subproblems by
introducing split variables and dual variables.

(3) Assuming that image satisfies periodic boundary con-
ditions and the difference matrices operation in four
directions of the image is regarded as convolution oper-
ation, we employ FFT [30], [31] and majorization-
minimization (MM) [32], [33] to solve the subproblem
alternatively.

The rest of this paper is organized as follows. In the
next section, four-direction total variation, overlapping group
sparse regularization and ADMM algorithm are briefly
described. In Sec.III, The new model proposed in this paper
is introduced in detail. In Sec.IV, we adjust the parameters
and compare with other state-of-art models to demonstrate
the effectiveness of the newmodel. Conclusions are presented
in Sec.V.

II. RELATED WORK
A. FOUR-DIRECTIONAL TOTAL VARIATION
The image degradation process can be modeled with the
following linear system:

f = Hu+ η (1)

where u ∈ Rmn×1 is the original image, f ∈ Rmn×1 represents
the blurred and noisy degraded image,H ∈ Rmn×mn is a linear
operator constructed by the discrete point spread function
(PSF), e.g., convolution operator, identity operator, etc. In this
paper, H is an identity operator, that is, H = I , which
constitutes the denoising problem. η ∈ Rmn×1 is additive
Gaussian white noise. Then the traditional TV model is as
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FIGURE 1. Comparison of the gradient information in TV and TV4.

follows:

û = min
u

1
2
‖f − Hu‖22 + µϕTV (u) (2)

where ‖·‖2 is the Euclidean norm and û is the optimal solu-
tion. The first term in the equation (2) is the data fidelity
term, which keeps the original data u close enough to the
input data f . The second term ϕTV (u) is the regularization
function, which is used to control noise and artifacts in data
and simulate the prior knowledge of unknown data. µ > 0
is the regularization parameter that balances the two terms.
Typical anisotropic total variation is defined as:

ϕTV (u) = ‖Dhu‖1 + ‖Dvu‖1 (3)

where Dh ∈ Rmn×mn and Dv ∈ Rmn×mn are respectively
difference matrices along horizontal and vertical directions,
‖•‖1 represents the norm of matrix L1.
It can be seen that typical TVmodel only considers the gra-

dient information in vertical and horizontal directions refer
to (3). The probability of a pixel being polluted by noise
is much higher than that of four surrounding points being
polluted by noise at the same time. To reduce noise more
comprehensively, Sakurai et al. proposed a four-directional
total variation model [26], which takes the image gradients
in diagonal and back-diagonal directions into account to
fully utilize the neighbor gradient information of each pixel.
Figure 1 is a comparison of the gradient information in TV
and TV4.

From Figs.1, we see that TV4 can suppress more noise
in four directions, further improving the quality of image
restoration. The regularization term of four-directional total
variation model is defined as:

ϕTV4(u) = ‖Dhu‖1 + ‖Dvu‖1 + ‖Ddu‖1 + ‖Dbu‖1
(4)

where Dd ∈ Rmn×mn and Dv ∈ Rmn×mn represent the dif-
ference matrices in the diagonal and back-diagonal direction,
respectively.

B. OVERLAPPING GROUP SPARSITY PRIOR
Liu and Selesnick et al. defined a K-point group of the vector
x ∈ Rn[34]by

xi,K = [x(i), · · · , x(i+ K − 1)] ∈ RK (5)

xi,K can be regarded as a block of K contiguous samples of
a starting at index i. For one dimensional case, overlapping
group sparsity regularization term is shown as:

ϕ(x) =
n∑
i=1

∥∥xi,K∥∥2 (6)

whereK determines the group size. For two dimensional case,
a K × K point group of the image v ∈ Rn×n is defined as:

ṽi,j,K ,K

=


vi−a1,j−a1 vi−a1,j−a1+1 · · · vi−a1,j+a2
vi−a1+1,j−a1 vi−a1+1,j−a1+1 · · · vi−a1,+1,j+a2

...
...

. . .

vi+a1,j−a1 vi+a1,j−a1+1 · · · vi+a2,j+a2


∈ RK×K (7)

where a1 =
⌊
K−1
2

⌋
, a2 =

⌊K
2

⌋
, and bxc represents the

greatest integer less than or equal to x. Let vi,j,K ,K be a vector
obtained by arranging all elements of ṽi,j,K ,K in lexicographic
order. The overlapping group sparsity regularization term of
the two-dimensional array is shown as:

ϕ(v) =
n∑
i=1

n∑
j=i

∥∥vi,j,K ,K∥∥2 (8)

In particular, ϕ(v) is the anisotropic total variation function
when K = 1.

C. ADMM
Alternative direction method of multipliers (ADMM) is a
computational framework for solving optimization prob-
lems[31], which is suitable for solving distributed convex
optimization problems. ADMM decomposes the large global
problem into several smaller local sub-problems which can
be easily solved, and obtains the optimal solution through
decomposition coordination. The algorithm generally solves
the following optimization problems:

min
x1,x2

f (x1)+ g(x2)

s.t. Ax1 + Bx2 = c

xi ∈ χi, i = 1, 2 (9)

where χi ∈ Rmi are the nonempty closed convex set,
A,B ∈ Ri×mi are Linear transformation matrices,
f (·) , g (·) :χ → R are closed convex function, and c ∈ Rl

is a given vector. With the Lagrangian multiplier p ∈ Rl

to the linear constraint stated in problem (8), the augmented
Lagrangian function is followed as:

LA(x1, x2, p) = f (x1)+ g(x2)+ pT (Ax1 + Bx2 − c)

+
δ

2
‖Ax1 + Bx2 − c‖22 (10)

where δ > 0 is the penalty parameter.
According to the framework of ADMM, the goal is to find

the saddle point in problem (9) by alternatively minimizing
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scheme. Then we obtain the following ADMM iterative min-
imization problem:

Algorithm1.ADMM for the minimization problem (9)
1: Initialize x01 , x

0
2 , p

0, δ > 0
2: For k = 1, 2, · · · , compute xk+11 , xk+12 , pk+1

xk+11 = argmin
x1

f (x1)+
δ

2

∥∥∥∥Ax1 + Bxk2 − c+
pk

δ

∥∥∥∥2
2

xk+12 = argmin
x2

g(x1)+
δ

2

∥∥∥∥Axk+11 + Bx2 − c+
pk

δ

∥∥∥∥2
2

pk+1 = pk + δ(Axk+11 + Bxk+12 − c)

k = k + 1

3: Until a stopping criterion is satisfied

III. PROPOSED MODEL
In this section, a novel model coupling with overlapping
group sparsity and four-directional total variation is
defined as:

f̂ = argmin
u

1
2
‖f − u‖22

+µϕ (‖Dhu‖1 + ‖Dvu‖1 + ‖Ddu‖1 + ‖Dbu‖1)

(11)

where, for convenience, we’ve redefined the difference matri-
ces as D1 = Dh,D2 = Dv, D3 = Dd , D4 = Db.
Since difference matrices are block circulant structures, the
multiplication of the matrix can be rewritten as a convolution
in two dimensions, that is,

Diu = vec(Ki ∗ U ), i = 1, 2, 3, 4 (12)

here K1 = [−1, 1] ,K2 = [−1, 1]T ,K3 =

[
0 −1
1 0

]
and

K4 =

[
−1 0
0 1

]
represent the convolution kernels in the

horizontal, vertical, diagonal and back-diagonal direction,
respectively. The symbol ∗ is the two dimensional convolu-
tion operator.

Obviously, the new model is a typical constrained con-
vex optimization problem, so we use alternating direc-
tion multipliers algorithm based on augmented Lagrange
method (ADMM) to tackle it. By introducing split variables
xi = Diu and dual variables x̃i, (i = 1, 2, 3, 4), equation (11)
can be transformed into an unconstrained problem. Its aug-
mented Lagrange objective function can be expressed as:

LA(u, xi, x̃i) = max
x̃i

min
u,xi

1
2
‖f − u‖22 + µ

4∑
i−1

ϕ(xi)

+
β

2

4∑
i=1

‖xi − Diu− x̃i‖
2
2 (13)

where β > 0 is the penalty parameter. In this paper, ADMM
algorithm is adopted to split the optimization problem into
several separate sub-problems, and a saddle point of LA(·)
is obtained by alternatively minimizing the variables u, xi, x̃i

under the augmented Lagrangian function LA(·). The specific
solutions are as follows:

U k+1
= argmin

U
LA(U ,X ki , X̃

k
i )

X k+1i = argmin
Xi

LA(U k+1,Xi, X̃ ki )

X̃ k+1i = X̃ ki + β(Ki ∗ U
k+1
− X k+1i ) (14)

Since the variables (u, xi, x̃i) are decoupled in the ADMM
framework, so that we investigate these sub-problems one by
one. Then the minimization problem with respect to u is as
follows:

uk+1 = argmin
u

1
2
‖f − u‖22 +

β

2

4∑
i=1

∥∥∥xki − Diu− x̃ki ∥∥∥22
(15)

Let the first-order derivative of u as zero, and modify xi, x̃i to
get:

u− f − β
4∑
i=1

DTi (xi − x̃i)+ β
4∑
i=1

DTi Diu = 0 (16)

Equation (16) can be solved by pseudo inverse or conju-
gate gradient method, but the computational complexity of
multiplication is too high. In order to effectively avoid large
matrices multiplication, equation (13) is rewritten in the form
of the convolution of matrices, that is:

LA(U ,Xi, X̃i) = max
X̃i

min
U ,Xi

1
2
‖F − U‖22 + µ

4∑
i−1

ϕ(Xi)

+
β

2

4∑
i=1

∥∥∥Xi − Ki ∗ U − X̃i∥∥∥2
2

(17)

where Vi are the matrix form of vi. We use FFT to trans-
form the time-domain image difference operation into the
frequency domain. The frequency domain expression of the
U sub-problem is:

Ū k+1
=argmin

Ū

1
2

∥∥F̄−Ū∥∥22+ β2
4∑
i=1

∥∥∥X̄ ki −K̄i ◦ Ū− ¯̃X ki ∥∥∥22
(18)

where V̄ represents the spectrum of V , the symbol ◦ rep-
resents component-wise multiplication. Obviously, the Ū
sub-problem is a least squares problem. By making the
first-order derivative of Ū as zero, it is equivalent to the
following equation:

Ū − F̄ + β
4∑
i=1

K̄∗i ◦K̄i ◦ Ū − β
4∑
i=1

K̄i ◦ (X̄i −
¯̃Xi) = 0

(19)

where V̄ ∗ is the conjugation map of V̄ . Noted that we use
periodic boundary condition here, so K̄∗i ◦ K̄i is the block
circulant with circulating block (BCCB) structure. Hence, the
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optimal solution of the Usub-problem can be obtained by
using 2D inverse FFT as follows:

U k+1
= F−12D


F̄ + β

4∑
i=1

K̄i ◦ (X̄i −
¯̃Xi)

1+ β
4∑
i=1

K̄∗i ◦K̄i

 (20)

The sub-problem of Xi, (i = 1, 2, 3, 4) correspond to the fol-
lowing optimization problem:

X k+1i = argmin
Xi
µϕ(Xi)+

β

2

∥∥∥Xi − Ki ∗ U k+1
− X̃ ki

∥∥∥2
2

(21)

The Xi sub-problem belongs to overlapping group and
sparse problem, which can be iteratively solved by
majorization-minimization (MM) algorithm. More details
about MM algorithm can be referred to the literature [32].

Finally, updating the dual variables X̃i(i = 1, 2, 3, 4)

X̃ k+1i = X̃ ki + β(Ki ∗ U
k+1
− X k+1i ) (22)

In summary, this paper proposes a new model based on
four-directional total variation with overlapping group spar-
sity (OGSTV4) for image denoising. The specific algorithm
is presented as algorithm 2.

Algorithm2: OGSTV4
1: Input U , parameters µ > 0, group size K ,
2: Initialize F0 = U , k = 0,X0

i = 0, X̃0
i =

0, (i = 1, 2, 3, 4), β
3: Iteration:

U k+1
= F−12D


H̄∗ ◦ F̄ + β

4∑
i=1

K̄i ◦ (X̄i −
¯̃Xi)

H̄∗ ◦ H̄ + β
4∑
i=1

K̄∗i ◦K̄i


X k+1i = argmin

Xi
µϕ(Xi)+

β

2

∥∥∥Xi − Ki ∗ U k+1
− X̃ ki

∥∥∥2
2

X̃ k+1i = X̃ ki + β(Ki ∗ U
k+1
− X k+1i )

k = k + 1

4: If U k+1 satisfies the stopping criteria, return U k+1 and
stop.

A. CONVERGENCE
The new model we proposed is obviously convex. In view
of this convexity, the convergence of algorithm 2 can be
guaranteed by ADMM theory [35]. It is clear that the ADMM
algorithm converges even if each subproblem is not solved
exactly. More specifically, the ADMM algorithm converges
to the solution of the objective function when the error
sequence of subproblems can be summed. Obviously, algo-
rithm 2 is an instance of ADMM. In algorithm 2, the subprob-
lems of (U ,Xi, X̃i) have closed form solutions. For example,
using MM algorithm to solve the subproblem involving Xi is
also proved to be convergent in [36].

FIGURE 2. Test images.(a) Parrotgray(512∗512), (b) Lena(512∗512),
(c)Butterfly (450∗450), (d)Boat(512∗512), (e)Toys(256∗256),
(f)Peppers(256∗256),(g)Barbara(512∗512), (h)Man(1024∗1024).

IV. EXPERIMENTAL RESULTS AND ANALYSIS
To demonstrate the performance of the proposed model for
image denoising in this paper, we compare the new model
with other state-of-the-art models. The images used in all
experiments are shown in Figs.2 with the size of from 256×
256 to 1024× 1024. All the experiments were carried out on
a system running Windows 10 education version 64-bit with
MATLAB version R2015b with an Intel Core i5-2400m CPU
at 3.10GHz, with a physical memory of 4GB.

The peak signal to noise ratio (PSNR), structural similarity
(SSIM), and computation time (in seconds) are used for the
evaluation of the restored image quality. PSNR is defined as:

PSNR = 10 log10
Max2

F,F̂∥∥∥F − F̂∥∥∥2
2

(23)

where F is the original image and F̂ is the recovered image.
Max2

F,F̂
is the maximum possible pixel value of image F and

F̂ . The larger PSNR value, better is the image quality. SSIM
is an index tomeasure the similarity between two images. The
specific definition is as follows:

SSIM =
2µFµF̂ (2σ + c2)

(µ2
F + µ

2
F̂
+ c1)(σ 2

F + σ
2
F̂
+ c2)

(24)

where µF and µF̂ are the means of F and F̂ respectively,
σ 2
F and σ 2

F̂
are the variances of F and F̂, σ denotes the

covariance, c1, c2 > 0 are constants. SSIM is less than or
equal to 1. The closer SSIM value is to 1, the closer the
recovered image is to the original image.

All compared algorithm are set the same stop criterion, that
is:

‖Uk+1 − Uk‖
‖Uk‖

≤ 1× 10−5 (25)

where Uk and Uk+1 respectively represent the image of the
current iteration and the image of the next iteration.

A. PARAMETERS SETTING
Firstly, we adjust the regularization parameterµ, which plays
an important role in balancing the data fidelity term and the
regularization term. The quality of image restoration largely
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FIGURE 3. PSNR values after image denoising under various values of µ.

depends on the regularization parameter µ. Too lager µ value
will cause serious staircase effects. On the contrary, too small
µ values will not restore the image well. To illustrate how
to choose the suitable parameter µ, we test three images
‘‘Toys’’, ‘‘Peppers’’ and ‘‘Barbara’’ which are degraded by
zero-mean Gaussian white noise levels σ = 15, σ = 30 and
σ = 50, respectively. We plot the PSNR values after image
denoising under various values of regularization parameter µ
in Figs. 3. It can be clearly seen that the maximum PSNR
values are obtained by different values of µ corresponds to
images degraded by different noise levels. When the noise
level σ = 15, we set the range of µ as [0.9,1.2]. When the
noise level σ = 30, the range of µ is selected as [2.0,2.4].
When the noise level σ = 50, the range of µ is selected as
[3.5,3.8].

In order to study the influence of different group size K
on the proposed model, we firstly fixed other parameters for
the experiment, and then selected images Lena, Parrotgray
and Butterfly corrupted by zero-mean Gaussian white noise
with a standard deviation of 15 to study the changes of image
PSNR and SSIM under different group size. From Figs.4,
it is obvious that the maximum PSNR and SSIM are obtained
when group size K = 3. Therefore, we set the group size to
K = 3.

Then, the inner iteration numbers N of MM algorithm
under the OGS sub-problem are adjusted. We set the iteration
numbers N to be 1, 5, 10, 20, 100, 500 and present their
effects on PSNR, SSIM and computation time respectively.
Here, two pictures of Lena and Peppers are selected to study
the choice of N .They are uniformly corrupted by zero-mean
Gaussian white noise with standard deviation of 15. From
Table 1, we can conclude that the inner iteration numbers do
not affect the change of PSNR and SSIM. The computation
time is proportional to the inner iteration numbers. Hence,
the more iterations, the longer the time. Therefore, the inner
iteration numbers are set as N = 5.
Theoretically ADMM converges to any positive penalty

parameter β. However, choosing the right value of β is crucial
for the speed of the algorithm. Since the optimal value of β is
different for various experimental pictures, so far there is no
method to choose the optimal penalty parameter [37].We set
the range of β as [1.0,3.0] empirically.

FIGURE 4. PSNR and SSIM values after image denoising under different
group sizes.

B. IMAGE DENOSING
In this section, this paper focus on denoising cases of
degraded images from Gaussian white noise pollution.
Based on the previous discussion, the proposed new model
(OGSTV4) was compared with other popular models. Each
experimental picture was corrupted by the zero-mean Gaus-
sian white noise with the standard deviation of 15,30 and 50,
respectively, and was averaged ten times. Then, PSRN, SSIM
and computation time were introduced to evaluate the image
quality after denoising.
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TABLE 1. Image restoration results for different MM iterations.

FIGURE 5. Denoised images for Butterfly(σ = 15). (a) Noisy image, (b) TV+BOX restored, (c) TV4 restored, (d) OGSTV restored,
(e) OOGSTV4 restored, (f)-(j) zoomed-in images of respective models. In our proposed model, µ = 0.9, β = 1.0.

1) COMPARISON WITH RELEVANT MODELS
First of all, we demonstrate the superiority of the new model
by comparing the relevant models TV+BOX[16], TV4[29]
and OGSTV[34]. Here, four images of Parrotgray, Lena, But-
terfly and Bridge are selected for the experiment. Adjusting
the parameter values for the new model (OGSTV4) aims
to find the maximum PSNR and SSIM, which can be seen
in section 4.1 for specific parameter values. For OGSTV,
we tune the regularization parameter and other parameter
values referred to in the literature [18]. TV+BOX and TV4
are also solved by ADMM algorithm, and the best PSNR
and SSIM values are obtained by adjusting the parameter
values.

Figure 5, 6, and 7 respectively show the overall and local
results of restored images by different models for remov-
ing Gaussian white noise with standard deviation of 15, 30

and 50. As can be seen from the figure, the TV model adding
box constraints and TV4 model can effectively remove noise,
it also over smoothes the image edges. Although the OGSTV
model have preserved image edge information, but the noise
has not been completely eliminated, especially in the cor-
responding zoomed-in images. The proposed model over-
comes the above disadvantages well, not only keeps the good
characteristics of traditional TV to eliminate noise, but also
fully mines the gradient information of four directions on the
image, and then combine them to further suppress staircase
effects.

For comparing performance more specifically, Table 2 lists
PSNR, SSIM and time (in seconds) values of the restored
images by different models. From Table 2, the proposed
model always obtain higher values concerning PSNR and
SSIM than those of TV+BOX, TV4 and OGSTV. Although
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FIGURE 6. Denoised images for Parrotgray(σ = 30). (a) Noisy image, (b) TV+BOX restored, (c) TV4 restored, (d) OGSTV restored,
(e) OOGSTV4 restored, (f)-(j) zoomed-in images of respective models. In our proposed model, µ = 2.4, β = 1.0.

FIGURE 7. Denoised images for Boat(σ = 50). (a) Noisy image, (b) TV+BOX restored, (c) TV4 restored, (d) OGSTV restored, (e) OOGSTV4
restored, (f)-(j) the zoomed-in images of respective models. In our proposed model, µ = 3.7, β = 1.0.

in terms of time, other models are faster than ours, consid-
ering the overall denoising effect, we can conclude that the
proposed model is better in denoising.

2) COMPARISON WTH STATE-OF-THE-ART MODELS
To further illustrate the superiority of the proposed
model, we compare it with the TGV[10], HDTV[9], and
HNHOTV[20] models. Similarly, we test four pictures Toys,
Peppers, Barbara and Man. For the TGV model, we set the
parameters λ1 = 2 and λ2 = 1. For the HDTV model,
we choose the derivative order as n = 2, and then, adjust
the regularization parameters of these models to get the
maximum PSNR and SSIM values.

In Figures 8, 9 and 10, we represent the denoised images
by different models for removing Gaussian white noise with

a standard deviation of 15, 30 and 50 respectively. Although
the HDTVmodel can effectively remove the noise, it does not
preserve details such as image edges. TGV model alleviate
staircase effects while eliminating the noise, but it will pro-
duce false image features when the image is highly polluted
by noise, which can be seen in Figure 9 (i). Visually, there is
no significant difference between the HNHOTV model and
the OGSTV4 model. Both of them can achieve a balance
preserving edges and noise removal, and reduce staircase
artifacts.

The PSNR, SSIM and Time (in seconds) values obtained
by different models are presented in Tables 3. As shown
in Table 3, our proposed model performs best in most
cases. Compared with other models, the proposed model is
obviously higher in SSIM value, and basically higher
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TABLE 2. PSNR, SSIM and Time values of the restored images denoised by different models.

FIGURE 8. Denoised images for Toys(σ = 15). (a) Noisy image, (b) HDTV restored, (c) HNHOTV restored, (d) TGV restored,(e)OOGSTV4
restored, (f)-(j) zoomed-in images of respective models. In our proposed model, µ = 1.2, β = 1.0.

TABLE 3. PSNR, SSIM and Time values of the restored image denoised by different models.
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FIGURE 9. Denoised images for Barbara(σ = 30). (a) Noisy image, (b) HDTV restored, (c) HNHOTV restored, (d) TGV restored, (e) OOGSTV4
restored, (f)-(j) zoomed-in images of respective models. In our proposed model, µ = 2.0, β = 1.0.

FIGURE 10. Denoised images for Peppers(σ = 50). (a) Noisy image, (b) HDTV restored, (c) HNHOTV restored, (d) TGV restored,
(e) OOGSTV4 restored, (f)-(j) the zoomed-in images of respective models. In our proposed model, µ = 3.9, β = 0.8.

in PSNR value, except for HNHOTV which is higher
in image Peppers and Barbara. In terms of time, the
computation time of the new model is moderate, which
is significantly less than that of HNHOTV. Consid-
ering this, our model outperforms other models in
denoising.

3) COMPARISON OF THE PROPOSED MODEL WITH BOX
CONSTRAINT OR WITHOUT
It should be noted that the pixel value of any digital image
can only obtain a finite pixel value (for instance, an 8bit
image can only have 256 gray grayscale levels). There-
fore, adding box constraints is required to ensure all pixel
values of the recovered image within a certain dynamic
range, which greatly improves the quality of the recovered

image. Motivated by the constrained TV model proposed
by Chan [16], we also add box constraints to the proposed
new model, which is referred to as the OGSTV4+BOX
model.

Then, two pictures Peppers and Lean are used for this
experiment, which are corrupted by zero-mean Gaussian
white noise with standard deviation σ = 15. We com-
pare the proposed model with the OGSTV4+BOX model.
The denoising results can be seen in Figs.11. There
is no specific difference between the proposed model
and one after adding box constraint. From PSNR, it is
indeed higher than the proposed model without box con-
straint, but the time also increases accordingly. Hence,
we still choose the proposed model after comprehensive
consideration.
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FIGURE 11. Denoised images (σ = 15). (a),(d) Noisy image, (b), (e) OGSTV4+BOX restored, (c), (f) OGSTV4 restored.

V. CONCLUSION
In this paper, an effective image denoising model is proposed
by using four-directional total variation and overlapping
group sparsity. We divide the complex optimization problem
into several independent subproblems by introducing split
and dual variables into ADMM algorithm, and then, solve the
corresponding subproblems alternatively by using FFT and
MMalgorithm. To illustrate the superiority of our newmodel,
we compare our model with other state-of-the-art models and
introduce PSNR, SSIM and computation time to evaluate the
image quality after denoising. The proposed model removes
noise effectively and preserves image feature well to get
better image quality. Meanwhile, the staircase effects can be
suppressed successfully. However, we can see that although
the new model is very robust in denoising, the denoising time
is relatively long. We will consider how to improve this in our
next work.
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