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ABSTRACT In this paper, the issue of dissipative control for a class of discrete-time T-S fuzzy singular
Markov jump systems with state-dependent noise and asynchronous modes is investigated. The hidden
Markov model (HMM) is introduced to observe the asynchronous phenomenon between the original system
modes and the controller modes. Sufficient conditions are established in the form of strict LMIs to guarantee
that the closed-loop system is stochastically admissible and strictly (Q, S,R) − β dissipative. An asyn-
chronous output feedback controller is successfully proposed, which is more general than synchronous and
mode-independent ones. Finally, the effectiveness and validity of the obtained results are illustrated by a
numerical example.

INDEX TERMS Singular Markov jump systems, asynchronous dissipative control, hidden Markov model,
linear matrix inequalities (LMIs), Takagi-Sugeno (T-S) fuzzy model.

I. INTRODUCTION
Singular systems, also known as descriptor systems, implicit
systems and differential-algebraic systems, have been paid
close attention by researchers in the past few decades [1]–[6].
This is because those of systems are often used to simulate
a large number of dynamical systems, such as power grid
systems, electric and electronic engineering, Leontief models
and chemical engineering etc [7]–[11]. It should be empha-
sized that singular systems are more complex compared with
the state-space systems, since the regularity and causality
need to be considered to ensure the existence and uniqueness
of impulse-free solutions to system equations [3]–[6]. Up to
now, singular systems have been widely investigated and a
variety of results have been proposed, for instance robust sta-
bility and stabilization [12], [13], H∞ control [6], dissipative
control [14]–[17], sliding mode control [18], [19].

In many practical circumstances, the structure and param-
eter of systems can suffer abrupt changes and variations that
caused by component failure, repair and disconnection etc
[20]–[24]. Under this condition, Markov jump parameters
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are introduced into the system model and call such sys-
tems as Markov jump systems (MJSs). To date, a lot of
works about MJSs have been done by the researchers from
the different control fields and control issues. For instance,
the sliding-mode control for slow-sampling singularly per-
turbed MJSs was discussed in [25]. The persistent dwell-time
switching rule was introduced to describe changes in transi-
tion probabilities, and some valuable results were obtained
for complex dynamic networks [26], singularly perturbed
switched systems [27] and fuzzy Markov jump chaotic sys-
tems [28], respectively. As far as singular Markov jump
systems (SMJSs) are concerned, a large number of research
results have been obtained, we refer the reader to [18], [29],
[30] and references therein. Nevertheless, most of exist-
ing results on SMJSs based on the same assumption that
the information of system modes is completely available to
controller modes. In this case, synchronous or independent
controller was designed [31], [32]. However, in the network
communication link, packet loss and time delay inevitably
appear in the system, which often lead to the information
loss. In view of this, the hidden Markov model in [33] was
presented to describe the asynchronization between the sys-
tem modes and control modes. Subsequently, some results
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concerning the asynchronous control of state-space Markov
jump systems are reported one after another. For example,
by a stochastic Lyapunov function approach, [34] designed a
dissipativity-based asynchronous controller for discrete-time
Markov jump systems with mixed time delays. When the
controller and quantizer are both asynchronous with the con-
trolled systems, H∞ control was discussed for Markov jump
time-delay systems in [35]. The asynchronous static output
feedback control was addressed forMJSswith extended dissi-
pative performance including both continuous- and discrete-
time cases [36]. Nevertheless, it can be found that little
attention is paid on the control of SMJSs based on HMM
due to the complexity of system itself. Considering the time
delay in switching signal and state, an asynchronous state
feedback controller in [37] was designed for guaranteeing
the admissibility of SMJSs. The reference [38] investigated
the asynchronous H∞ filter design for discrete-time SMJSs
with packet losses. Although the mentioned literatures made
some contributions to the asynchronous control of SMJSs,
the sotchastic noise was neglected in the system. It was
shown from [39]–[43] that any system can be disturbed by
environment noise, stochastic noise played an important role
in the system model. Also, as pointed out by [40]–[42],
there are some differences in methodology between singular
systems and singular stochastic systems. The asynchronous
dissipative control for discrete-time SMJSs with multiplica-
tive noises was investigated in [44], in which finite piece-
wise homogeneous state feedback controller was designed.
More recently, the authors in [45] explored stochastic H∞
control for a class of uncertain SMJSs with multiplicative
noise based on HMM. But it was known that H∞ perfor-
mance just is a special form of the dissipative performance
[34], [46]. And the dissipativity has wide applications in
some real systems such as power systems and electrical net-
works. Consequently, researching the dissipative control for
the discrete-time SMJSs subject to state-dependent noise and
asynchronous modes is one of the motivations of the current
work.

On the other hand, T-S fuzzy model has been very popular
among researchers in the past few years. The reason concen-
trating on such topic is that the Takagi-Sugeno (T-S) fuzzy
method can approximate the nonlinear system as several
linear subsystems by making use of the fuzzy membership
function [47]. Compared with piecewise linear function and
single linear function, T-S fuzzy model has a more compact
mathematical form, which is convenient for further process-
ing [48]. It was shown that lots of results for fuzzy MJSs
had been obtained. For example, to save the scarce commu-
nication bandwidth, an event-triggered reliable controller for
fuzzy MJSs with the mixed H∞ and passive performance
was proposed in [49]. When actuator faults and time-varying
delays appeared in the fuzzy MJSs simultaneously, the reli-
able controller was designed in [50] such that the resultant
closed-loop system was stochastically stable and strictly dis-
sipative. As for the asynchronous control of fuzzy linear
MJSs, some encouraging results have been proposed as well

in recent years. [46] studied the dissipativity, in which the
given results can be regarded as the corresponding general-
ization of [33]. The same problem was further discussed in
[51] when intermittent measurements and quantization were
concerned.

So far, according to our knowledge, little attention has been
paid on the asynchronous control for T-S fuzzy SMJSs with
state-dependent noise and the dissipativity, which encour-
ages our current research. In this paper, we will discuss
the asynchronous (Q, S,R) − β dissipative control for
discrete-time fuzzy SMJSs with state-dependent noise based
on HMM. Firstly, we provide sufficient conditions to ensure
the closed-loop system to be stochastically admissible and
(Q, S,R) − β dissipative. Then, by utilizing the augmenta-
tion technique and slack variable matrices, the asynchronous
output feedback controller gains are derived by solving a set
of strict linear matrix inequalities. Finally, the validity of the
design method is verified by a numerical example. The main
contributions of this paper are highlighted as follows.
(i) The asynchronous dissipative control is the first time

discussed for SMJSs with state-dependent noise, which is
formulated by T-S fuzzy model.
(ii) The Lyapunov function adopted in this paper not only

depends on the fuzzy rules but also the system modes, which
can reduce the conservativeness of obtained results. Besides,
the auxiliary variable matrices and augmentation technique
are employed in order to obtain the tractable LMIs conditions.
(iii) It is worth noting that singular matrix, noise and fuzzy

rules occur concurrently in the system, which is more gen-
eral. Also, what we presented cover mode-independent and
synchronous results as special cases and are also applicable
to H∞ control [45] and passive control [33].
The rest of this article is given as follows. The second

section describes some preliminary knowledge. In the third
section, we propose the conditions that ensure the stochastic
admissibility and strict (Q, S,R)− β dissipativity of the sys-
tem. In the fourth section, an example is given to illustrate the
authenticity and validity of the results. Finally, the conclusion
of this paper is given in the fifth section.
Notations: The symbols used in this paper are all stan-

dard. N denotes the positive integer set; Rn stands for
n-dimensional Euclidean space; Rm×n is a set of spaces com-
posed of m× n real matrices; A > 0 means a real symmetric
positive definite matrix; sym(P) is defined as the sum of P
and PT ; E(·) and ‖ · ‖ refer to the expectation operator
and Euclidean vector norm. In the symmetric block matrix,
the symbol ∗ represents the ellipsis of the term introduced
for symmetry. For a matrix E ∈ Rn×n with rank(E) = ι, let
E⊥ ∈ R(n−ι)×n be any matrix with full row rank satisfying
E⊥E = 0 and E⊥(E⊥)> > 0. Finally, it is assumed that
the matrices in this paper are compatible with the algebraic
operation.

II. PRELIMINARIES
Consider the following discrete-time T-S fuzzy SMJSs with
state-dependent noise. Plant Rule i: IF θ1k is ηi1, θ2k
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is ηi2, . . . , θνk is ηiν , THEN:
Ex(k + 1) = [Ai(δk )+ Awi(δk )w(k)]x(k)+ Bi(δk )u(k)

+Ci(δk )v(k),
z(k) = Di(δk )x(k)+ Fi(δk )u(k)+ Hi(δk )v(k),
y(k) = Gi(δk )x(k),

(1)

where E ∈ Rn×n is a singular matrix with 0 < rank(E) =
ι ≤ n, x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the control
input, v(k) ∈ l2[0,+∞) is disturbance signal, z(k) ∈ Rp

is the controlled output and y(k) ∈ Rl is measured output;
w(k) is a sequence of random variables taking values on
the given space (�,F ,P), which satisfies E[w(k)] = 0,
E[w2(k)] = 1, E[w(k)w(s)] = 0(k 6= s). Moreover, θk =
[θ1k , θ2k , · · · , θνk ] is the premise variable vector. And ηiµ(i ∈
I = {1, 2, . . . , r}, µ ∈ V = {1, 2, . . . , ν}) is the fuzzy set,
where the variable imeans the ith fuzzy rule and r is the total
number of fuzzy rules. The parameter δk , taking values in
M = {1, 2, · · · ,M}, denotes a discrete-time Markov chain
with transition probability matrix 4 = [αst ], where

Pr {δk+1 = t|δk = s} = αst , s, t ∈M (2)

with αst ∈ [0, 1] and
∑M

t=1 αst = 1. For δk = s, we denote
Ai(δk ) = Ais,Awi(δk ) = Awis,Bi(δk ) = Bis,Ci(δk ) =
Cis,Di(δk ) = Dis,Fi(δk ) = Fis,Hi(δk ) = His,Gi(δk ) = Gis.
Ais,Awis,Bis,Cis,Dis,Fis,His,Gis are real constant matrices
with appropriate dimensions.

By using T-S fuzzy rules, the following fuzzy systems can
be obtained for δk = s

Ex(k + 1) = [Ahs + Awhsw(k)]x(k)+ Bhsu(k)
+Chsv(k),

z(k) = Dhsx(k)+ Fhsu(k)+ Hhsv(k),
y(k) = Ghsx(k),

(3)

where

Ahs =
r∑
i=1

hi(θk )Ais,Awhs =
r∑
i=1

hi(θk )Awis,

Bhs =
r∑
i=1

hi(θk )Bis,Chs =
r∑
i=1

hi(θk )Cis,

Dhs =
r∑
i=1

hi(θk )Dis,Fhs =
r∑
i=1

hi(θk )Fis,

Hhs =
r∑
i=1

hi(θk )His,Ghs =
r∑
i=1

hi(θk )Gis,

hi = hi(θk ) =

∏ν
µ=1 ηiµ(θµk )∑r

i=1
∏ν
µ=1 ηiµ(θµk )

,

hi(θk ) is expressed as the standardized membership func-
tion, and

∏ν
µ=1 ηiµ(θµk ) ≥ 0. So it implies that hi(θk ) ≥

0,
∑r

i=1 hi(θk ) = 1.
The purpose of this note is to design an asynchronous

fuzzy output feedback controller for the fuzzy SMJSs (3).

The premise variable of controller is assumed to the same as
that of the plant.

Controller Rule i: IF θ1k is ηi1, θ2k is ηi2, . . . , θνk is ηiν ,
THEN:

u(k) = Ki(ψk )y(k), (4)

where Ki(ψk ) is the controller gain matrix to be obtained
under the rule i. The variable ψk is employed to observe
the system modes, which belongs to the positive integer set
N = {1, 2, . . . ,N } and satisfies the conditional transition
probability matrix 9 = [ϕsl], where

Pr {ψk = l|δk = s} = ϕsl, s ∈M, l ∈ N (5)

with ϕsl ∈ [0, 1] and
∑N

l=1 ϕsl = 1.
Remark 1: Remarkably, the asynchronous controller to be

designed in this paper includes the following two special
cases: (i) When M = N and ϕss = 1, the con-
troller (4) becomes a mode-dependent (synchronous) one.
(ii) When N = {1}, the controller (4) degenerates to a
mode-independent controller.
Remark 2: In reality, the abnormal transmission of the

systemwill lead to the loss of system state information. So the
system modes are sometimes hidden from the controller,
which leads to the asynchronous phenomenon between the
controller modes and the system modes. In view of this,
as in [33], the random variable ψk here is introduced to
represent the modes of controller, which depends on the con-
ditional transition probability matrix 9 = [ϕsl] to establish
a connection with the system modes. In this case, a HMM
(δk , ψk , 4,9) is constructed.
Let ψk = l, then (4) yields

u(k) = Khly(k) (6)

with Khl =
∑r

i=1 hiKil . Combining system (3) and con-
troller (6), we obtain the following closed-loop system:{

Ex(k + 1) = Āhslx(k)+ Awhsx(k)w(k)+ Chsv(k),
z(k) = D̄hslx(k)+ Hhsv(k),

(7)

where

Āhsl = Ahs + BhsKhlGhs =
r∑
i=1

r∑
j=1

hihjĀijsl,

D̄hsl = Dhs + FhsKhlGhs =
r∑
i=1

r∑
j=1

hihjD̄ijsl,

Āijsl = Ais + BisKjlGis, D̄ijsl = Dis + FisKjlGis.

Before proceeding, we present an important assumption and
several basic definitions which will be used to develop our
results in the sequel.
Assumption 1: rank(E) = rank(E,Awhs) for each s ∈M.
Remark 3: The above Assumption is proposed to guarantee

the existence and uniqueness of the solution of the system (7).
Under Assumption 1, the number of the independent vari-
ables of system (7) is rank(E) = ι, that is, the diffusion term
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Awhsx(k)w(k) doesn’t change the system structure in essence
[41], [42].
Definition 1 [45]: (i) The system (7) with v(k) = 0 is said

to be stochastically stable if for any initial condition x0 ∈ Rn

and δ0 ∈M, there exists a scalar z(x0, δ0) > 0 such that

lim
L→∞

E
{ L∑
k=0

‖x(k)‖2|x0, δ0

}
< z(x0, δ0). (8)

(ii) The system (7) is said to be stochastically admissible if it
is stochastically stable and has an impulse-free solution.
Definition 2 [34]: The system (7) is said to be strictly

(Q, S,R)− β dissipative under the zero initial condition and
v(k) 6= 0, if there exists a scalar β > 0 such that

n∑
k=0

E{r(v(k), z(k))} > β

n∑
k=0

vT(k)v(k), ∀n > 0, (9)

where r(v(k), z(k)) = zT(k)Qz(k)+2zT(k)Sv(k)+vT(k)Rv(k)
is called as the energy supply function, Q, S,R are real ratio-

nal matrices, Q and R are symmetrical. Assume that (Q
1
2
−) =

(−Q)
1
2 ≥ 0 satisfies −Q = (Q

1
2
−)

2, that is to say Q ≤ 0.
Remark 4: As observed in [34], [46], [51], H∞ control

and passive control are integrated in the dissipative control.
In other words, by selecting appropriate dissipativity param-
eters Q, S,R, the above two performance indexes can be
respectively obtained. (i) When Q = −I , S = 0,R = (ς2 +
β)I (ς is a positive scalar), the dissipativity corresponds to
H∞ performance requirement. (ii) When Q = 0, S = I ,R =
2βI , the dissipativity coincides with the passivity.

III. MAIN RESULTS
In this section, we propose sufficient conditions such that
the considered system (7) is stochastically admissible and
(Q, S,R) − β dissipative. And then, the output feedback
controller is given by solving the strict LMIs.
Theorem 1: Given a scalar β > 0, the real matrices Q, S

and R, where Q is negative semidefinite matrix and Q,R are
symmetric matrices. System (7) is stochastically admissible
and strictly (Q, S,R) − β dissipative, if there exist matrices
Pis > 0,Pct > 0,Wisl > 0, and U = UT such that the
following conditions hold for any s, t ∈ M, l ∈ N and
c, i, j ∈ I

N∑
l=1

ϕslWisl < Pis, (10)

0ciisl < 0, (11)

0cijsl + 0cjisl < 0, i < j, (12)

where

0cijsl =

0cijsl11 0cijsl12 D̄Tijsl(Q
1
2
−)

T

∗ 0cijsl22 HT
is (Q

1
2
−)

T

∗ ∗ −I

 ,
0cijsl11 = −ETWislE + ĀTijsl X̄csĀijsl + A

T
wisX̄csAwis,

0cijsl12 = ĀTijsl X̄csCis − D̄
T
ijslS,

0cijsl22 = CT
is X̄csCis − sym(H

T
is S)− R+ βI ,

X̄cs =
M∑
t=1

αstXct ,Xct = Pct − (E⊥)TUE⊥.

Proof: Using the fuzzy rules, we give the following
expressions.

Phs =
r∑
i=1

hiPis > 0,Whsl =

r∑
i=1

hiWisl > 0,

Ph′t =
r∑

c=1

h′cPct > 0,Xh′t =
r∑

c=1

h′cXct ,

X̄h′s =
r∑

c=1

h′cX̄cs, (13)

where h′ = hk+1 represents the membership function at k+1.
From (10) and (13), we can get

N∑
l=1

ϕslWhsl < Phs. (14)

At first, we show that the system (7) (v(k) = 0) has an
impulse-free solution. By combining (11) - (13), it is obtained
that
0h′hsl

=

r∑
c=1

r∑
i=1

r∑
j=1

h′c(θk )hi(θk )hj(θk )0cijsl

=

r∑
c=1

h′c

 r∑
i=1

h2i 0ciisl +
r−1∑
i=1

r∑
j=i+1

hihj(0cijsl + 0cjisl)


< 0, (15)

where

0h′hsl =

0h′hsl11 0h′hsl12 D̄Thsl(Q
1
2
−)

T

∗ 0h′hsl22 HT
hs(Q

1
2
−)

T

∗ ∗ −I

 ,
0h′hsl11 = −E

TWhslE + ĀThsl X̄h′sĀhsl + A
T
whsX̄h′sAwhs,

0h′hsl12 = ĀThsl X̄h′sChs − D̄
T
hslS,

0h′hsl22 = CT
hsX̄h′sChs − sym(H

T
hsS)− R+ βI .

Under Assumption 1, there exists a pair of nonsingular
matrices M and N such that

MEN =
[
Iι 0
0 0

]
, MAwhsN =

[
Awhs11 Awhs12

0 0

]
. (16)

Set

MĀhslN =
[
Āhsl11 Āhsl12
Āhsl21 Āhsl22

]
(17)

and

M−TXh′tM
−1
=

[
Xh′t11 Xh′t12
Xh′t21 Xh′t22

]
,

M−TWhslM−1 =
[
Whsl11 Whsl12
Whsl21 Whsl22

]
, (18)
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where Xh′t12 = XTh′t21,Whsl12 = W T
hsl21. It follows from (15)

that

−ETWhslE + ĀThsl X̄h′sĀhsl + A
T
whsX̄h′sAwhs < 0. (19)

In view of Whsl > 0, Ph′t > 0 and E⊥E = 0, we obtain

ETWhslE ≥ 0,

ETXh′tE = ET (Ph′t − (E⊥)TUE⊥)E

= ETPh′tE − (E⊥E)TUE⊥E

= ETPh′tE

≥ 0. (20)

By (16), (17) and (18), we have

ETXh′tE

= N−T (MEN )TM−TMT (M−TXh′tM
−1)M

M−1(MEN )N−1

= N−T
[
Xh′t11 0
0 0

]
N−1, (21)

ETWhslE

= N−T (MEN )TM−TMT (M−TWhslM−1)M

M−1(MEN )N−1

= N−T
[
Whsl11 0

0 0

]
N−1, (22)

ĀThslXh′t Āhsl
= N−T (MĀhslN )TM−TMT (M−TXh′tM

−1)M

M−1(MĀhslN )N−1

= N−T
[
5h′hstl11 5h′hstl12
∗ 5h′hstl22

]
N−1, (23)

ATwhsXh′tAwhs
= N−T (MAwhsN )TM−TMT (M−TXh′tM

−1)M

M−1(MAwhsN )N−1

= N−T
[
3wh′hst11 3wh′hst12
∗ 3wh′hst22

]
N−1, (24)

where

5h′hstl11 = ĀThsl11Xh′t11Āhsl11 + Ā
T
hsl21Xh′t21Āhsl11

+ĀThsl11Xh′t12Āhsl21 + Ā
T
hsl21Xh′t22Āhsl21,

5h′hstl12 = ĀThsl11Xh′t11Āhsl12 + Ā
T
hsl21Xh′t21Āhsl12

+ĀThsl11Xh′t12Āhsl22 + Ā
T
hsl21Xh′t22Āhsl22,

5h′hstl22 = ĀThsl12Xh′t11Āhsl12 + Ā
T
hsl22Xh′t21Āhsl12

+ĀThsl12Xh′t12Āhsl22 + Ā
T
hsl22Xh′t22Āhsl22,

3wh′hst11 = ATwhs11Xh′t11Awhs11,

3wh′hst12 = ATwhs11Xh′t11Awhs12,

3wh′hst22 = ATwhs12Xh′t11Awhs12.

Applying (22)-(24) to (19), we derive

−ETWhslE + ĀThsl X̄h′sĀhsl + A
T
whsX̄h′sAwhs

= N−T
[
∇1 ∇2
∗ ∇3

]
N−1 < 0, (25)

where

∇3 = ĀThsl12X̄h′s11Āhsl12 + Ā
T
hsl22X̄h′s21Āhsl12

+ĀThsl12X̄h′s12Āhsl22 + Ā
T
hsl22X̄h′s22Āhsl22

+ĀTwhs12X̄h′s11Āwhs12,

X̄h′s11 =
M∑
t=1

αstXh′t11, X̄h′s12 =
M∑
t=1

αstXh′t12,

X̄h′s21 =
M∑
t=1

αstXh′t21, X̄h′s22 =
M∑
t=1

αstXh′t22.

Since ∇1 and ∇2 are independent of the results discussed
below, their concrete expressions are omitted. According
to (19)-(25), it is easy to see that ∇3 < 0 and Xh′t11 ≥ 0.
Then we have

ĀThsl22X̄h′s21Āhsl12 + Ā
T
hsl12X̄h′s12Āhsl22

+ĀThsl22X̄h′s22Āhsl22 < 0. (26)

(26) implies that Āhsl22 is nonsingular. Let x̆(k) = N−1x(k) =[
xT1 (k) x

T
2 (k)

]T for k ∈ N, and denote

M̄hsl =

[
I −Āhsl12Ā

−1
hsl22

0 I

]
M . (27)

By (16), (17) and (27), we immediately have

M̄hslEN =
[
Iι 0
0 0

]
,

M̄hslAwhsN =
[
Awhs11 Awhs12

0 0

]
,

M̄hsl ĀhslN =
[
Āhsl11 − Āhsl12Ā

−1
hsl22Āhsl21 0

Āhsl21 Āhsl22

]
.

Then, the system (7) with v(k) = 0 is equivalent to
x1(k + 1) = (Āhsl11 − Āhsl12Ā

−1
hsl22Āhsl21)x1(k)

+[Awhs11x1(k)+ Awhs12x2(k)]w(k),
0 = Āhsl21x1(k)+ Āhsl22x2(k).

(28)

Since Āhsl22 is a nonsingular matrix, this implies

x2(k) = −Ā
−1
hsl22Āhsl21x1(k). (29)

Substituting (29) into (28), it means that (28) is a normal
discrete-time stochastic system. Thus, the system (7) with
v(k) = 0 has an impulse-free solution.
In the following, we will prove that the system (7)
(v(k) = 0) is stochastically stable. Consider the following
Lyapunov function

V (x(k), δk ) = xT (k)ETPhδkEx(k), (30)

where Phδk =
∑r

i=1 hiPiδk > 0. In the case of v(k) =
0, by making use of (7) and the difference of V (x(k), δk ),
we have

E{1Vk}
= E{V (x(k + 1), δk+1)} − E{V (x(k), δk )}
= E{E[V (x(k + 1), δk+1= t)|x(k), δk = s]} − E{V (x(k), δk
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= s)} − E{xT (k + 1)ET (E⊥)TUE⊥Ex(k + 1)}

= E{
N∑
l=1

ϕsl[(Āhslx(k)+ Awhsx(k)w(k))T (
M∑
t=1

αst (Ph′t

−(E⊥)TUE⊥))(Āhslx(k)+ Awhsx(k)w(k))]}

−E{xT (k)ETPhsEx(k)}

= E{
N∑
l=1

ϕsl[(Āhslx(k)+ Awhsx(k)w(k))T X̄h′s(Āhslx(k)

+Awhsx(k)w(k))]} − E{xT (k)ETPhsEx(k)}

= E{xT (k)
N∑
l=1

ϕsl(ĀThsl X̄h′sĀhsl + A
T
whsX̄h′sAwhs

−ETPhsE)x(k)}. (31)

The derivation process here is similar to that in [45]. Let
3h′hsl =

∑N
l=1 ϕsl(Ā

T
hsl X̄h′sĀhsl + A

T
whsX̄h′sAwhs − E

TPhsE),
(14), (19) and (31) deduce

E{1Vk} = E{xT (k)3h′hslx(k)} < 0. (32)

For (32), there exists a scalar γ = λmin(−3h′hsl) such that

E{1Vk} < −γ E{‖x(k)‖2}. (33)

Summing up k both sides of (33) from 0 to τ , we get

E{V (x(0), δ0)} − E{V (x(τ + 1), δτ+1)}

> γ E
{ τ∑
k=0

‖x(k)‖2|x(0), δ0

}
. (34)

Taking the limit on (34), we obtain

lim
τ→∞

E
{ τ∑
k=0

‖x(k)‖2|x(0), δ0

}
< z(x(0), δ0), (35)

where z(x(0), δ0) =
E{V (x(0),δ0)}

γ
. Therefore, according to

Theorem 1, the system (7) with v(k) = 0 is stochastically
admissible. At last, we verify that the system (7) is strictly
(Q, S,R)− β dissipative. By the energy supply function and
a series of computation, we obtain

E{1Vk − r(z(k), v(k))+ βvT (k)v(k)}
= E{V (x(k + 1), δk+1)− V (x(k), δk )− (zT (k)Qz(k)

+2zT (k)Sv(k)+ vT (k)Rv(k))+ βvT (k)v(k)}

= E{
N∑
l=1

ϕsl[(Āhslx(k)+ Awhsx(k)w(k)+ Chsv(k))T

X̄h′s(Āhslx(k)+ Awhsx(k)w(k)+ Chsv(k))

−xT (k)ETPhsEx(k)− (D̄hslx(k)+ Hhsv(k))TQ

(D̄hslx(k)+ Hhsv(k))− 2(D̄hslx(k)+ Hhsv(k))T Sv(k)

−vT (k)Rv(k)+ βvT (k)v(k)]}

= E{ζ Tk 4h′hslζk}, (36)

where ζk =
[
xT (k) vT (k)

]T and

4h′hsl =

N∑
l=1

ϕsl

[
4h′hsl11 4h′hsl12
∗ 4h′hsl22

]
,

4h′hsl11 = ĀThsl X̄h′sĀhsl + A
T
whsX̄h′sAwhs − E

TPhsE

−D̄ThslQD̄hsl,

4h′hsl12 = ĀThsl X̄h′sChs − D̄
T
hslQHhs − D̄

T
hslS,

4h′hsl22 = CT
hsX̄h′sChs − H

T
hsQHhs − sym(H

T
hsS)

−R+ βI .

Employing Schur complement lemma to (15) and considering
ϕsl ≥ 0, we derive

E{1Vk − r(v(k), z(k))+ βvT (k)v(k)} < 0. (37)

Summing up (37) from k = 0 to n, we have

E{V (x(n+ 1), δn+1)} − E{V (x(0), δ0)}

−

n∑
k=0

E{r(v(k), z(k))} + βE
{ n∑
k=0

vT(k)v(k)
}
< 0. (38)

Because of E{V (x(0), δ0)} = 0 and E{V (x(n+1), δn+1)} > 0,
(38) results in

n∑
k=0

E{r(v(k), z(k))} > β

n∑
k=0

vT(k)v(k),∀n ≥ 0.

Consequently, the system (7) is strictly (Q, S,R) − β

dissipative. The proof is completed.
Remark 5: Note that in Theorem 1, HMM is implemented

to detect the system modes and stochastically admissible
conditions for dissipativity of fuzzy SMJSs are proposed.
When system modes and control modes are synchronous
or independent, Theorem 1 can not only be attributed to
corresponding results of [3], [6], [14] but also be regarded
as the discrete-time counterpart of [15]. Moreover, Lyapunov
function selected in Theorem 1 relies on both fuzzy rules and
system modes, although the amount of variables increases,
the results are less conservative.
Remark 6: (i) The reference [46] studied the fuzzy MJSs,

which was limited to the scope of normal linear systems.
However, we discuss singular systems in this paper, which are
more complex than normal systems. Because the regularity
and non-impulsiveness must be considered to ensure that
the system has an impulse-free solution. (ii) The results of
[44] were different from those of this paper, which proposed
the piecewise homogeneous Markov chain to reflect the
asynchronization. Concretely speaking, the controller modes
obeyed the finite piecewise homogeneous Markov chain, and
the system modes followed the homogeneous Markov chain.
But we have described the asynchronous phenomenon by a
hidden Markov model, in which the controller modes and
the system modes are connected through a certain transition
probability matrix. On the other hand, [44] investigated state
feedback control, and themethod adoptedwas not suitable for
dealing with output feedback control. While the system aug-
mentation approach is used in Theorem 2 to design the output
feedback controller, which is more extensive and effective for
studying the problem of state feedback control.
It should be pointed out that the criterion obtained in

Theorem 1 can not be directly applied to design the desired
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asynchronous output feedback controller. To solve this prob-
lem, some tractable conditions will be presented in the next
theorem.

Before proceeding, we introduce the augmented dimension
form of system (7){

Ẽ x̃(k + 1) = Ãhsl x̃(k)+ Ãwhsx̃(k)w(k)+ C̃hsv(k),
z(k) = D̃hsx̃(k)+ Hhsv(k),

(39)

where

Ẽ =
[
E 0
0 0

]
, Ãhsl =

[
Ahs Bhs

KhlGhs −I

]
,

Ãwhs =
[
Awhs 0
0 0

]
, C̃hs =

[
Chs
0

]
,

D̃hs =
[
Dhs Fhs

]
, x̃(k) =

[
xT (k) uT (k)

]T
.

Theorem 2: Given a scalar β > 0, the real matrices Q, S
and R, where Q is negative semidefinite matrix and Q,R are
symmetric matrices. System (7) is stochastically admissible
and strictly (Q, S,R) − β dissipative if one of the following
two conditions holds.

(i) There exist matrices Pis > 0, Pct > 0, Wisl > 0 and
U = U T for any s, t ∈M, l ∈ N and c, i, j ∈ I such that

N∑
l=1

ϕslWisl < Pis, (40)

ϒciisl < 0, (41)

ϒcijsl + ϒcjisl < 0, i < j, (42)

where

ϒcijsl =

ϒcijsl11 ϒcijsl12 D̃Tis(Q
1
2
−)

T

∗ ϒcijsl22 HT
is (Q

1
2
−)

T

∗ ∗ −I

 ,
ϒcijsl11 = −ẼTWisl Ẽ + ÃTijsl X̃csÃijsl + Ã

T
wisX̃csÃwis,

ϒcijsl12 = ÃTijsl X̃csC̃is − D̃
T
isS,

ϒcijsl22 = C̃T
is X̃csC̃is − sym(H

T
is S)− R+ βI ,

X̃cs =
M∑
t=1

αst X̃ct , X̃ct =Pct − (Ẽ⊥)T Ũ Ẽ⊥,

Ẽ⊥ =
[
E⊥ 0
0 I

]
, Ũ =

[
U 0
0 0

]
,

Ãijsl =
[

Ais Bis
KjlGis −I

]
, Ãwis =

[
Awis 0
0 0

]
,

C̃is =
[
Cis
0

]
, D̃is =

[
Dis Fis

]
.

(ii) There exist matrices Pis > 0, Pct > 0, Wisl > 0, Vl,Yl
and U = U T satisfying (40) and the following LMIs hold
for any s, t ∈M, l ∈ N and c, i, j ∈ I

ϒ̃ciisl < 0, (43)

ϒ̃cijsl + ϒ̃cjisl < 0, i < j, (44)

where

ϒ̃cijsl =

[
ϒ̃cijsl11 −Vl +A T

ijslY
T
l

∗ Xcs − Yl − Y T
l

]
,

Xcs =

[
X̃cs 0
0 I

]
,

ϒ̃cijsl11 = Kisl +A T
wisXcsAwis + sym(VlAijsl),

Kisl =

[
−ẼTWisl Ẽ −D̃TisS
∗ −sym(HT

is S)− R+ βI

]
,

Aijsl =

[
Ãijsl C̃is

Q
1
2
−D̃is Q

1
2
−His

]
,Awis =

[
Ãwis 0
0 0

]
.

Proof: From (41)-(42), it follows that

ϒh′hsl =

r∑
c=1

r∑
i=1

r∑
j=1

h′c(θk )hi(θk )hj(θk )ϒcijsl

=

r∑
c=1

h′c

[ r∑
i=1

h2iϒciisl +
r−1∑
i=1

r∑
j=i+1

hihj

×(ϒcijsl + ϒcjisl)
]
< 0. (45)

In the same way, (43)-(44) leads to

ϒ̃h′hsl =

r∑
c=1

r∑
i=1

r∑
j=1

h′c(θk )hi(θk )hj(θk )ϒ̃cijsl

=

r∑
c=1

h′c

[ r∑
i=1

h2i ϒ̃ciisl +
r−1∑
i=1

r∑
j=i+1

hihj

×(ϒ̃cijsl + ϒ̃cjisl)
]
< 0, (46)

where

ϒh′hsl =

ϒh′hsl11 ϒh′hsl12 D̃Ths(Q
1
2
−)

T

∗ ϒh′hsl22 HT
hs(Q

1
2
−)

T

∗ ∗ −I

 ,
ϒ̃h′hsl =

[
ϒ̃h′hsl11 −Vl +A T

hslY
T
l

∗ Xh′s − Y − Y T

]
,

ϒh′hsl11 = −Ẽ
TWhsl Ẽ + ÃThsl X̃h′sÃhsl + Ã

T
whsX̃h′sÃwhs,

ϒh′hsl12 = ÃThsl X̃h′sC̃hs − D̃
T
hsS,

ϒh′hsl22 = C̃T
hsX̃h′sC̃hs − sym(H

T
hsS)− R+ βI ,

ϒ̃h′hsl11 = Khsl +A T
whsXh′sAwhs + sym(V Ahsl),

Khsl =

[
−ẼTWhsl Ẽ −D̃ThsS
∗ −sym(HT

hsS)− R+ βI

]
,

Awhs =

[
Ãwhs 0
0 0

]
,Xh′s =

[
X̃h′s 0
0 I

]
,

Ahsl =

[
Ãhsl C̃hs

Q
1
2
−D̃hs Q

1
2
−Hhs

]
,

X̃h′s =
M∑
t=1

αst X̃h′t , X̃h′t =Ph′t − (Ẽ⊥)T Ũ Ẽ⊥.
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(i) By the matrix decomposition technique, matrices
Ãhsl, Ãwhs, D̃hs and Ẽ are respectively expressed in the
following forms,

Ãhsl =
[
I −Bhs
0 I

] [
Āhsl 0
0 −I

] [
I 0

−KhlGhs I

]
,

Ãwhs =
[
Awhs 0
0 0

] [
I 0

−KhlGhs I

]
,

D̃hs = [Dhs Fhs]
[

I 0
KhlGhs I

] [
I 0

−KhlGhs I

]
,

Ẽ =
[
E 0
0 0

] [
I 0

−KhlGhs I

]
. (47)

Let

Phs =

[
P1hs P2hs
∗ P3hs

]
> 0,

Whsl =

[
W1hsl W2hsl
∗ W3hsl

]
> 0, (48)

where

Phs =

r∑
i=1

hiPis, Whsl =

r∑
i=1

hiWisl,

Pis =

[
P1is P2is
∗ P3is

]
> 0,Wisl =

[
W1isl W2isl
∗ W3isl

]
> 0.

Substituting (47) into (45) yields

2T
hsl

21hsl · · · 22hsl
· · · · · · · · ·

2T
2hsl · · · 23hsl

2hsl < 0, (49)

where

2hsl =

 I 0 0
−KhlGhs I 0

0 0 I

 ,
21hsl = ĀThsl X̃1h′sĀhsl + A

T
whsX̃1h′sAwhs − E

TW1hslE

−D̄ThslQD̄hsl,

22hsl = ĀThsl X̃1h′sChs − D̄
T
hslQHhs − D̄

T
hslS,

23hsl = CT
hsX̃1h′sChs − H

T
hsQHhs − sym(H

T
hsS)

−R+ βI ,

X̃1h′s =
M∑
t=1

αst X̃1h′t , X̃1h′t =P1h′t − (E⊥)TU E⊥,

P1h′t =

r∑
c=1

h′cP1ct > 0.

By (49), we have [
21hsl 22hsl
∗ 23hsl

]
< 0. (50)

According to (40) and (48), it follows that

N∑
l=1

ϕslW1hsl < P1hs. (51)

It is noted that (50) and (51) satisfy the condition of Theo-
rem 1. As a result, system (7) is stochastically admissible and
strictly (Q, S,R)− β dissipative.
(ii) Pre- and post-multiplying (46) by

[
I A T

hsl

]
and[

I A T
hsl

]T , we obtain
ÃThsl X̃h′sÃhsl + Ã

T
whsX̃h′sÃwhs

−ẼTWhsl Ẽ

∗

ÃThsl X̃h′sC̃hs − D̃
T
hsS

C̃T
hsX̃h′sC̃hs − R
−sym(HT

hsS)+ βI


−

[
D̃ThsQD̃hs D̃ThsQHhs
∗ HT

hsQHhs

]
< 0. (52)

By Schur complement lemma, (52) is equivalent to (45). The
proof is completed.
Remark 7: It is shown that, by the augmentation dimension

scheme, system (7) is transformed into (39) and two novel
conditions for stochastic admissibility and dissipativity of
system (7) are obtained in Theorem 2. Actually, the con-
dition (ii) can deduce the condition (i). Besides, the con-
dition (ii) introduces more supplementary free variables
Vl,Yl , which makes the LMIs conditions (43) and (44) more
tractable by Matlab software. Correspondingly, the desired
output feedback controller can be design successfully. In spite
of computational increase, which is a trade-off between con-
servatism and computation.
Theorem 3: Given a scalar β > 0, the real matri-

ces Q, S and R, where Q is negative semidefinite matrix
and Q,R are symmetric matrices. System (7) is stochas-
tically admissible and strictly (Q, S,R) − β dissipative,
if for any s, t ∈ M, l ∈ N and c, i, j ∈ I, there

exist matrices Pct =

[
P1ct P2ct
∗ P3ct

]
> 0, Pis =[

P1is P2is
∗ P3is

]
> 0, Wisl =

[
W1isl W2isl
∗ W3isl

]
> 0, U =

U T , V11l,V13l,V21l,V22l,V3l,Y11l,Y13l,Y21l,Y22l,Y3l,Tjl
and nonsingular matrix V12l , such that the following condi-
tions hold:

N∑
l=1

ϕslWisl < Pis, (53)

8ciisl < 0, (54)

8cijsl +8cjisl < 0, i < j, (55)

where

8cijsl =

[
8̄11cijsl 8̄12ijsl
∗ 8̄22csl

]
,

8̄11cijsl =

811cijsl 812ijsl 813ijsl
∗ 822isl 823isl
∗ ∗ 833isl

 ,
8̄12ijsl =

814ijsl 815ijsl 816isl
824isl 825isl 826isl
834isl 835isl 836isl

 ,
8̄22csl =

844csl 845csl 846l
∗ 855csl 856l
∗ ∗ 866l

 ,
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811cijsl = −ETW1islE + ATwis[P1cs − (E⊥)TU E⊥]Awis

+sym(V11lAis + ZTjlGis + V21lQ
1
2
−Dis),

812ijsl = V11lBis − ZV12l + V21lQ
1
2
−Fis + A

T
isV

T
13l + G

T
isT

T
jl

+DTis(Q
1
2
−)

TV T
22l,

813ijsl = −DTisS + V11lCis + V21lQ
1
2
−His + D

T
is(Q

1
2
−)

TV T
3l ,

814ijsl = ATisY
T
11l + G

T
isT

T
jl Z

T
+ DTis(Q

1
2
−)

TY T21l − V11l,

815ijsl = ATisY
T
13l + G

T
isT

T
jl + D

T
is(Q

1
2
−)

TY T22l − ZV12l,

816isl = DTis(Q
1
2
−)

TY T3l − V21l,

822isl = sym(V13lBis − V12l + V22lQ
1
2
−Fis),

823isl = −FTis S + V13lCis + V22lQ
1
2
−His + F

T
is (Q

1
2
−)

TV T
3l ,

824isl = BTisY
T
11l − V

T
12lZ

T
+ FTis (Q

1
2
−)

TY T21l − V13l,

825isl = BTisY
T
13l − V

T
12l + F

T
is (Q

1
2
−)

TY T22l − V12l,

826isl = FTis (Q
1
2
−)

TY T3l − V22l,

833isl = sym(−HT
is S + V3lQ

1
2
−His)− R+ βI ,

834isl = CT
isY

T
11l + H

T
is (Q

1
2
−)

TY T21l,

835isl = CT
isY

T
13l + H

T
is (Q

1
2
−)

TY T22l,

836isl = HT
is (Q

1
2
−)

TY T3l − V3l,

844csl = P1cs − (E⊥)TU E⊥ − Y11l − Y T11l,
845csl = P2cs − ZV12l − Y T13l,
846l = −Y21l,855csl =P3cs − V12l − V T

12l,

856l = −Y22l,866l = I − Y3l − Y T3l ,

P1cs =

M∑
t=1

αstP1ct ,P2cs =

M∑
t=1

αstP2ct ,

P3cs =

M∑
t=1

αstP3ct ,Z =
[
Im 0m×(n−m)

]T
.

Moreover, the asynchronous output feedback controller gains
can be solved by Kjl = V−112l Tjl .

Proof: The matrices Vl and Yl are given as

Vl =

V11l ZV12l V21l
V13l V12l V22l
0 0 V3l

 , (56)

Yl =

 Y11l ZV12l Y21l
Y13l V12l Y22l
0 0 Y3l

 . (57)

By setting Tjl = V12lKjl and substituting (56)-(57) into the
condition (ii) of Theorem 2, Theorem 3 is derived.

IV. A NUMERICAL EXAMPLE
In this section, a numerical example is given to show the
validity of the proposed methods. Consider the T-S fuzzy
singular stochastic Markov jump systems (7) with two
fuzzy rules and three modes, the associated parameters are
presented as follows:

•Mode 1

A11 =
[
−1.01 0.02
0.05 1.12

]
, A21 =

[
−1.05 0.09
0.05 1.03

]
,

Aw11 =
[
0.15 0.1
0 0

]
, Aw21 =

[
0.07 0
0 0

]
,

B11 =
[
0.11
0.01

]
, B21 =

[
0.1
0.02

]
,

C11 =

[
0.11
0.01

]
, C21 =

[
0.24
0.08

]
,

G11 =
[
0.05 0.13

]
, G21 =

[
0.31 0

]
,

D11 =
[
0.91 0

]
, D21 =

[
0.13 0.04

]
,

F11 = 0.02,F21 = −0.11,H11 = 0.62,H21 = 0.81.

•Mode 2

A12 =
[
0.73 0.43
0.01 0.02

]
, A22 =

[
−0.3 0.03
0 1.05

]
,

Aw12 =
[
0.11 0
0 0

]
, Aw22 =

[
0.04 0.01
0 0

]
,

B12 =
[
0.13
0.02

]
, B22 =

[
0.07
0.01

]
,

C12 =

[
−0.1
−0.03

]
, C22 =

[
0.1
0.02

]
,

G12 =
[
0.1 0.04

]
, G22 =

[
0.1 0.06

]
,

D12 =
[
0.4 0.01

]
, D22 =

[
0.08 0

]
,

F12 = 0.09, F22 = 0.21,H12 = 0.79,H22 = 0.7.

•Mode 3

A13 =
[
0.15 0.2
0.02 1.07

]
, A23 =

[
0.68 1
−0.2 1.42

]
,

Aw13 =
[
0.1 0.02
0 0

]
, Aw23 =

[
0.1 0.05
0 0

]
,

B13 =
[
0.09
0.01

]
, B23 =

[
0.1
0.01

]
,C13 =

[
0.31
0.1

]
,

C23 =

[
0.09
0.01

]
, G13 =

[
−0.1 0.2

]
,

G23 =
[
0.12 0

]
,

D13 =
[
1 0

]
, D23 =

[
0.1 0.03

]
,

F13 = 0.03, F23 = 0.18, H13 = 0.9, H23 = 0.69.

The transition probability matrix � is given as

� = [αst ] =

 0.4 0.25 0.35
0.1 0.4 0.5
0.2 0.3 0.5

 .
On the other hand, we choose E =

[
1 0.4
0 0

]
,E⊥ =

[
0 4

]
.

And the fuzzy membership functions are given as

h1(x1(k)) =


sin x1(k)−$x1(k)

(1−$ )x1(k)
, x1(k) 6= 0,

1, x1(k) = 0,
h2(x1(k)) = 1− h1(x1(k)),

where$ = 0.01
π

.
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TABLE 1. The values of Q,S,R for different control criteria.

TABLE 2. Designed passive controller based on different asynchronous
levels.

TABLE 3. Designed H∞ controller under H∞ performance level ς = 2.5
and different asynchronous levels.

TABLE 4. Designed (Q,S,R)− β dissipative controller based on different
asynchronous levels.

FIGURE 1. State trajectories of the closed-loop system (7).

The conditional probability matrices 9 = [ϕsl] based on
different asynchronous level are given below, respectively:

synchronous (case 1): 91 =

 1 0 0
0 1 0
0 0 1

,
weakly asynchronous (case 2): 92 =

 0.5 0.15 0.35
0 1 0
0 0 1

,
strongly asynchronous (case 3): 93 =

 0.5 0.15 0.35
0.4 0.2 0.4
0 0 1

,
completely asynchronous (case 4):94=

 0.5 0.15 0.35
0.4 0.2 0.4
0.4 0.15 0.45

.
We give different values of Q, S and R in Table 1 to

represent the passive, H∞ and dissipative performance of

FIGURE 2. Trajectories of control input (6).

FIGURE 3. The curve of δ(k).

FIGURE 4. The curve of ψ(k).

the system, respectively. By solving LMIs of Theorem 3,
the output feedback gains for three different control issues
are obtained in Tables 2-4, respectively. This means the dis-
sipative control considered in this paper covers the passivity
and H∞ control as special cases. In the simulation, the initial
state is x(0) =

[
0.8426 0.0186

]T , the time k takes values
from 1 to 102, and w(k) takes 101 random numbers obey-
ing the normal distribution. Due to the affection of w(k),
the state of system from k to k + 1 is stochastic. We draw
the state spline curves for closed-loop system (7) under the
completely asynchronous controller given in the case 4 of
Table 4. Figures 1-2 show 30 state trajectories and control
input trajectories, respectively. It can be clearly seen from
them that the curves approximate to zero as k increases.
The obtained results demonstrate that our developed scheme
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is correct and effective. Furthermore, it is observed from
Figures 3-4 that the modes of the system and controller are
obviously asynchronous.

V. CONCLUSION
This note has studied the dissipative control for discrete-time
T-S fuzzy SMJSs with state-dependent noise and asyn-
chronous modes. The HMM has been applied to describe
the asynchronous phenomenon appearing between the sys-
tem modes and the controller modes, which makes the
closed-loop system become the singular stochastic hidden
Markov jump system. Firstly, based on Lyapunov function
dependent on modes and fuzzy set, sufficient conditions,
which guarantee the considered system to be stochastically
admissible and strictly (Q, S,R) − β dissipative, have been
proposed. Secondly, two alternative conditions for facili-
tating the analysis of controller have been presented by
employing the auxiliary variable matrices and augmentation
approach. Thirdly, an asynchronous output feedback con-
troller has been successfully designed via solving strict LMIs.
Finally, an example has been presented to demonstrate the
effectiveness of the design method. In the future, by making
using of the obtained results of this paper, we will investigate
the asynchronous dissipative filtering for singular stochastic
Markov jump systems with time-varying delay.
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