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ABSTRACT Using autonomous mobile robots is now a necessity for today’s large e-commerce warehouses
to save time and energy, and to prevent human-based errors. Robotic Mobile Fulfillment System (RMFS)
controls these robots as well as all other resources and tasks in a warehouse. There are challenges in the
management of an RMFS-based smart warehouse because of the high dynamics in the system. Limited
resources such as robots, stations, totes, and item spaces should be managed efficiently after tracking their
status continuously. In this study, we propose a centralized task management approach that is adaptive to
the system dynamics. We describe a novel task conversion algorithm that generates tasks from a batch of
orders and provides a high pile-on value. Then we propose an adaptive heuristic approach to assign generated
tasks to robots, considering system dynamics such as the location of robots and pods, utilization of totes,
and age of the tasks. To evaluate the proposed algorithms, we perform an extensive set of simulations in a
highly realistic environment including robot charging, replenishment process, and path planning algorithms.
We show that the proposed task planning approach significantly reduces order completion time even for a
high number of stock-keeping units (SKU). It also provides a balanced workload among robots. We analyze
the optimal value of order batch size and the effect of important system parameters such as robot count,
order count, and SKU. The obtained results shade light on how to design a smart warehouse system with
high efficiency.

INDEX TERMS Autonomous mobile robots, resource management, robotic mobile fulfillment system,
smart warehouse, task planning, warehouse execution system.

I. INTRODUCTION

Robotic Mobile Fulfillment System (RMFES) is a new trend
warehouse system that employs autonomous mobile robots.
Today, many e-commerce warehouses use this system, while
many more are investigating for future use. RMFS-based
warehouses in which robots lift pods and bring to pick stations
were first introduced by KIVA Systems, Wurman et al. [1].
Amazon bought Kiva systems in 2012 and renamed it to
Amazon Robotics [2]. Since then, many companies have
entered the market with their robots such as Swisslog Car-
ryPick, GreyOrange Butler, Fetch Robotics Freight (and
Fetch), Scallog System, Hitachi Racrew, etc., [3]. Moreover,
major retailers, such as Amazon and Alibaba, use RMFS [2].
However, investment in RMFS to warehouses will cost more
than a million-dollar generally [4]. The most expensive part
of an RMFS investment is the robots. Hence, optimization on
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RMEFS to complete more order with less number of robots is
a crucial point of efficiency.

The order picking process is the most important part in a
warehouse system. Traditional warehouses use picker-to-part
method, i.e. workers travel in the warehouse and collect order
lines. The new RMFS approach is part-to-picker, such that
robots carry the mobile shelves (named as pod) that contain
items to the workers who are waiting at the pick stations.
An RMEFS increase picking rate significantly compared to tra-
ditional methods especially for large e-commerce warehouses
with many SKUs (Stock Keeping Units) [5]. It is crucial to
optimize picking order, i.e. to collect more order items with
less effort. The order batch method is used for picker-to-parts
picking methods. In this method, a set of orders are splitted
into several subsets of order items and assigned to pickers in
an efficient way in order to reduce travel and picking time [6].
However, in an RMFS, it is not feasible for robots to carry
all order items in a single pod. Therefore, the optimization
objective is to collect more items per pod at the pick station.

VOLUME 9, 2021


https://orcid.org/0000-0003-2384-3927

A. Bolu, O. Korgak: Adaptive Task Planning for Multi-Robot Smart Warehouse

IEEE Access

The average number of order items picked from one pod,
named as pile-on, is the most important metric to reduce order
picking time [5], [7].

Another important task of an RMFS is the replenishment to
pods, in other words to place stocks in the warehouse. There
are two types of stations; pick stations and replenishment
stations. Human workers work in these stations for collecting
orders (picking) or placing items to the pods (replenishment).
In all tasks, the pods are carried to and from the station by
robots. The picking process consumes more energy and time
than replenishment, it is up to 80% according to [5].

It is obvious that robots need energy and charging to com-
plete their tasks. When a robot completes the assigned task
and ready for another one, the RMFS will decide to assign one
of the three tasks: order picking, replenishment, or charging.
In this study, we mainly focus on order picking optimization,
while we also consider and do not neglect replenishment and
charging tasks. We propose novel order-to-task conversion
and task selection methods aiming to increase pile-on and
total efficiency of an RMFS by considering order throughput,
time priority, and utilization of resources. We also test our
methods and algorithm with different warehouse parame-
ters such as number of robots, pick stations, totes, orders
and SKU.

Management of an RMFS requires knowledge of all exist-
ing and moving objects in the warehouse. For this purpose,
we develop a web-based central software called Warehouse
Execution System (WES) to manage warehouse automa-
tion. WES manages all resources such as robots, stations,
totes, pods etc. We simulate the RMFS on WES in a highly
realistic environment (which can be considered as a digi-
tal twin of the real system) in order to evaluate the per-
formance of the proposed approaches for various system
parameters.

A. RELATED WORK

RMES is a new approach with an increasing popularity in
the last decade. Cooperation of multiple robots and coordi-
nation of many other resources such as pods, totes, stations
etc. increase the complexity. Enright and Wurman (2011)
present general concepts of optimization and coordination of
an RMFS in [7]. They mention importance of pile-on opti-
mization to reduce order picking time. Lamballais er al. [4]
analyze performance of an RMFS under four models such as
single-line and multi-line orders and with or without storage
zones. They develop queuing network model that includes
storage zoning and multi-line orders in order to estimate
performance according to order throughput, average order
cycle time, and utilization of robots and workstations.

The assignment of pick orders to pick stations (Pick Order
Assignment - POA) and the pod selection in the pick process
(Pick Pod Selection - PPS) are two important issues for order
picking optimization in an RMFS. First POA, then PPS is
applied [1], [5]. Moreover, [8] performs an approach for
integrating POA and PPS. Merschformann et al. [5] analyze
optimization performance by studying important decision
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rules such as POA, PPS, Replenishment Order Assignment
(ROA), Replenishment Pod Selection (RPS) and Pod Storage
Assignment (PSA). They compare multiple rules and find
correlation between them to increase order item throughput.
They point out importance of pile-on and robot travelling
distance for RMFS performance. Boysen et al. [9] study on
processing the orders at the pick station. They focus on batch-
ing and sequencing of picking orders in order to decrease
robot needs. The decision problem they formulate is NP-Hard
and they provide several heuristic algorithms to converge to
the optimal. They show that their algorithms decrease the
number of pod visits, but they study only for small instances
(up to 100 orders). Their results imply that the provided
heuristic approaches would take significant amount of time
for larger instances and may not be feasible for real time
applications. Reference [8] integrate assignment of pods to
station and orders to station for order picking process, instead
of calculating separately. They also propose to split orders
in order to improve RMFS efficiency. In other words, parts
of an order are allowed to be processed in different stations
and combined later at the packaging stations. While splitting
orders improve the efficiency, it cause additional processing
load. Evaluation of extra effort for splitting orders and com-
bining later requires real experiments beyond simulation and
analytical models.

Zou et al. [10] focus on rule based robot to task assignment
with handling speeds of workstations and propose a neigh-
bourhood search algorithm to find a near optimal solution.
Moreover, they analyze shelf block size effect to the RMFS
throughput. Reference [11] identify the performance charac-
teristics of an RMFS by providing a literature review. They
mention the relation between performance and the design
decisions of RMFS for operation as a preliminary finding
from an ongoing study.

Other important optimization approach in order picking
process is to use efficient replenishment and pod allocation
methods. These methods proactively increase picking order
throughput since they provide more efficient options to select
pods. Reference [12] focus on efficient pod alignment on the
warehouse storage area. Reference [13] prove that spreading
inventory across many pods significantly decreases the time
of collecting orders. They also analyze the optimization of
variables such as the number of items per pod, replenishment
level per pod, and picking station to replenishment station
ratio.

Robots can be dedicated specifically to order picking
task or replenishment task. This approach is called dedicated
robot assignment. On the other hand, in pooled robot assign-
ment, both tasks are performed by a single pool of robots.
Merschformann et al. [5] adopts dedicated robot assignment
and assigns two-third of the robots for order picking tasks,
and others to replenishment tasks. Roy et al. [14] analyze
RMES for single and multiple zone with both dedicated and
pooled robot assignment. They notice that using pooled robot
assignment reduces order picking time, while it increases
the replenishment time. Yuan and Gong [15] perform their
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order picking analysis with the pooled and dedicated robot
system. They also analyze optimal robot count and speed for
their test environment. Zhou et al. [16] focus on balancing
robot workload while optimizing total robot travel time. They
propose a heuristic balance mechanism to assign tasks to
robots. In other words they select robots for tasks with an aim
of minimizing total travel cost and balancing robot workload.
However, this approach will reduce robot utilization since
robots will need to wait for the others to become free. In a
cost-efficient RMFS, number of robots are optimized and
they are busy most of the time. In a warehouse with several
hundreds of robots, 3 to 4 robots may become idle concur-
rently [7] and it can be suitable to choose only among those
robots.

B. MAIN CONTRIBUTIONS

In this study we propose a novel Order Batch to Robot
Task Conversion (OBRTC) algorithm which tries to find
minimum number of pods that includes items of multiple
orders. In other words, contrary to existing studies, OBRTC
algorithm handles a number of orders as a single order instead
of handling orders one by one. The number of orders to
be handled as a batch has a crucial role to increase pile-on
value even for high SKU. After OBRTC is executed, WES
selects available totes at the pick stations for items in pod
when the order task is assigned to the robot. The pod of
order task will consist of multiple order’s items, and it can
be assigned to different stations if necessary. Furthermore,
we propose Adaptive Robot Task Selection (ARTS) method
to select a new task for a robot that become available. New
task selection is performed according to a novel priority based
heuristic model which depends on various criteria such as
distance to robot, totes usage and time. In brief, we first
select pods for multiple orders without assigning stations,
totes, or robots to reach maximal pile-on value. Then we
adaptively manage other resources considering the system
dynamics.

Contrary to the most of the studies in the literature,
we develop and use a fully realistic simulation environment
that includes robot collisions, waiting time on path and sta-
tions, and effects of the loaded pod weight. Moreover, our
simulation includes charging process by considering a realis-
tic energy consumption model (depending on movements and
loads) and real charging times.

Some e-commerce companies may sell items even if they
are not already stored in their warehouses and these items
are replenished on demand. Therefore there could be many
already ordered items on the pods loaded at the replenishment
stations. Management of this case is mostly not addressed in
existing studies. In our study, we also test such a scenario and
analyze its effects on the system performance.

In summary, our work has three main contributions;

1) We provide a task planning approach with high pile-on

value even for high number of SKUs.

2) We propose a novel parametric heuristic model for

order task selection process.

27348

3) We develop a highly realistic simulation environment
and provide test results under various decision rules
which shade light on how to design a smart warehouse
system with high efficiency.

Rest of the paper is organized as follows. We describe
the system model and our methods in Section 2. We explain
our simulation model and test parameters in Section 3. Test
results are shown in Section 4. We conclude the paper
in Section 5.

Eﬂ_

1

FIGURE 1. Warehouse execution area.

Il. MODEL AND METHODOLOGY

A. SYSTEM MODEL

Figure 1 illustrates an RMFS based warehouse system. The
components of this system are the following:

o Pods: All the warehouse items are stored in the pods.
When an order or replenishment arrives to the system,
it should be converted to the task by assigning appro-
priate pod or pods. These pods that are reserved by the
system are shown in yellow color in Figure 1 (such as 7).
When a pod is lifted by a robot, its cell becomes free (5 in
Figure 1).

« Robots: Robots carry pods to the stations for order
collection or replenishment (6 in Figure 1).

« Pick station (2 in Figure 1): There can be multiple pick
stations in a warehouse, where human workers collect
the order items carried by the robots. Figure 2 shows a
pick station. There exists limited number of totes, and
each tote is assigned for a single order. When an order is
collected, that tote is replaced with an empty one.

« Replenishment station (4 in Figure 1): Human workers
place replenishment items to the shelves of pods that are
carried by the robots. In a the warehouse, human workers
work only in pick and replenishment stations, and the
rest is no-human zone.

o Turning cells (3 in Figure 1): A pod may have multiple
faces and an item can be reached only through a single
face [17]. There are two types of pods according to the
number of faces: two-directional and four-directional
(pods that can be seen in Figure 2 are two-directional).
Robots can rotate pods only on turning cells.
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FIGURE 2. Pick station [18].

o Charging cells (1 in Figure 1): Robots go to the charging
cells when their batteries are low.

B. METHODOLOGY

There are three main factors that should be handled in a
best way to succeed an efficient life-long task planning in an
RMEFS based warehouse: incoming of stock (replenishment),
outgoing of stock (collecting orders) and necessity (such as
charging of robots). In this section, we explain our methodol-
ogy, algorithms and design decisions to handle these factors
in an efficient way.

1) ORDER-TO-TASK CONVERSION

Order task is the process of collecting orders. We consider
multi-line orders as a usual behavior of e-commerce cus-
tomers. In the basic approach, each order is converted to order
task(s) individually. Let assume that we have an order with
three items. WES tries to find pods that includes these items.
This order will be completed with at least one pod and at most
three pods. In the basic approach, most of the time robots
carry one pod for just one item of an order. Collecting a multi-
line order will mostly need more than one order task.

In order to increase the pile-on value, we handle order
batches, instead of handling orders one by one. Order batch
method is usually applied in traditional warehouses which
do not employ robots [6]. Human workers collect orders
after applying some order batch optimization. In this study,
we aim to adapt “order batch” concept to RMFS-based smart
warehouse in most effective manner. Figure 3 shows high
level flow of order task process. When an order arrives to
the WES, it is stored in an Order Pool. WES chooses a batch
of orders from this pool and converts these orders to order
tasks (Step 1 in Figure 3). Then these tasks are assigned to the
available robots (Step 2). Then the assigned robot goes under
the pod, lifts it, and carries to the pick station (step 3). Picker
puts order items to the totes. Each order is collected in the tote
that is reserved for that order. When an order is completed, its
tote is departed from the pick station and a new tote is put in
its place.
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FIGURE 3. Order task process.

Now we will describe Step 1 of Figure 3, i.e. the order
to task conversion method in more detail. To accomplish
high pile-on value and provide high utilization of robots,
we propose a novel Order Batch to Robot Task Conversion
(OBRTC) algorithm as shown in Algorithm 1.

Algorithm 1 Order Batch to Robot Task Conversion

OrderList < n,, orders from the set of all orders;
OrderltemList < all items of orders in OrderList;
PodList < set of all pods in the warehouse;

while OrderltemList # () do
1. Pody,, < Pod that contains highest number of

items in OrderItemList;

2. Create OrderTask with Pod,,,y;

3. Orderltems <« All the items of OrderltemList
included in Podl;

4. Add Orderltems to the OrderTask;

5. Remove Orderltems from OrderltemList;

6. Remove Pod,,,, from PodList;

end

In OBRTC algorithm, firstly we select n,, orders from
order list for order to task conversion. This method considers
nep orders as a single order to increase item pod matching
possibilities. Thus, more order items can be collected with
less number of pods. All the items of an order should exist
in the warehouse stock. If there is a missing item for an
order, this order is marked as “‘stock-waiting” order and not
included in the task conversion process until the required
stock is provided through replenishment process.

At each iteration, OBRTC algorithm creates an order task
with the pod that includes maximum number of items. Note
that if an order task already exists for this pod (as a result of
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previous run of OBRTC algorithm), then new items would
be included in this order task, instead of creating a new one.
Then this pod and the items it includes are removed from
the list and the algorithm continues with the next iteration
for converting remaining items to tasks with the remaining
pods. The algorithm terminates when all the items in these
n,p orders are converted to tasks.

In the OBRTC algorithm, there are some important design
parameters and restrictions to be considered. The value of n,y,
has an important role for optimization. Increasing the value of
nep Will increase the number of items per task. In other words,
more items will be collected at the pick station when the robot
brings the pod. On the other hand tote count at the pick station
is the important restriction for executing n,; orders during
the same time interval. For single order to task conversion,
it is simple to handle tote reservation. Because all the items
of an order task will be collected consecutively in a short time.
However, when the orders are handled as a batch, items of an
order may be collected in an extended time period. Because a
number of order tasks are created by OBRTC simultaneously
and items of an order may be spread over these order tasks
and there could be some gaps between their collection times.
This results in high number of reserved totes that include a
portion of order items. We analyzed the best value of n, in
different scenarios in Section II1.

OBRTC algorithm should be executed and the order task
pool should be refilled in appropriate intervals. This is impor-
tant to avoid idle waiting of robots (due to lack of order
tasks). On the other hand, if task pool includes too many tasks,
then this can increase the execution time of the task selection
process described in the next subsection. Therefore, OBRTC
algorithm is executed when the number of order tasks in the
order task pool becomes less than the number of working
robots.

2) ORDER TASK SELECTION METHOD

After order tasks are created, an order task selection method
is applied to manage resources efficiently and adaptively. For
an available robot, WES assigns a task from the order task
pool. In this study, we propose a heuristic model for task
selection, namely Adaptive Robot Task Selection (ARTS)
which adapts to the dynamics of the resources. WES selects
a task for an idle robot from the task pool according to
three important parameters: 1. Distance of the order task’s
pod to the robot; 2. Time elapsed after the creation of the
order task; 3. Completion rate of the tote(s) assigned for
the order task. When a robot finishes its previous task and
becomes available, ARTS calculates a priority value for all
order tasks in the pool, and assign the task with the highest
priority.

The priority value of an order task i for a robot r (pr;,) con-
sists of three components (that correspond to three parameters
mentioned above): Spatial priority pr,, temporal priority pr!
and tote priority pr; . Each of these components are calculated
as follows.
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i. Spatial Priority:
S o
r;. = 1
Plir = 1 P logy (distiy + 1) M
where « is a normalization constant and dist,; is the Manhat-
tan distance between robot r and pod p; of task i, which is
calculated as in (2).

distiy = |x(r) — x(pi)| + |y(r) — y(pi) (@)

Note that x(-) and y(-) are x and y coordinates of the cells
that robots and pods stay on. Spatial priority is modeled using
alogarithmic function. This indicates that if the distance is too
low, high priority is given for that robot in order to decrease
path traveling distance, and consequently to reduce the traf-
fic. As the distance increases, there would be diminishing
marginal effect of the distance to the task priority. The value
of o describes maximum possible value of pr)., which is
chosen to be 10 in our warehouse.

ii. Temporal Priority:

pri = B - age; 3)

where f is a normalization constant and age; is the elapsed
time (in terms of minutes) after the creation of task i.
Temporal priority is modeled using a linear function that is
not bounded above. This is to guarantee that all the tasks are
handled before a maximum waiting time. The value of 8 is
important to define maximum task age. In our study, we chose
B =0,2.

iii. Tote priority:

Let us define O as set of all orders and O; € O as set of
all orders that has some items to be handled by task i. Tote
priority of task i is defined as

pri=Y B @
UGO,‘

where p € [0, 1] is the utilization ratio of the totes. In other
words, it is the ratio of the number of reserved totes to the
number of all totes. By; is the base value for order-task pair
(o, i), which is related to the effect of task i on completing
order o. We use the following values for B,,;:

o (Reserve) B,; = 1 if task i reserves new tote for order o,
but not includes all items of the order.

o (ReserveAndComplete) B,; = 2 if task i reserves new
tote for order o, and includes all items of the order (hence
completes the order).

« (Fill) B,; = 3 if there already exists a partially filled tote
for order o, and task i puts some more item(s) to the tote
without completing the order.

o (Complete) B,; = 4 if there already exists a partially
filled tote for order o, and task i puts some more item(s)
to the tote and completes the order.

Let us describe tote priority by an example scenario illus-
trated in Figure 4. We consider a pick station with five totes
(T1 - T5) and consider collection of four orders (O1 - O4).
The items of the orders are shown in the figure. In a specific
time, tote 3 (T3) is reserved for order 2 (O2) and tote 4 is
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FIGURE 4. Tote reservation scenario.

reserved for order 4, and these totes are partially filled. Now
we will calculate tote priority of the order task 1 (Podl).
Pod1 includes A and B items of order 1, but doesn’t include H.
Therefore this task 1 reserves a tote for order 1 without
completing the order, so Bj; = 1. On the other hand, order 2
has two items, E and D. E is already put in tote 3, and D is
included in Podl. Therefore task 1 completes order 2, and
By1 = 4. Moreover, order 3 includes single item (C) which is
included in Podl. So task 1 reserves and completes order 3,
i.e. B31 = 2. Taskl doesn’t include any missing item of
order 4, so order 4 will not be included in the calculation of
tote priority. Since two of the five totes are already reserved,
p = 2 = 04. Tote priority for task 1 is calculated as
114 4 414 4 214 = 10.6.

The rationale behind the proposed tote priority model can
be described as follows. In order to efficiently utilize the totes,
partially filled totes should be completed as soon as possible.
Therefore, if a task fills and completes a tote, it would have
highest priority and the base value is set to 4. If it fills a
tote without completing, again it has a high priority and the
base value is 3. Tasks that reserve new totes are given lower
priority, especially if they only partially fill a tote. Tote prior-
ity becomes much more critical when only a few unreserved
totes remain. Therefore the base values are powered by 1+ p,
which converges to 2 as the number of idle totes gets closer
to zero.

After finding spatial, temporal and tote priority values,
overall priority of task i with respect to robot » can be simply
defined as the sum of these values.

Pr(i,r) = pr;, + pr} +pr} §))

While priority of a task is effected by all three parameters,
it is dominated by temporal priority (pr]) if the task is too
old, and dominated by tote priority (pr;) if the tote utilization
is too high. All the orders created from the same run of the
OBRTC algorithm have almost same temporal priority. For
these order tasks, other priority metrics effect the order of
selection. But if there exists tasks that are generated from
an older order-to-task conversion process, a newer task is
favored only if its pod is too close to the robot. This is
provided by the logaritmic function used in pr;..

The proposed heuristic model is designed to dynamically
achieve several performance goals such as reducing robot
travel distance and order completion time, and increasing
system utilization. Here it should be noted that although the
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task selection method provides efficient utilization of totes,
it is still possible to not have an available tote for any of the
items in a selected task. In that case this task is not assigned
to the robot, and WES tries to select the next task in the
calculated priority order.

3) ORDER TASK EXECUTION

Order task execution starts just after WES assigns an order
task to the robot by the order task selection method described
above. Figure 5 illustrates the order task execution flow. The
robot goes to the pod and lifts it. Since existence of tote is
checked before task assignment (as described in the previous
part), it is guaranteed that there is at least one available pick
station. If tote assignment is required for any items in the task,
WES tries to assign all totes in a single pick station in order
to decrease robot moving time. WES also tries to balance
workload at the stations while selecting the totes.

Start
O Path p‘\g‘anmng [ Lift Pick Sta_tion
go to the pod the pod Selection

Any order
for other pick
stations?

Path planning
& goto
the pick station

Cell selection
(for pod)

Release the ©
pod Path planning
(to the cell) & go to the cell

s pod angle
suitable?

Picker

Go to the

Rotate the pod «——
turning cell

FIGURE 5. Order task execution flowchart.

The robot carries the pod to the selected pick station. When
the robot is close to the pick station, WES checks whether
the pod’s current angle is appropriate for the pick station. If it
is not as desired, the robot goes to the turning cell and the
pod is rotated. After desired angle of the pod is provided,
the robot takes the pod to the picker. Picker collects items
and insert into the tote(s). After the last item of the current
face of the pod is taken, WES checks whether another face
of the pod is also required for this station. When the picking
task is finished for all pod faces in this pick station, WES
checks whether another pick station is waiting for that pod.
If so, the same processes are handled until all required items
at that pod are collected. Afterwards, WES selects a free cell
for the pod to locate. When the robot goes to the pod cell and
release it, order task is completed. Now the robot is ready
for another order task, and task selection process is executed
again. If there is no available task at that moment, the robot
waits until a new task is created.

4) REPLENISHMENT TASK

Replenishment of goods is the other important task of WES
that is performed by autonomous robots. Figure 6 illustrates
overall replenishment task process and Figure 7 illustrates
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FIGURE 6. Replenishment task process.
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FIGURE 7. Replenishment task execution flowchart.

execution of replenishment task. Replenishment to task con-
version is simpler than order to task conversion. It starts with
the request of the worker in the replenishment station. Each
station has a single worker. The worker requests a pod to fill
with the replenishment goods. WES selects a pod according
to the free space, i.e. the pods with more free space are prior-
itized. After selecting a pod, the system waits for an available
robot if all the robots are busy. Replenishment task is assigned
to the first robot that becomes available. The robot goes to the
pod, lifts it and carries it to the replenishment station. If the
pod’s access direction is not appropriate, the robot first goes
to the turning cell and rotates the pod as desired. Then the
robot carries the pod to the station. A replenishment station
is shown in Figure 8. The worker fills the pod with the items.
Each item’s barcode is first scanned with a barcode reader,
and then the item is inserted in a shelf of the pod. The worker
should also scan the shelf code in order to assign replenished
items to the shelf. After the worker finishes these jobs, he/she
informs the system by pressing a button. After that, the robot
relocates the pod back to its place.

Several parts of the replenishment task execution directly
depend on the decision of the worker. Replenishment task
starts and ends upon request of the worker. Moreover,
the worker decides which items to locate in the pod, and also
in which shelf. The system may limit number of replenish-
ment items even though the pod has enough space. Several
studies (such as [12], [13]) analyze effects of pod selection
and inventory allocation in the replenishment process. These
works show that classification of items and spreading the
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FIGURE 8. Replenishment station [18].

inventory across multiple pods will increase the pod selection
options for order tasks and improve the order throughput
performance. However, inventory classification significantly
increases the complexity of the replenishment task. Inventory
items should be known, classified and ordered. Although
these additional efforts are mentioned in the related work, cost
analysis is not performed and the trade-off between the extra
effort and performance gain is not clear. In addition, the extra
effort also requires extra resources in terms of equipment and
workers, and extra rules.

Optimization of the replenishment task by inventory allo-
cation decisions is not in the main scope of this study.
In order to increase algorithm efficiency in the picking pro-
cess, we adopt replenishment rules that are easy to install with
low cost of pre-processing. In our model, WES does not have
to know replenishment items and their counts. Items on the
replenishment station may be held on pallets or anywhere.
The worker can choose any item that is easy to take. Pod
selection rule is emptiest-first as mentioned in [5]. Item selec-
tion and shelf selection decisions are left to the worker.

Most e-commerce companies sell some items although
they are not stored in their warehouse. They should supply
such items in a short time. In such warehouses, the replen-
ished items typically include lots of already ordered items
(of “‘stock-waiting” orders). This fact causes some chal-
lenges. Let us assume that there exists items of 100 stock-
waiting orders in a replenishment task. The first question is
how to locate these items to the pod. The second question is
when to start collecting these orders.

As mentioned above, WES chooses the pod with most
available free space for replenishment task. However, allocat-
ing many items of stock-waiting orders in a single pod will
cause some unwanted situations. WES will want to reserve
100 totes for 100 stock-waiting orders’ items stored in this
pod. Nevertheless, pick stations have limited totes to collect
orders simultaneously. Therefore managing such a highly
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desired pod will cause moving the pod to the pick station
several times. In order to avoid this situation and increase
manageability of the pods, we limit replenishment count
for each pod. This way, the already ordered items will be
allocated to more pods and pod selection options will be
increased during the order task selection process.

At the first glance, it seems to be an effective solution to
take the incoming pod directly to the pick station without
placing it to the warehouse. If this pod contains all items
of an order, this order will be completed quickly. However,
in most cases this pod will only partially contain items of
stock-waiting orders and it will cause creation of lots of order
tasks. Managing large number of order tasks with a small
number of totes is very difficult. Consequently, it is observed
that taking replenishment items directly to the pick station
reduces global system efficiency, although it may bring a
local gain.

To sum up, we limit number of items to be stored in a single
pod in the replenishment stations with n,, items. Furthermore,
we relocate the pod to the warehouse without visiting the pick
station even if it includes already ordered items. This pod will
be converted to order task in the next OBRTC execution in the
usual way.

No

Is
Repl. Station
Busy?

Robot Replenishment Order
Charging Task Task
Process Process Process

FIGURE 9. Robot life-cycle.

5) ROBOT LIFE-CYCLE
Automated mobile robots are physical components of WES.
When a configured robot turns on, it sends a request to the
WES by introducing itself. After handshaking, WES creates
an entry for the robot in its database, if not exist. Robot life-
cycle is shown in Figure 9. Robots wait in the robot pool until
a new task is assigned to them. There are mainly three types
of tasks: order, replenishment and charging tasks. WES will
assign one of these three tasks to the robot according to the
real-time dynamics of the warehouse. WES checks the battery
level of the robot before assigning a task, If it is low, robot will
go to the charging cell. It is charged up to a saturation level
(which is defined as 85% of the full capacity in this study) if
there is a waiting task in the system. Otherwise, it can wait
until fully charging its battery.

The replenishment task starts with the pod request of the
worker in the station. However, there should be a limit for
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concurrent pod requests of a worker to avoid needless waiting
of robots in the replenishment station. In this study, we have
limited the maximum number of concurrently running replen-
ishment tasks with the replenishment station count. If there
are replenishment items but there is no robot in the replen-
ishment station (i.e. replenishment station is free), then WES
creates a replenishment task and assigns it to the robot.
Otherwise, WES assigns an order task to the robot with the
order task selection method. The robot executes the order
task as mentioned before. When the robot finishes its task,
it informs the WES and asks for a new task. There is a separate
thread running asynchronously for each robot. This avoids
needless waiting of robots. A robot thread only waits if task
selection process is running for another robot in order to avoid
race conditions. Task assignment to a robot is done in less
than a second, including all waiting time.

Task assignment is one directional. WES assigns tasks, but
a robot cannot select its task, it can just request from the
system. WES evaluates this request and handles task selection
according to real time dynamics. If there is no task in the
pool, it sends the robots to charging even if their battery levels
are not low. WES checks new orders and replenishment for
new task every minute. This system guarantees completion
of order and replenishment processes with high utilization of
resources.

Manager

Dashborad Replenishment

Picking Station Station

HTTP

EF Core—

HTTR HTTP

3D Viewer

HTTR (Three js)

Logic Service

‘Websocket
SignalR

HTTP

/ |

Zo8oT ROBOT| ROBOT

FIGURE 10. WES architecture.

lIl. SIMULATION STUDY AND NUMERICAL RESULTS

A. SIMULATION ENVIRONMENT

Figure 10 illustrates the main components of WES. The
database functions (insert, update, delete, select) and business
logic (task planning, resource allocation, etc.) are performed
by the Logic (Core) Service. It is a RESTful service so
other components connect with it via HTTP. Logistic Service,
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Pick Station and Replenishment station screens, Manager
Dashboard and Layer 3 Robot API are. Net Core C# web
applications. Pick Station screen is used by pick worker.
When the robot arrives at the station with the pod, this screen
shows the commands to the pick worker for collecting the
order items. Replenishment station screen is used by the
replenishing worker for inventory allocation. The Manager
Dashboard is for management of warehouse process and com-
ponents. Reports and results are also shown in the Manager
Dashboard. The 3D Viewer shows robot movements in the
warehouse in 3 dimensions and it is coded with Tree.js 3D
Javascript library and Vue.js.

For each robot, we run a separate simulation application
on the server as Robot Layer 3 API. Low level commu-
nication and process on the robot is simulated with realis-
tic parameters. All the delays encountered while processing
commands such as “go”, “turn” or “lift” are considered
in the simulations according to real measurements. Robot
cannot access new command until finishing its last job.
Robot charge management is also simulated. Robot charge
decreases according to its state. For example, a robot will
consume more energy when it picks a pod. All the parameters
are set according to real measurements obtained from Robee
of Makhina Robotics [18] shown in Figure 11.

FIGURE 11. The physical robot (Robee of Makhina Robotics [18]) used in
parameter setting.

Robot path planning is implemented according to the mod-
ified collision free A* algorithm proposed in our previous
work [17]. However in this study, we implement some mod-
ifications as follows. In the previous algorithm, there exists
some directed paths such that robots are allowed to go only in
single direction. We relaxed this restriction and allow robots
to go in opposite direction by assigning 5 times more cost for
this movement. Increasing the cost per one cell movement
will result in the selection of such paths very rarely, only
if it has significant gain. Allowing the opposite direction
will increase possibility of head to head encountering but it
decreases the total robot traveling time by providing shorter
options. Another modification is that robots are also allowed
to go under the pods. Moving under the pods is not preferred
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because there is a restricted movement area and small devi-
ations may cause stopping of the robots. Therefore we set
the same cost as the opposite direction movement for moving
under the pods. Path planning is out of the scope of this paper
so we skip the details to [17].

We analyzed orders of a book e-commerce warehouse in a
two months span. The mean of order line count for an order
was 3,28. Approximately half of the daily orders included
only a single item. We calculate the selling rate of the items.
We create our simulation orders randomly using statistical
characteristics of these orders, so that we accomplish real-
istic order line counts and items selling rate. Orders arrival
to the WES is simulated with appropriate time intervals
to analyze utilization of robots and picking stations with
changing order density in time. We track and record state of
all dynamic WES processes including robots, pods, shelves,
items, orders, stations, and totes while simulation tests are
running. Main assumptions of our simulation model are the
following.

1) A pod can include up to 500 items. In general, we used

approximately half of this capacity.

2) Orders can be single-line or multi-line.

3) Robot’s velocity, acceleration/deceleration, and energy
consumption will change according to the weight of
the robot load (picked pod). We have simulated the
weight effect according to whether the robot is loaded
a pod or not. Loaded pod weight is set to 300 kg which
is the half of the robot’s maximum load capacity.

4) After an order completed in the tote at the pick station,
a new free tote is located instead of the completed one.
This process can be done separately without blocking
picking processes. Hence, time of tote relocating is
ignored.

5) Charging cell count is equal to the robot count so there
is no queue for charging.

6) Each picking and replenishment station has a single
worker.

7) 80% of our pods are two-sided and the rest are four-
sided. The robot should rotate the pod to the desired
side before the picking or replenishment process.

8) Time elapsed for picking one item at the pick station is
set to 8 seconds. Time elapsed for locating an SKU to
a pod at the replenishment station is set to 6 seconds.
Process time per single item for worker at the replenish-
ment station will be less than the pick station because
typically replenishment task is easier. Replenishment
workers mostly allocate same SKU items at once with
less effort and time. These times may change according
to the physical environment, worker capabilities, etc.

9) Totes are of the same size and they have enough space
to contain items.

10) 10% of the orders arrive the system at the beginning.
Remaining orders arrive the WES gradually in different
time periods. We want to realize e-commerce orders
such that there are different number of orders in the
pool at different time periods. However, there will be
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always enough orders in the pool to keep robots busy
until all orders are completed.

11) Order arrival duration is divided into four time periods
(for 2000 orders) and replenishment arrives as a bulk at
the end of each period, if not otherwise stated. For more
orders, number of time periods increase proportionally.

B. NUMERICAL RESULTS

We simulate our algorithms on WES under various design
decisions and parameters. We have analyzed our tests under
6 subtitles: (1) Effect of order batch size (n,p); (2) Effect of
the number of robots; (3) Robots’ charging time and workload
balance; (4) Effect of the order count; (5) SKU effects on pile-
on and time; (6) Effect of stock-waiting orders. All tests are
performed for a warehouse where 624 pods are located in an
area of 36 x 43 = 1548m?. If not otherwise stated, there are
48272 SKU and 169343 items stored in the warehouse. The
mean number of items per SKU is 3,5.

1) ORDER BATCH SIZE

In the first set of experiments, we analyze effect of the
proposed algorithm for various values of n,,, which corre-
sponds to order batch size. Tests are performed for 12 robots,
2000 orders, 6560 order items and 6204 replenished items.
There exists 2 or 3 pick stations, and each pick station has
20 totes.

We first simulated the system without applying OBRTC
and ARTS methods. We set n,, to one, in other words, each
order is converted to a task individually and WES assigns
these tasks to the robots randomly. In a warehouse with
2 pick stations (and 40 totes), 12 robots completed orders with
6560 items in 1637 minutes. The pile-on number is 1,3. For
3 pick stations (with 60 totes), same number of orders are
completed in 1677 minutes. Then we applied the proposed
OBRTC and ARTS methods by handling orders in batches.
Initially we set ny, to 10, and we increase it ten by ten in
each new test in order to find the best value of n,,. The
results of tests can be seen in Figure 12. For 2 pick sta-
tions, the minimum time for collecting items (981 minutes)
is obtained when n,y is 70 for 40 totes. The pile-on values
is 2,6. As mentioned before, achieving high pile-on value
is very important to reduce total time for collecting orders.
The results show that the proposed methodology (with an
optimal n,; selection) reduces the process time by 40% for
a warehouse system with 2 pick stations. For a warehouse
with 3 pick stations, the minimum completion time is found
as 910 minutes when n,y, is set to 120. The pile-on value is
2.99. For this case, reduction in total time is 45,7%, which is
even more than the case with 2 pick stations.

The results shown in Figure 12 indicate that after an
optimal value, further increasing the n,, value would start
increasing the order completion time. This is mainly because
of the tote limitation. When there is no available tote in the
pick station, pods will be returned back to the warehouse
without all the items collected. Then they will be carried to
the pick station again after totes become available.
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FIGURE 13. Order batch size (n,p) vs average order departure time.

nep value has also an important effect on the order depar-
ture time (ODT), i.e. the waiting time of an order until
departing from the warehouse. The relation between n,, and
mean ODT is shown in Figure 13. It is observed that the
best mean ODT value is obtained at the optimal n,, value.
Although the ROB algorithm changes FIFO order and items
of an order may be spread over multiple order tasks, mean
ODT value decreases with the batch size until the optimal
nep value. Temporal priority in the ARTS method provides
a balance to avoid long waiting for an order in order task
pool. The maximum ODT, in other words, the longest waiting
time of an order in the pool, is approximately double the
mean ODT value. The mean and maximum values of ODT
are 166 minutes and 305 minutes respectively when n,, is
70 and tote count is 40. These values are 134 minutes (mean)
and 260 minutes (max) for 60 totes.

2) ROBOT COUNT

We analyze the effect of robot count on the order com-
pletion time and pile-on. We test for 2 pick stations (with
8-16 robots), 3 pick stations (with 8-20 robots) and 4 pick
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FIGURE 14. Robot count vs orders completion time.

stations (with 15-20 robots). n,, is set to 70 for 2 pick stations
and 120 for 3 and 4 pick stations. Figure 14 illustrates the
effect of the robot count on the order completion time. Firstly,
it is observed that completion time does not decrease linearly
with the number of robots. The contribution of extra robot
decreases as number of robots increase. This is because of
extra waiting of robots on path and picking line. As an exam-
ple result, a robot can carry 37 items per hour (on average)
if 8 robots are employed, while 32 items can be carried per
hour when 20 robots are employed (for 3 pick stations).

Another result is related to the increment in the number of
pick stations. Increasing number of totes increase optimiza-
tion effect as mentioned before. However, there is a limit
for number of totes in a pick station. Furthermore, opening
new pick station has a cost of employing new worker. Hence,
pick station count should be well optimized. Number of pick
stations should be proportional to number of robots in order
to increase utilization of pick workers. For example, using
3 or 4 pick stations is unnecessary for 8 robots, because
robots will not be able to provide enough items to the pickers.
Figure 14 shows that the difference in completion times for
40 and 60 totes (for the same number of robots) increases
with the robot count. When 8 robots are employed, adding
new 20 totes yields a 4% decrease in the completion time,
while this ratio is (10%) when 16 robots are employed.
Similar result is obtained when we compare the results for
60 and 80 totes. Decrease in the completion time is 6% for
16 robots and 9% for 20 robots.

The effect of the robot count on the pile-on value is shown
in Figure 15. It is observed that while the number of robots
is increased, the pile-on value has been preserved with minor
changes.

3) ROBOTS' CHARGING AND WORKLOAD BALANCE

We analyze the balance in the workload and charging time of
robots in the warehouse setting with 10 robots and 2 pick sta-
tions. All robots work for 42 hours (including charging times)
and collect 13073 items. The results are shown in Table 1. The
total covered distances and total charging times for all robots
are very close to each other. Any robot spends approximately
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TABLE 1. Robots’ charging and workload balance.

Robot No | Distance Covered (km) | Charging Time / Total Time
Robot 1 56,61 0,1459
Robot 2 56,38 0,1432
Robot 3 56,98 0,1472
Robot 4 56,56 0,1450
Robot 5 56,70 0,1455
Robot 6 56,10 0,1437
Robot 7 56,53 0,1453
Robot 8 56,48 0,1460
Robot 9 56,84 0,1456
Robot 10 55,96 0,1448
Average 56,51 0,1452

14.5% of the time on charging. This indicates that all the
robots consume almost same amount of energy. It can be
realized that the balance in the workload and energy con-
sumption of the robots comes with the nature of RMFS, where
robots are employed anonymously and are busy most of the
time. This result suggests that there is no need for extra load
balancing effort (such as [16]) in the proposed system.

TABLE 2. Effect of order count.

Order | Order Task Repl. | Time | Dist. | Pile- Items/
. Robot

Count | Items | Count | Items | (min) | (km) on
(hourly)

2000 6560 2082 6204 551 259 3,15 35,72
3000 9757 3059 9491 837 390 3,19 34,97
4000 13073 4100 12511 1116 519 3,19 35,14
5000 16305 5144 15552 | 1402 650 3,17 34,89

4) ORDER COUNT

We increase number of orders up to 5000, and the number
of replenished items in parallel. We test for 20 robots and
4 pick stations (80 totes). Table 2 illustrates the obtained
results. It is observed that there is an approximately linear
relation between order count and completion time. Further-
more, the pile-on value is preserved while the order count
increases. For each case, a robot carries around 35 items per
hour.

5) SKU EFFECTS ON PILE-ON AND TIME

SKU and stock count have important effect on pile-on value.
Increasing SKU decreases the pile-on value. Merschfor-
man et al. [5] describe the negative effect of high SKU by
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performing tests for up to 10000 SKU. However, in the above
tests, we analyze our algorithms for 48272 SKU which is
approximately 5 times more than the maximum SKU value
considered in [5]. We perform another set of tests after
decreasing SKU to 22603 for approximately same amount
of stock, and increasing stock per SKU from 3,51 to 7,53.
The tests are performed for 2000 and 4000 orders, 12 robots
and 3 pick stations. The results are shown in Table 3.
When SKU is decreased, the pile-on value increases from
2,99 to 3,7 (for 2000 orders) and 3,02 to 3,78 (for
4000 orders). This corresponds to an increase of approxi-
mately 25%. As a result, 4000 orders (12868) are collected
in 1815 — 1601 = 214 minutes less time after decreasing the
SKU value.

TABLE 3. Effect of SKU.

Stock/ | Order | Order Task Repl. | Time | Dist. | Pile- Items
SKU Count | Items Count | Items | (min) | (km) on (hourly)
3,51 2000 6560 2197 6204 913 267 2,99 431,11
7,53 2000 6434 1741 5510 791 222 3,70 488,04

3,51
7,53

4000 | 13073 | 4330 | 12511 | 1815 | 526
4000 | 12868 | 3404 | 11059 | 1601 | 446

302 | 432,17
3,78 | 48225

6) EFFECT OF STOCK-WAITING ORDERS

In the replenishment station, the maximum number of items
that can be located in a pod is limited with 7, in order to man-
age stock-waiting orders, as mentioned in Section II-B4. In all
our tests, we set 1, to 40. In order to test the system with more
stock-waiting orders, we remove some items arbitrarily from
the stock at the beginning. Tests are performed for 12 robots,
3 pick stations and 2000 orders (6560 items). We consider
3 different replenishment scenarios which result in different
number of stock-waiting orders. Although all 3 scenarios
have the same number of items to replenish as 6204, they
differ in the time intervals that the replenishment arrives to the
warehouse. In the first scenario, all the replenishment arrives
as a bulk after arrival of all orders. In the second scenario,
replenishment is partitioned into two parts. The first part
arrives to the system in the middle and the second part arrives
at the end. In the third scenario, replenishment is partitioned
into four parts and each part arrives in equal time intervals.

TABLE 4. Effect of stock waiting orders.

Waiting | Waiting | Repl. | Repl. Time | Pile- | Distance
Orders Items Part. | Items | (min.) on (km)

0 0 4 6204 913 2,99 267
208 410 4 6204 983 2,64 290
281 619 2 6204 992 2,57 294
346 862 1 6204 1050 2,50 300

The effect of stock-waiting orders can be observed
in Table 4. When stock-waiting orders increase, total col-
lection time of all orders also increase. This increase is
aligned with expectations, because it causes lower utilization
of the system while orders are waiting for stock, compared
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to the case where these order tasks are distributed throughout
the day. Hence, this fact causes a decrease in the pile-on value.

IV. CONCLUSION

In this work, we propose a task planning approach for RMFS-
based smart warehouses, with the aim of utilizing system
resources efficiently and adaptively. We describe a novel
algorithm for conversion of order batches to tasks. We also
propose a heuristic model for assignment of tasks to robots.
We consider various system dynamics such as location and
battery level of robots, replenishment of new stock in various
pods, utilization level of totes and time elapsed after genera-
tion of order tasks. We develop a highly realistic simulation
environment which can be considered as a digital twin of the
real system. We take into account all realistic considerations
such as routing, queuing, turning, energy consumption and
charging of the robots. We analyzed the total elapsed time,
pile-on value, mean order waiting time and total distance
covered by the robots. We realize crucial relations between
all of these outputs, especially between pile-on value and
total elapsed time. It is shown that the proposed algorithms
preserve the pile-on value for various number of robots and
orders, and work well under different situations even in high
SKU. The obtained results show that the reduction in total
completion time of orders is about 40% in a warehouse with
2 pick stations and 40 totes, and about 46% in a warehouse
with 3 pick stations and 60 totes.

Although this work gives significant insight into how to
design an efficient RMFS-based warehouse system, there are
always open directions for research. In this study, in the order-
to-task conversion step, orders are handled with the order
they arrive. As a future work, an additional optimization
study can be performed while selecting orders into the order
batch. Another idea is to allow allocation of temporary totes
in pick stations when there is no available tote for some of the
order items in a coming pod. This may increase efficiency but
also increase complexity due to additional process for work-
ers. Performance effects and induced costs of these further
improvements remain to be discovered.
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