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ABSTRACT Fault tolerance is crucial to reliable state estimations in aircrafts. When time-varying sen-
sor faults are coupled with nonlinear system models, it is non-trivial to robustly recover system states.
In this paper, based on an intermittent-measurement unscented Kalman filter (IMUKF), we propose a
new state-estimation method by combining the IMUKF with maximum-likelihood estimation and Gaussian
mixture reduction. For nonlinear systems under time-varying and featureless sensor faults, the proposed
method performs robust estimation without past error history or explicit fault detection, achieving signifi-
cantly enhanced accuracy under severe conditions. With a nonlinear twin-spool jet engine as the example in
simulations, the effectiveness of the proposed method is verified.

INDEX TERMS State estimation, intermittent measurements, fault detection, unscented Kalman filter.

NOMENCLATURE
iχk The ith sigma point at moment k
δkj Kronecker delta
ε
(j)
k Vector of innovation errors in the fault-free

sensors under the jth fault hypothesis
8k Pseudo-measurement matrix, defined as the

partial derivative of h with respect to x at x̂k|k−1
8̃

(j)
k Pseudo-measurement matrix for the

jth hypothesis
γk,j The jth component of γ k
γ k Binary vector describing sensors’

fault conditions
ωi The ith weight for scattering sigma points. ω0 is

user-specified
ζi Fault-free probability of the ith sensor
A Matrix variable for scattering sigma points
ai The ith column of matrix A
Ck|k−1 Approximation of the cross-covariance matrix

between the predicted state and measurement
vectors for moment k

f (·) Function of nonlinear system dynamics
h(·) Observation function of system state
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K (j)
k Kalman gain matrix under the jth hypothesis

M̃
(j)
k Matrix for updating the predicted information

matrix
Pk|k Covariance estimation result at moment k
Qk Process noise covariance matrix at moment k
Rk Measurement noise covariance matrix at

moment k

R̃
(j)
k Measurement noise covariance matrix for the

jth hypothesis
S(j)k Covariance matrix of ε(j)k
uk Input vector at moment k
vk Measurement noise vector at moment k
wk Process noise vector at moment k
xk System state vector at moment k
x̂(j)k|k Update state estimation under the jth hypothesis
x̂k|k−1 Predicted state estimation for moment k
x̂k|k State estimation result at moment k
Y (j)
k|k Updated information matrix under the

jth hypothesis
Y k|k−1 Predicted Fisher information matrix for

moment k
zk Vector of sensors’ fault-free outputs at

moment k
ẑ(i)k|k−1 Predicted measurement output corresponding

to the ith sigma point for moment k
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ẑk|k−1 Predicted measurement output for moment k
z̃k True sensors outputs affected by noise and

faults at moment k
E{ ·} Expectation operator
n Dimension of system state
iχk|k−1 The ith predicted sigma point for moment k

I. INTRODUCTION
Sensor faults have crucial impacts on the safe operation of
aircrafts [1]. Implementing redundant sensors is an effec-
tive way of improving safety, but its application is limited
by weight and cost constraints. To enhance sensor-system
reliability without relying on duplicated sensors, the state-
observer-based analytical redundancy, which fuses both sen-
sors’ measurements and model information, was proposed
[2]–[4]. Due to the unknown faults in the sensor systems,
classic state observers (e.g., Kalman filter) cannot be directly
implemented. Therefore, extensive investigations have been
carried out in designing state observers under faulty
measurements [5]–[22].

For systemswith linear dynamics, many improved versions
of the classic Kalman filters (KF) for faulty measurements
have been proposed. For example, in the multiple model
adaptive estimation (MMAE) methods, multiple classic KFs
run in parallel to cover all possible fault hypotheses, and the
KF with the minimum innovation error will be selected as
the solution to state estimation as well as fault detection and
isolation (FDI) [5]–[10]. Another category of approaches is
based on adaptive techniques, such as the innovation-based
adaptive estimation (IAE) which utilizes the information
in the innovation-error sequence [11]–[14], the residual-
based adaptive estimation (RAE) that relies on the residual
sequence [16], [17], and the robust adaptive KF (RAKF) that
implements improved adaption rules for covariance matrices
[15], [18]. Since the listed approaches either assume that
faults occurred are constant, or rely on the past history of
innovation/residual errors for adapting observer parameters,
they are not suitable for observing systems with rapidly
varying fault conditions. To solve this problem, based on
the intermittent-measurement KF (IMKF) formulated in [23],
[24], a robust KF for addressing intermittent/permanent faults
was proposed in the authors’ earlier work [20].

However, as the above methods are all based on KFs, their
applications are limited to linear models, which need radical
model reductions from real-world system dynamics and sig-
nificantly sacrifice modeling fidelity. To deal with nonlinear
systems, fault-tolerant extended Kalman filters (EKFs) have
been applied, e.g., to the state estimation and FDI in the
air-data systems [1], [25], [26]. A second-order EKF has
also been formulated and evaluated in an atmosphere-reentry
problem [27].

As EKFs require systems’ Jacobians/Hessians, which may
be formidable or inapplicable for many nonlinear systems,
researchers developed several estimation methods from the
classic unscented Kalman filter (UKF) [28]: For duplicated,

redundant sensors, Bae et al. implement parallel UKFs and
use the weighted sum of different UKFs’ estimations to
achieve fault tolerance [29]. For known sensor data absence
that simultaneously occurs over the same communication
channel, Li and Xia have successfully extended Sinopoli’s
idea of IMKF [23] to intermittent-measurement UKF [30].

For more general cases with dissimilar types of sen-
sors, unknown and non-synchronously occurred faults,
Naderi et al. implement multiple parallel UKFs (MM-UKF)
to cover all possible fault conditions, whose conditional
probabilities are then updated and compared for FDI [31].
Lu et al. propose to utilize a time-window of innovation
errors to scale the noise covariance matrix, arriving at the
adaptive fading UKF (AFUKF), whose individual channels
are triggered if the corresponding innovation errors exceed
some user-specified thresholds [19]. But similar to the RAKF
[15], [15], [18], [18], the parameter-adaption process slows
down the response to rapidly varying fault conditions, result-
ing in significant performance sacrifice [20].

The introduced methods have been successfully applied
to a large number of state-estimation problems under sensor
faults. But when performing state estimations for nonlinear
systems under both intermittent and permanent sensor faults,
the following problems are encountered:
• The KF-based methods, such as MMAE, IAE, RAE,
RAKF, and IMKF, etc., do not fit nonlinear systems,
whereas the EKF-based methods need Jacobian/Hessian
computations, and can only be applied to slightly
nonlinear systems [28];

• For nonlinear systems, the implementation ofUKF-based
methods are constrained to particular situations:
E.g., duplicated sensors, known fault conditions,
or slowly varying faults. It is still a challenge to apply
UKF to systems with intermittent and time-varying
faults. In contrast, sensors in aircrafts cover diversified
types, and their faults can be intermittent and quickly
changing.

To relax the constraints on nonlinear estimations and
fault assumptions, in this paper, by the approximations of
the information and cross-covariance matrices, a pseudo-
measurement matrix is formulated, enabling the use of
IMUKF under intermittent faults. Besides, the Gaussian
mixture-model is used to merge the multiple estimation
results under different fault hypothesis, arriving at the pre-
sented method. In particular, it leads to the following
improvements:
• A novel robust IMUKF is formulated. The robust
IMUKF does not rely on the slowly-varying or
knowing-fault assumptions, leading to the expanded
application scenarios and enhanced accuracy under
rapidly-varying sensor faults;

• The estimations under different fault conditions are
merged automatically in maximum-likelihood manner
without referring to manually-specified FDIs, allow-
ing fast implementations of the algorithm in various
scenarios.
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FIGURE 1. Data-flow diagram of the proposed method.

The coordination of IMUKF and maximum-likelihood FDI is
verified in simulations with a nonlinear jet engine example,
and the estimation accuracy is compared with those of the
state-of-the-art methods.

This paper is organized as follows: The problem of state
estimation for nonlinear system under sensor faults is intro-
duced in Section II. The proposed method is presented in
detail in Section III. In Section IV, by using a nonlin-
ear jet-engine model as an example, the performance of
the proposed method is evaluated and compared with other
state-of-the-art methods. Conclusions are given in Section V.

II. PROBLEM FORMULATION
For a nonlinear, discrete system, we assume xk ∈ Rn is the
vector of system state at moment k , uk ∈ Rr is the input
vector, and zk ∈ Rm denotes the vector of sensors’ fault-free
outputs, then the system’s nonlinear dynamics are given by

xk+1 = f (xk ,uk )+ wk
zk = h(xk )+ vk , (1)

where f and h are nonlinear functions describing the
state-transition and observation processes, respectively. wk ∈
Rn and vk ∈ Rm are the process and measurement noises
at moment k , respectively. We assume wk and vk are both
independent and zero-mean, satisfying

E{wkwTj } = Qkδkj

E{vkvTj } = Rkδkj, (2)

where E{ ·} is the expectation operator, δkj is the Kronecker
delta, and Qk and Rk are the covariance matrices for process
and measurement noises, respectively.

We assume that sensor faults can occur, intermittently or
permanently, in any single or combination of sensors. An m-
dimensional binary vector

γ k = [γk,1, γk,2, . . . , γk,m]T (3)

is used to describe sensors’ fault conditions at moment k ,
where 1 means that the sensor is working properly, and 0
indicates a sensor failure. γk is unknown to the observers, but

we assume that each sensor has an expected value of failure
rate, which is derived from the sensor’s MTBF (mean time
between failure). Thus the fault-free probability of the ith
sensor is given by

ζi = E(γk,i), ∀i = 1, 2, . . . ,m (4)

Note that in practice ζi are rough estimates and may be
deviated from the true values (see Table 1).
When a sensor is without fault, we assume that its measure-

ment conforms with the model in (1). Otherwise, the faulty
sensor is assumed to feedback erroneous and featureless val-
ues that could span the admissible range of its output. Let z̃1,
z̃2, . . . , z̃k be the measurements affected by both noises and
faults. We aim to recover the state of the nonlinear system
(1) from z̃1, z̃2, . . . , z̃k , and the estimation method is
presented in the following section.

III. PROPOSED METHOD
An overview of the proposed method is summarized in the
data-flow diagram in Fig. 1. The inputs of the diagram are the
estimated state x̂k−1|k−1 and covariancePk−1|k−1 formoment
k − 1. The outputs are x̂k|k and Pk|k , which at moment k + 1
will become the input for the next iteration. The three blocks
relating the input and output are namely prediction, IMUKF
and Gaussian mixture reduction, which are detailed below.

A. PREDICTION
For nonlinear systems, the first step of prediction is the
generation of 2n+1 sigma points 0χk−1,

1χk−1, . . . ,
2n χk−1,

where n is the dimension of system state. Let−1 < ω0 < 1 be
a user-specified weight, which controls the distance between
1χk−1, . . . ,

2n χk−1 and the origin 0χk−1. The sigma points’
weights and locations are given as [28]:

ωi =
1− ω0

2n
, ∀i = 1, 2, . . . , 2n

0χk−1 = x̂k−1|k−1

iχk−1 =

{
0χk−1 − ai, i = 1, 2, . . . , n,
0χk−1 + ai, i = n+ 1, n+ 2, . . . , 2n,

(5)
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where ai is the ith column of matrix A, which is defined as

A =
√

n
1− ω0

Pk−1|k−1. (6)

Given 0χk−1,
1χk−1, . . . ,

2n χk−1 with weights ω0,
ω1, . . . , ω2n, the new location of each sigma point is predicted
using the nonlinear model and the input at moment k − 1:

iχk|k−1 = f (iχk−1,uk−1). (7)

The system’s state and measurements are predicted by

x̂k|k−1 =
2n∑
i=0

ωi
iχk|k−1,

ẑk|k−1 =
2n∑
i=0

ωiẑ
(i)
k|k−1, (8)

where

ẑ(i)k|k−1 = h(iχk|k−1). (9)

B. IMUKF UNDER A SPECIFIC FAULT HYPOTHESIS
To facilitate the fusion of measurements from multiple sen-
sors, we implement the Fisher informationmatrixY k|k−1 [32]
and approximate it by

Y k|k−1 ≈

(
2n∑
i=0

ωi

(
iχk|k−1 − x̂k|k−1

)

×

(
iχk|k−1 − x̂k|k−1

)T )−1
. (10)

The cross-covariance matrix between the predicted state
and measurements is approximated by

Ck|k−1 ≈

2n∑
i=0

ωi

(
iχk|k−1 − x̂k|k−1

) (
ẑ(i)k|k−1 − ẑk|k−1

)T
.

(11)

Then the matrices Y k|k−1 and Ck|k−1 are used to formulate
the pseudo-measurement matrix of h(x) as

8k = Y k|k−1Ck|k−1 ≈
∂h
∂x

∣∣∣∣
x̂k|k−1

. (12)

As the true γ k in (3) is unknown, the UKF has to cover all
possible fault conditions. Let γ (j) be the jth fault hypothesis,
i.e., it denotes the m-dimensional binary representation of j,
a set of matrices can be defined as

8̃
(j)
k = diag(γ (j))8k ,

R̃
(j)
k = diag(γ (j))Rk ,

M̃
(j)
k =

m∑
i=1

γk,i

ri
iφk

iφk
T
, (13)

ri is the ith-row, ith-column entry of Rk , and iφk is the ith
column of 8T

k in (12).

Given the real measurements z̃k and with the above for-
mulations, the updated state estimation under the jth fault
hypothesis is calculated by the following rules:

Y (j)
k|k = Y k|k−1 + M̃

(j)
k ,

K (j)
k = Y (j)

k|k
−1

(8̃
(j)
k )T (R̃

(j)
k )†,

x̂(j)k|k = x̂k|k−1 + K
(j)
k

(
z̃k − ẑk|k−1

)
, (14)

where (·)† stands for the left pseudoinverse of a matrix.

C. GAUSSIAN MIXTURE REDUCTION
To select the subset of sensors that have no fault at moment
k , we form a ‘‘selection matrix’’ Gj by removing the all-zero
rows of diag(γ (j)), while the left rows indicate those properly
working sensors. Then the vector of valid (not affected by
sensor faults) innovation errors are given by

ε
(j)
k = Gj

(
z̃k − ẑk|k−1

)
, (15)

whose covariance matrix is

S(j)k = Gj
(
8kY−1k|k−18

T
k + R̃

(j)
k

)
GTj . (16)

With S(j)k and each sensor’s fault-free probability ζi in (4),
the steps of obtaining the conditional probability P(γ (j)

|ε
(j)
k )

have been presented in [20] and are skipped here. The results
of Gaussian mixture reduction are

x̂k|k =
2m−1∑
j=1

P(γ (j)
|ε

(j)
k )x̂(j)k|k , (17)

Pk|k =
2m−1∑
j=1

P(γ (j)
|ε

(j)
k )T (j), (18)

where

T (j)
=

(
Y (j)
k|k

)−1
+

(
x̂(j)k|k − x̂k|k

) (
x̂(j)k|k − x̂k|k

)T
. (19)

The above formulations fully describe the process between
the inputs and outputs in Fig. 1. For continuously estimating
system states in real time, this process is iteratively performed
with a user-specified stop condition. To deal with the rare
cases where all sensors fail simultaneously, a variation-limit
threshold 1̄ is specified on ‖x̂k|k − x̂k−1|k−1‖2, whose upper
bound can be determined beforehand from the characteristics
of the monitored system [20]. Finally, the proposed method
is summarized in Algorithm 1.

IV. SIMULATION
A. NONLINEAR SYSTEM EXAMPLE
A simplified nonlinear jet-engine model in [33] is imple-
mented to validate the proposed method. In the jet-engine
model, the system state x = [x1, x2, x3]T is the normalized
change of the low-pressure compressor speed, high-pressure
compressor speed, and burner fuel flow, respectively. z ∈
R6 contains the measurements from six sensors. The
input u is the normalized change of the commanded fuel
flow. Assuming the sampling period is 0.01 s, the engine’s
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Algorithm 1 The Proposed Robust UKF Method
Input: System model f (·), h(·), process and

measurement noise covariances Q and R,
sensors’ fault-free probabilities ζ1, . . . , ζm, inputs
u1, u2, . . . , etc., sigma-point weight ω0,
measurements z̃1, z̃2, z̃3, . . . , etc., state-variation
threshold 1̄, and iteration stop condition zstop.

Output: State estimations x̂1|1, x̂2|2, x̂3|3, . . . , etc., and
estimation covariances P1|1, P2|2, P3|3, . . . , etc.

1 Initialize x̂0|0 and covariance P0|0, k ← 0;
2 while zstop 6= true do
3 k ← k + 1;
4 x̂k|k−1← 0;
5 ẑk|k−1← 0;
6 for i = 0 to 2n do
7 Generate the ith sigma point iχk−1 with weight

ωi, using (5) and (6), with the given ω0 and the
previously obtained Pk−1|k−1;

8 Obtain iχk|k−1, ẑ
(i)
k|k−1, x̂k|k−1, and ẑk|k−1 using

(7) and (8), with iχk|k−1, uk−1, ωi, and the
system model;

9 end
10 Get Y k|k−1 and Ck|k−1 using (10) and (11);
11 8k ← Y k|k−1Ck|k−1;
12 for j = 1 to 2m − 1 do

13 Calculate 8̃
(j)
k , R̃

(j)
k , and M̃

(j)
k using (13);

14 Update Y (j)
k|k and x̂

(j)
k|k using (14) with the real

measurement z̃k ;
15 Compute the valid innovation error ε(j)k and its

covariance S(j)k using (15) and (16);
16 end
17 x̂k|k ← 0;
18 for j = 1 to 2m − 1 do
19 Compute P(γ (j)

|ε
(j)
k ) using (11)–(14) in [20];

20 x̂k|k ← x̂k|k + P(γ (j)
|ε

(j)
k )x̂(j)k|k ;

21 end
22 if ‖x̂k|k − x̂k−1|k−1‖2 > 1̄ then
23 x̂k|k ← x̂k|k−1;
24 Pk|k ← Y−1k|k−1;
25 Continue;
26 end
27 Pk|k ← 0;
28 for j = 1 to 2m − 1 do
29 Compute T (j) using (19) with Y (j)

k|k , x̂
(j)
k|k , and

x̂k|k ;
30 Pk|k ← Pk|k + P(γ (j)

|ε
(j)
k )T (j);

31 end
32 end

nonlinear dynamics is described by
xk+1 = Qsysq(xk )+ Asysxk + Bsysuk ,

zk = Csysxk , (20)

FIGURE 2. Normalized input u (commanded fuel flow) to system (20) in
the simulation.

TABLE 1. Fault conditions of the outputs in the simulation.

where q(x) includes the nonlinear terms of x:

q(x) = [x21 , x
2
2 , x

2
3 , x1x2, x1x3, x2x3]

T , (21)

and

QTsys =


1.3293 5.6812 0
3.4440 −0.5281 0
0.1375 −0.3385 0
−5.1304 −1.6193 0
−1.7826 0.5229 0
−1.8719 0 0

× 10−2,

Asys =

0.9844 0.0069 0.0040
0.0026 0.9778 0.0022

0 0 0.9

 ,
Bsys = [0, 0, 0.1]T ,

Csys =


I3×3

0.5511 0.1332 0.3060
0.5522 0.1353 0.3291
−0.2569 −0.2363 0.6120

 .
Both the process and measurement noises in this example
are assumed to be independent and Gaussian. The stan-
dard deviations of the process noise are assumed to be
[2e−4, 2e−4, 2e−4]T , and the standard deviations of the
measurement noise are [0.001, 0.001, 0.01, 0.02, 0.02, 0.03]T .

B. SIMULATION SETTINGS
This simulation time was set to 10 s. The input signal (com-
manded fuel flow) was randomly generated using sums of a
set of sinusoids and is shown in Fig. 2.
The six sensors are assumed to have independently

occurred faults, whose true fault-free probabilities are given
in Table 1. Besides, we assume that the system designer do not
have the accurate values of these probabilities, whose rough
guesses are also listed in the rightmost column of Table 1.

Aside from the randomly and intermittently occurred
faults, a set of permanent or temporary faults in the sensors
were also introduced as follows:
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• A permanent fault occurred in sensor 2 from t = 6 s till
the end of the simulation;

• Three faults occurred in sensors 1, 3 and 6 simultane-
ously from t = 7 s. The fault in sensor 1 disappeared at
t = 8 s, whereas the faults in sensors 3 and 6 continued
to the end of the simulation.

The true initial state of the system is set to x0 = [0, 0, 0]T ,
while the initial estimated state is assumed to be x̂0|0 =
[0.001, 0.001, 0.001]T . To provide an initial covariance
matrix, we assume that the initial estimations of compressor
speeds and fuel flow have independent errors, with standard
deviations as 5% and 10% of their working ranges, respec-
tively, corresponding to P0|0 = diag([0.052, 0.052, 0.12]T ).
The state-variation limit 1̄ is set to 0.005, utilizing the system
property that the magnitude of engine state change does
exceed 50% (of the working range) within 1 s.

Since the estimation error ek = x̂k|k − xk comes from
the error components with different ranges, to quantify the
estimation error on the same basis, a normalized estimation
error ēk ∈ R3 is defined as follows:

ēk = diag([θ1, θ2, θ3])−1ek , (22)

where θj is the peak-to-peak value of the jth state
component, i.e.,

θj =
N

max
k=1

xj,k −
N
min
k=1

xj,k , ∀j = 1, 2, 3,

with N = 1000 is the number of sampling moments in
the simulation. With the normalized estimation error ēk , two
scalar measures of the mean and maximum estimation errors
are defined as

emean =

N∑
k=1

‖ēk‖/N ,

emax = max
k=1,2,...,N

‖ēk‖. (23)

Besides the mean estimation error, to quantify the dis-
tribution of ēk , we introduce another measure v95%, which
corresponds to the volume of the ellipsoid that contains ēk
with 95% confidence. The ellipsoid’s volume is computed by

v95% =
4
3
π
√
7.8153λ1λ2λ3, (24)

where λ1, λ2, and λ3 are the three eigenvalues of the covari-
ance matrix of ē1, ē2, . . . , ēN . The value 7.815 corresponds
to the critical value of the three degree-of-freedom χ2 distri-
bution with over 95% cumulative probability.

C. SIMULATION RESULTS
With the initial conditions, inputs, and fault probabilities
given above, simulations were performed for the nonlinear
system in (20). The sensors’ measurements are shown in
Fig. 3, which includes six sensors’ signals that are severely
affected by noises and faults. Besides the intermittent faults
(peaks in the signals), we assume that permanent faults also
occur on four of the six sensor, as indicated by the vertical
lines in Fig. 3.

FIGURE 3. Sensors’ measurements subject to noises and faults. The crude
peaks in the signals correspond to the intermittent faults. The red and
magenta vertical dashed lines denote the moments of entering and
leaving the long-term faults, respectively.

FIGURE 4. State-estimation results using MM-UKF, AFUKF, and the
proposed method. The black solid curve corresponds to the true system
state. The blue dashed (with ‘‘x’’ markers), magenta dashed (with ‘‘·’’
markers), and red solid (with ‘‘o’’ markers) curves correspond to the
results of MM-UKF, AFUKF, and the proposed method, respectively.

State estimations were performed using the proposed
method and parameters given in Section IV-B. The estimation
result is shown in Fig. 4.

Despite the largely disturbed measurements in Fig. 3,
the state-estimation result in Fig. 4 suggests that the system
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FIGURE 5. Distribution of the normalized estimation errors. The ellipse
shows the error-distribution region with 95% confidence.

states are recovered successfully (as is compared with the true
state values in the same figure).

To quantify the estimation accuracy in the three-dimensional
state space, the normalized estimation error ē is implemented
and visualized in Fig. 5, which suggests that 95% estimation
errors fall inside the three-dimensional ellipsoid with major
axes lengths as 0.0738, 0.0308, and 0.0044, respectively.

The volume of the confidence ellipsoid is 4.19×10−5. The
mean error of estimation, defined as emean in (23), is obtained
as 0.0238, meaning that the estimation error is expected
to be 2.38% with respect to the signals’ peak-to-peak val-
ues. The above results on error distributions further validate
the accuracy of the proposed method against unknown and
intermittent sensor faults.

Besides the estimation accuracy, the algorithm’s tim-
ing and memory performances have also been tested in
benchmarks. The proposed method takes 88803 floating
point operations for each sampling moment, and occupies
roughly 1024 kB memory. These resource requirements can
be met by many typical embedded systems (e.g., ARM Cor-
tex M7 with roughly 15MFLOPS capability and 16MB
memory). On a x86-AMD64 computer with six-core CPU
(Intel i7-8750H) at 2.20GHz clock rate and 16GB memory,
the computation time for each iteration is 0.381ms, which
is sufficiently shorter than the 10ms observer period. In
addition, the computation process for each independent fault
hypothesis in (13)–(16) is parallelized for further improved
efficiency.

D. METHOD COMPARISON
Besides the proposed method, the following state-of-the-art
methods have also been tested in simulations:
• Multiple parallel UKFs (MM-UKF): Multiple UKFs
are running in parallel for all possible fault hypotheses.

FIGURE 6. Comparing the normalized estimation errors of three methods.
The green, blue, and red dots correspond to the estimation errors of the
MM-UKF, AFUKF, and the proposed methods, respectively. The green,
blue, and red ellipsoids stand for the 95%-confidence regions for the
MM-UKF, AFUKF, and the proposed methods, respectively.

The conditional probability of each hypothesis is com-
puted using the corresponding innovation error. The
state/covariance update follows the hypothesis that owns
the maximum conditional probability [31];

• Adaptive fading UKF (AFUKF): With a time-window
of innovation errors, threshold-based FDI is per-
formed in each sensor channel. For the faulty sen-
sors, the measurement-noise covariance R is adaptively
modified for realizing fault-tolerant estimations [19].
In the simulation, the time-window length is 100, and
the FDI thresholds for the six sensors are set to be
three times of their standard deviations. In this example,
the result of AFUKF demonstrated no sensitivity to the
above parameters, while a set of parameter-tuning tests
were still performed to find the above listed parameter
sets.

Using the same inputs and measurements, performances
of the above methods are examined in simulations. A com-
parison of the estimation errors of the discussed methods are
visualized in Fig. 6:

1) Graphically, for the proposed method, the volume of
its 95% confidence ellipsoid of the estimation errors
is apparently smaller than those of the MM-UKF and
AFUKF;

2) A quantitative comparison of the three methods’ accu-
racies is given in Table 2, including specifications
such as mean errors, maximum errors, and ellip-
soid volumes. It can be observed that the proposed
method leads to significant error-reduction in the listed
specifications.

The different confidence ellipses in Fig. 6 graphically show
that, compared with the MM-UKF and AFUKF, the pro-
posed method has significantly reduced the estimation errors.
More accuracy measures and computation costs of the three
methods are listed in Table 2.
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TABLE 2. Comparison of the estimation errors and computation times of
three methods.

• We can see that when the fault conditions are rapidly
time-varying, the MM-UKF has large estimation errors.
The reason is that in MM-UKF, the computation of
conditional probabilities of fault hypotheses relies on the
past results. This design is very efficient for permanent
faults, but does not fit the simulated scenario;

• The AFUKF does not assume the constant-fault condi-
tion, however, the covariance-adaption process of the
AFUKF introduces ‘‘lags’’ to rapidly changing fault
conditions, making it more suitable for slowly varying
faults (e.g., drifts of sensors’ offsets);

• As IMUKF allows the instantaneous handling of inter-
mittent measurements, and Gaussian mixture reduction
allows the FDI to work without assumption on the past
error history, the proposed method leads to better esti-
mation accuracy under unknown and intermittent sensor
faults. Besides, compared with MM-UKF and AFUKF,
the proposed method leads to no increase in the com-
putation cost, hence is suitable to be implemented in
real-time estimation tasks.

Compared with the two state-of-the-art methods, the pro-
posed method results in 67.5% and 77.2% reduction in the
mean normalized errors, respectively. The confidence region
has also been reduced by 99.5% (MM-UKF) and 85.4%
(AFUKF), respectively. These results verify the the accuracy
improvements of the proposed method.

E. ESTIMATION ACCURACIES UNDER NON-GAUSSIAN
MEASUREMENT NOISES
In practice, themeasurement noises are usually non-Gaussian,
and their effects on estimation accuracies should be eval-
uated. Therefore, in our simulations, besides the Gaus-
sian noise (with corresponding results presented above),
we also considered two other typical types of heavy-tail,
non-Gaussian noises, namely the Laplace noise and Cauchy
noise, which in the simulations are assumed to be zero-mean,
and are scaled to have the same standard deviations as the
Gaussian case. The rationale of scaling is not only for a ‘‘fair’’
comparison, but also because that for avionics, the sensors
should be provided with their standard deviations (obtained
statistically), even if their noises are not Gaussian. A com-
parison of the estimation results, using the proposed method
under different measurement noises, is shown in Fig. 7, and
the estimation errors are quantified by the measures in (23)
and (24), and listed in Table 3.
According to the above comparison, no evident accuracy

deterioration is observed in the cases of Laplace and Cauchy
noises. The estimation errors do not demonstrate significant
sensitivity to non-Gaussian measurement noises, and can be

FIGURE 7. Comparing the normalized estimation errors under different
noise types. The blue, red and black dots correspond to the estimation
errors under Laplace, Cauchy and Gaussian noises, respectively. The blue,
red and black ellipses stand for the 95%-confidence regions
corresponding to the Laplace, Cauchy and Gaussian noises, respectively.

TABLE 3. Comparison of the accuracies under different types of noises.

employed in practical cases where most noises are not strictly
Gaussian.

V. CONCLUSION
Aircrafts are equipped with various types of sensors,
which are subject to both permanent and intermittent faults
under severe flight conditions. When the monitored sys-
tem has nonlinear dynamics, it is non-trivial to design a

VOLUME 9, 2021 28839



T. Nie et al.: Robust Unscented Kalman Filter for Intermittent and Featureless Aircraft Sensor Faults

fault-tolerant observer to recover system states. In this paper,
based on the formulation of an IMUKF, we implement
maximum-likelihood estimation andGaussianmixture reduc-
tion, and propose a robust filter that fits nonlinear estimations
with unknown and featureless faults, which could either be
permanent or intermittent. Using a nonlinear engine model
as the simulation example, we test the proposed method and
compare its performance with those of two state-of-the-art
methods, namely MM-UKF and AFUKF. The simulation
results verify that the proposed method leads to significant
enhancement of the estimation accuracy.

The present work can be improved in many ways. For
example, more objective functions for optimizing the Kalman
gain can be analyzed and tested to account for more general,
non-Gaussian measurement noises [34], [35]. Techniques
such the H∞ and peak-to-peak filters can be implemented to
weaken the statistical assumptions on themeasurement noises
[36], [37]. In addition, besides sensors’ faults, the proposed
method can be extended to deal with actuators’ faults. These
issues are to be explored in the future work.
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