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ABSTRACT Graph-based learningmodel has a wide range of applications inmachine learning and computer
vision. The key issue of the graph-based applications is to construct an informative graph to effectively
represent data correlations. In practice, real-world data is usually contaminated by complex noise beyond
Gaussian noise and sparse noise, which degrades learning performance dramatically. To construct a robust
graph that represents real-world data distribution well, we propose a novel graph construction method. The
proposed method is designed to be robust to complex noise beyond sparse or Gaussian noise by combining
different previously given metrics of measuring data errors, which robustly and correctly generates a set of
edges. To demonstrate the superiority of the proposed method, we employed the clustering and classification
tasks on the real-world datasets. The experimental results demonstrate that the proposed method is superior
to the existing methods in both accuracy and robustness to complex noise.

INDEX TERMS Graph, robust, image processing, noise.

I. INTRODUCTION
Graph has been used as an effective relationship modelling
tool to modulate data correlations for solving various
problems in machine learning and image processing commu-
nity [1]–[4]. A graph uses a set of the vertices to represent
data samples and links two related samples for modulating
pairwise relationship between two samples. Thus, compared
with other learningmodels, a graph-based learningmodel can
effectively model the data correlations, resulting in promising
performance for real applications.

The key issue of the graph-based applications is
to construct an informative graph that modulates data
correlations. Most graph construction methods adopt a
neighborhood-based approach to generate a set of the
edges [1]–[4]. In detail, this approach takes each data sample
as centroid vertex and links it to its K -Nearest-Neighbors
(KNN) to generate a set of edges. The neighborhood-based
approach has two main drawbacks that remain unsolved: (1)
Learning performance is sensitive to the neighborhood size
in the k-nearest neighbor selection. A small neighborhood
size separates data samples from the same cluster; on the
contrary, a large neighborhood size combines data samples
from different clusters. (2) Various types of noises may easily
contaminate the real-world data, which degrades the learning
performance dramatically.
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To solve the drawbacks of the neighborhood-based
approach, the representation-based approach [5]–[23] has
been proposed, where each edge is generated by solv-
ing a linear regression problem. These methods usually
imposes different constraints, e.g., sparse constraint [5],
`2-norm [12] and low-rank [15] constraints, on the regres-
sion coefficients to capture the desired data structures.
The representation-based approach separates noise compo-
nents from original data, which chooses the samples with
non-zero coefficients to generate the edges, resulting in a
noise-resistant graph.

Note that compared with the neighborhood-based
approach, the representation-based approach has achieved
more promising performance, specifically for handling the
noisy datasets. However, the existing representation-based
graph construction methods are usually suitable to handle
the data contaminated by Gaussian or sparse noise [13].
When the data contains mixed noise, such as outliers and
complex noise, or densely corrupted, the performance of the
graph-based applications is degraded dramatically.

For many real-world problems, on the one hand, sampled
data is often contaminated by complex noise beyond
Gaussian noise or sparse noise, Specifically for the case
when the data contains occlusion, densely corruption, and
distortion;On the other hand, the prior knowledge on noise is
usually unknown in advance, such that it is difficult to design
a noise removing term in constructing a representation-based
graph.
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Inspired by the recent advances of graph construction,
we propose a novel robust graph construction method, where
data errors or noise are estimated via linearly combining
multiple metrics of measuring the data errors.

The contributions of our work are two fold:

1) The proposed method uses multiple candidate metrics
with their weights to construct a candidate metric pool,
where each candidate metric is considered as the initial
estimation of data errors. Then, these previously given
metrics are linearly combined to estimate the noise or
data errors.

2) The proposed error estimation term is incorporated into
the sparse regression framework, where the weights
of the candidate metrics are jointly learned with
sparse coefficients. Then, the samples with non-zero
coefficients are chosen to generate a set of edges.

The rest of this article is organized as follows.
Section 2 introduces related work. Section 3 presents the
proposed multi-metric induced robust graph construction
method. Section 4 present the optimization scheme.
Section 5 reports experimental settings, results and discus-
sions. Finally, Section 6 concludes the article.

II. RELATED WORK
Most of the existing graph construction methods adopt
the neighborhood-based approach [1]–[4] to generate a
set of edges via linking the nearest neighbors. Because
this approach relies on pair-wise distance to build data
correlations, it is ineffective to capture the global data
structures. As a result, the neighborhood-based methods
tend to be sensitive to noise and data corruption. Various
methods are designed to capture the underlying manifold
structures of the data [30]–[34]. To construct a noise-resistant
graph, the representation-based graph construction approach
adopts the linear regression to generate a set of the edges
and compute the corresponding weights. According to the
types of constraints imposed on the coefficients, the existing
representation based graph construction methods can be
divided into the following four schemes:
`1-Graph [5], [6] adopts sparse regression to construct a

graph. To modulate the data structures, `1-Graph [7], [8]
embeds the underlying structures of the data into the sparse
representation framework. To modulate high dimensional
feature space, kernel `1-Graph [9] adopts a kernel trick to
construct a graph. Manifold regularized `1-Graph discovers
the underlying geometry structure of data distribution. For
instance, Zheng et al. [10] propose a manifold regularized
sparse representation. Jin et al. [11] propose multiple graph
regularized sparse coding, which adopts multiple graphs
regularized sparse coding for the clustering task.
`2-Graph [12] adopts ridge regression instead of sparse

representation to construct a graph, which has the following
two advantages: (1) Because the derivation of the coefficients
has a closed-form solution, `2-Graph is computationally
efficient. (2) `2-Graph discovers the grouping structures of

the data, which is suitable for clustering task. Furthermore,
correntropy induced `2-Graph [13] adopts the correntropy
induced metric instead of `2-norm to measure data errors,
which performs the better than `2-Graph. Jin et al. [14]
propose locality preserving collaborative representation,
which achieves promising classification performance on
some image datasets.
Low-rank Graph [15] adopts a Low-Rank Representa-

tion (LRR) to construct a graph. Because the low-rank
constraint is imposed on the entire coefficients matrix,
Low-rank Graph modulates the global linear structure of the
data. Multiple-view low-rank representation is designed to
simultaneously capture the latent subspace of multiple-view
features [16]. When the amount of observed data is
insufficient, latent low-rank Graph regards the hidden data,
after being transposed, as input data matrix [17]. Adaptive
Low-rank Graph [18] jointly learns the affinity matrix and
the representation coefficients in a unified framework. Kernel
Low-rank representation [19] adopts a kernel projection
to find high-dimensional space, where data have possible
low-rank structure. Manifold regularized Low-rank Graph
incorporates a hypergraph regularization term into the
low-rank representation framework, which considers local
consistence of the learned low-rank representation [20].

To derive the simultaneous effects of different regular-
ization, multiple constraints are imposed on the regression
coefficients of linear regression, resulting in more resistant
edges. For instance, Non-Negative Sparse Low-Rank Graph
(NNSLR) [21] requires the data representation to be a
non-negative low-rank and sparse matrix. Furthermore,
a weighted `1-norm regularization term is incorporated into
low-rank representation to model the local linear subspace
structure of the data [22]. Low-rank Tensor Graph [23]
enforces the representation not only sparse but also explores
the complementary information of multi-view data.

In summary, the existing methods are usually suitable to
cope with the Gaussian noise or sparse noise. In this article,
we make an attempt to handle complex noise beyond the
Gaussian and sparse noises for constructing a robust graph.

III. METHOD
Suppose there is a collection of N data samples drawn from
a union of linear sub-spaces. For convenience, a collection of
data samples is represented as X = [x1, · ··, xi, · · · ,xN ] ∈
RM×N , where xi ∈ RM is the i-th sample.

A. MULTI-METRIC INDUCED ERROR ESTIMATION
For data lying on or near to the union of the linear subspaces,
we adopt the ‘‘data self-expression’’ property to represent
each sample as the linear combination of the data by itself,
defined as follows:

X = XC+
P∑
i=1

Ei, (1)

where C = [c1c2 · · · cN ] ∈ RN×N is the coefficients
matrix, and ci is the coefficients vector of the i-th sample;
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Ei = [e1e2 · · · eN ] ∈ RM×N is the i-th component of the data
errors matrix and ei ∈ RM is the data errors vector of the i-th

sample. The entire data errors E =
P∑
i=1

Ei and P denotes the

number of metrics of meaturing the data errors.
Because of noise and data corruption, the sampled

real-world data usually deviate from the underlying subspace,
which makes the data errors not equal to zeros. Thus,
the key issue to represent the data correlations is the correct
estimation of data errors.

The existing metrics are usually only effective to measure
the specific data error. For instance, the `2-norm based metric
is suitable to measure the Gaussian noise [6], the `1-norm
based metric is suitable to measure the sparse noise [14]
and the `21-norm based metric is suitable to estimate the
sample-specific corruption [17]. When the data contains the
complex noise in any distribution, or data noise is unknown
in advance, it is difficult to estimate the corresponding noise
components of the data.

To estimate the noise beyond the Gaussian noise or sparse
noise, we would like to estimate the data errors by using the
linear combination of multiple candidate metrics, defined as
follows:

Error(E,λ) = min
E,λ

P∑
i=1

λiMi(Ei), (2)

where Mi(·) denotes the i-th candidate metric to measure the
data errors; λ = [λ1, λ2, · · ·, λi, · · ·, λP] is the weights vector
of the candidate metrics, λi is the weight of the i-th candidate
metric and P is the number of the candidate metrics. The λi
with a larger value indicates the i-th candidate metric plays a
more important role in estimating the data errors.

Furthermore, two constraints
P∑
i=1
λi = 1, λ ≥ 0, are

imposed on weights of the candidate metrics for avoiding
the negative contributions and assigning a natural proba-
bility interpretation. Finally, to avoid the error estimation
over-fitting into the single candidate metric, the Shannon

entropy term
P∑
i=1
λi ln λi is incorporated into the error

estimation term, resulting in the following:

min
E,λ

P∑
i=1

λiMi(Ei)+ γ
P∑
i=1

λi ln λi

s.t.
P∑
i=1

λi = 1, λ ≥ 0 (3)

where γ is the tradeoff parameter to balance the two terms.
In practice, different metrics are used to construct a

candidate metrics pool, where each candidate metric is
considered as the initial estimation of data errors. Then,
the previously given candidate metrics in the metrics pool
are combined linearly to estimate the real data errors; Finally,
the error estimation term is defined in the enlarged parameter
space.

For computational efficiency, we adopt only the following
three metrics: the `1-norm based metric, the Frobenius-norm
(`2-norm) based metric and the `21-norm based metric to
construct a candidate metrics pool. Then, these three metrics
are combined to estimate the real data errors, defined as
follows:

min
E,λ

λ1‖E1‖1 + λ2‖E2‖21 + λ3 ‖E3‖
2
F +γ

3∑
i = 1

λi ln λi

s.t.
3∑

i = 1

λi = 1, λ ≥ 0 (4)

where the Frobenius-norm (`2-norm) based metric is used to
measure the Gaussian noise; the `1-norm based metric is used
to measure the sparse noise and the `21-norm based metric is
used to measure the sample-specific corruption.

B. MULTI-METRIC INDUCED DATA RECONSTRUCTION
In the following, we incorporate the proposed multi-metric
induced error estimation term into the sparse representation
framework. Based on the coefficients, a novel robust graph
construction method is proposed.

min
E1,E2,E3,C,λ

λ1‖E1‖1 + λ2 ‖E2‖21+λ3‖E3‖
2
F

+µ1‖C‖1 + γ
3∑
i=1

λi ln λi

s.t. E1+E2 + E3 = X− XC, diag(C) = 0,
3∑

k=1

λk = 1, λ ≥ 0. (5)

The objective function contains three components:

1) ERROR ESTIMATION TERMS
These terms are used to estimate the real data errors, where
three norm-based candidate metrics are linearly combined to
measure the data errors. Except for three metrics, a Shannon
entropy term is used to avoid the error estimation over-fitting
into the single candidate metric.

2) SPARSE REGULARIZATION TERM
To link a small number of neighbors to construct a sparse
graph, the sparse regularization term is used to make few
coefficients be non-zeros.

3) CONSTRAINTS
Three types of constraints are used: (a) Data reconstruction
constraint, which represents each sample as the linear
combination of the data. (b) The diag(C) = 0 constraint is
imposed on the coefficients to eliminate the trivial solution
of reconstructing each sample as itself. (c) The constraints
are imposed on the weights of the candidate metrics to
avoid negative contributions and give a natural probability
interpretation for each weight.

The coefficients matrix characterizes how data samples
contribute to data reconstruction. Such information is
crucial to discover the underlying structures of the data.
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The proposed error estimation term makes the derivation
of coefficients robust to complex noise and corruption.
Furthermore, the sparse regularization ensures that each
sample is associated with only a few samples, which is
suitable to construct a sparse graph structure. The constraints
discover the underlying linear subspace of the data by
imposing the constraints on the coefficients and weights of
the candidate metrics.

C. EDGE GENERATION
The coefficients matrix derived by solving Eq. (5) is an
asymmetric matrix. To leverage the existing graph-based
frameworks, we employ the simple symmetrization operator
to derive a symmetrical matrix: C∗ = (C+ CT )

/
2.

For each vertex xi, we link it to the samples with non-zero
coefficients for generating a set of the edges. Then, the weight
of each edge is defined as follows:

Aij =
∣∣cij∣∣ , (6)

where Aij is the weight of an edge linking the sample
xi and xj, cij is the j-th coefficient of xi.
Because the proposed graph construction method uses

the error estimation based sparse representation for adaptive
estimation of data errors, we refer to the proposed method as
Ada-`1-Gr.

1) RELATIONSHIP BETWEEN THE PROPOSED METHOD
AND `1-GRAPH
Elhamifar et al. proposed `1-Graph [6]. Different from
`1-Graph, the proposed method fuses multiple candidate
metrics to estimate the data errors; whereas, `1-Graph uses
the Frobenius-norm based metric to estimate the Gaussian
noise. Only when the Frobenius-norm based metric is within
the candidate metrics pool to estimate the data errors, does the
proposed method degenerate into `1-Graph. Thus, `1-Graph
is referred to as a special case of the proposed model.

IV. OPTIMIZATION
Since the objective function is non-convex, it is a challenge to
derive a global optimization solution. Instead, to derive local
optimal solution, a number of optimization methods have
been proposed. Because Alternating Direction Multiplier
(ADM) [24] is suitable to handle the large-scale data,
we adopt the ADM approach to optimize each variable
separately.

A. THE ADM-BASED OPTIMIZATION
By removing E3, Eq. (5) can be rewritten as follows:

min
C,E1,E2,λ

λ1‖E1‖1+λ2‖E2‖21 + λ3 ‖X−XC−E1 − E2‖
2
F

+µ‖C‖1 + γ
3∑
i=1

λi ln λi

s.t. diag(C) = 0,
3∑

k=1

λk = 1, λ ≥ 0. (7)

By introducing an auxiliary matrix P ∈ RN×N , we rewrite
Eq. (7) as

min
P,C,E1,E2,λ

λ1‖E1‖1 + λ2‖E2‖21 + λ3 ‖X− XP− E1

−E2‖
2
F + µ‖C‖1 + γ

3∑
i=1

λi ln λi

s.t. P = C− diag(C),
3∑

k=1

λk = 1, λ ≥ 0. (8)

To make the objective function strictly convex in terms of
the optimization variables (P,C,E1,E2), one penalty term
of the constraint is incorporated into the objective function of
Eq. (8), resulting in

min
P,C,E1,E2,λ

λ1‖E1‖1+λ2‖E2‖21 + λ3 ‖X−XP−E1−E2‖
2
F

+µ‖C‖1 + γ
3∑
i=1

λi ln λi+
ρ

2
‖P− (C− diag(C))‖2F

s.t. P = C− diag(C),
3∑

k=1

λk = 1, λ ≥ 0, (9)

where ρ > 0 is the augmented Lagrange parameter.
By adding the Lagrange multiplier M for the equality

constraint in Eq. (9), Eq. (9) is reformulated as

min
P,C,E1,E2,λ

λ1‖E1‖1+λ2‖E2‖21+λ3 ‖X−XP− E1−E2‖
2
F

+µ‖C‖1 +γ
3∑
i=1

λi ln λi+
ρ

2
‖P− (C− diag(C))‖2F

+ tr(MT (P− (C− diag(C)))

s.t.
3∑

k=1

λk = 1, λ ≥ 0, (10)

where tr(·) is the trace operator of a given matrix.
Eq. (10) can be solved by two separate steps: primal

variable updating and dual ascending, i.e., the ADMapproach
iteratively updates the primal variables (P,C,E1,E2,λ),and
the Lagrange multiplier M, to obtain the optimal solution.
These variables are updated as follows:
• (P− Update): Updating P relies on the following
problem by fixing the other variables and removing
irrelevant terms:

min
P
λ3 ‖X− XP− E1−E2‖

2
F

+
ρ

2
‖P− (C− (diag(C))‖2F

+tr(MT (P− (C− diag(C))). (11)

By setting the derivative of the objective function in Eq. (11)
with respect to P equal to zero, we have

(ρI+ 2λ3XTX)P = ρ(C)

+2λ3XT (X−E1 − E2)−M. (12)
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Eq. (12) is a N × N system of the linear equations, which
drives the solution of P∗.
• (C− Update): Updating C relies on the following
problem by fixing the other variables and removing
irrelevant terms:

min
C
µ‖C‖1+

ρ

2
‖P− (C− diag(C))‖2F

+tr(MT (P− (C− diag(C))) (13)

This optimization problem of C-update has the closed-form
solution

C∗ = Q− diag(Q). (14)

where Q = τµρ−1(P+M/ρ) and τβ (·) is the shrinkage-
thresholding operator[25].
• (E1 − Update): Updating E1 relies on the following
problem by fixing the other variables and removing
irrelevant terms:

min
E1
λ3 ‖X− XP− E1−E2‖

2
F + λ1‖E1‖1. (15)

This optimization problem of E1-update has the closed-form
solution:

E∗1 = τλ1(2λ3)−1 (X− XP− E2), (16)

where τβ (·) is the shrinkage-thresholding operator [25].
• (E2 − Update): Updating E2 relies on the following
problem by fixing the other variables and removing
irrelevant terms:

min
E2
λ3 ‖X− XP− E1−E2‖

2
F + λ2‖E2‖21. (17)

This optimization problem of E2-update has the closed-form
solution:

E∗2 = �λ2(2λ3)−1 (X− XP− E1) , (18)

where �β (·) is the `21 minimization operator [15].
• On Optimizing Weights λ

Fixing the other variables, the optimization problem in Eq. (5)
is transformed into

min
λ
λ1 ‖E1‖1 + λ2‖E2‖21+λ3‖E3‖

2
F+γ

3∑
i=1

λi ln λi

s.t.
C∑
i=1

λi = 1, λ ≥ 0, (19)

If we define metric(1) = ‖E1‖1, metric(2) = ‖E2‖21 and
metric(3) = ‖E3‖

2
F , then Eq. (19) is rewritten as

min
λ

3∑
i=1

λi(metric(i))+
3∑
i=1

λi ln λi

s.t.
C∑
i=1

λi = 1, λ ≥ 0. (20)

Let the Lagrangian function of Eq. (20) be

Q(λ, ϕ) =
3∑
i=1

λi(metric(i))+γ
3∑
i=1

λi ln λi + ϕ(
3∑
i=1

λi − 1)

(21)

By setting the partial derivative of Eq. (20) with respect to
λi equal to zeros:

∂Q
∂λi
= λi(metric(i))+ γ (ln λi + 1)− ϕ = 0,

we have

λi = exp(−metric(i))
/
γ ) · exp((γ − ϕ)

/
γ ) (22)

Considering
3∑
i=1
λi = 1, the closed-form solution is derived

as

λi =
exp(−(metric(i)

/
γ )

3∑
i=1

exp(−(metric(i)
/
γ )

, i = 1, 2, 3. (23)

When updating the variables (P,C,E1,E2,λ), ADM
performs a gradient ascent update with the step size of ρ on
the Lagrange multiplier M until convergence is achieved or
the number of iterations exceeds amaximum iteration number
to obtain the optimal solution.

B. CONVERGENCE PROPERTIES
Because the Lagrange function contains more than two
block variables (P,C,E1,E2,λ), it is difficult to give a
strict mathematical proof for its convergence. However,
recent studies [15] show that when the optimal gap of
each iteration monotonically decreases, the ADM approach
has good convergence properties. The convexity of the
objective function with respect to each of the block variables
guarantees, that in practice, the ADM approach has good
convergence properties.

C. COMPUTATIONAL COMPLEXITY
The computational cost of the proposed is mainly determined
by the derivation of coefficients matrix (See Eq. (5)), where
the ADM approach is used to obtain the coefficients matrix.
From the procedure of ADM approach, the computation
cost of ADM approach is mainly determined by the `2,1
minimization solver. For convenience, let k denotes the
number of iterations. Then, the computational complexity of
the `2,1 minimization solver is O(kM2N ), where M is the
dimensionality of the data sample and N is the number of the
samples. Thus, the computational complexity of the proposed
method is O(kM2N ).

V. EXPERIMENTS
A. EXPERIMENTAL SETTING
In our experiments, we compared the proposed method
(Ada-`1-Gr) to the following methods: KNN-Gr, `1-Gr [6],
`2-Gr [12], `2-cGr [13], MLRR-Gr [20] and LRR-Gr [15].
For `1-Gr, we adopt its variant, where the combination

of `1-norm based metric and `1-norm based metric is used
to measure the reconstruction error and the sum of the
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FIGURE 1. The examples of corrupted images. (a) Gaussian noise. (b) Random pixel corruption. (c) Contiguous occlusion corruption. (d) Mixed
noise. Compared to the single noise, the mixed noise is more difficult to handle.

regularization parameter is set to 1. The sparse constraint is
imposed on the coefficient matrix.

For cLRR-Gr, it has two variants: cLRR-Gr1 (using
the correntropy induced metric) and cLRR-Gr2 (using the
columnwise based correntropy). Both methods impose the
low-rank constraint on the coefficient matrix.

For `2-cGr, it adopts the correntropy induced metric and
imposes the `2-norm constraint on the coefficient matrix.
The optimal parameter values of all the compared methods

are chosen by cross-validation tests. Then, we conduct the
experiments on the following: the Extended Yale B face
dataset [27], the Coil20 object dataset [28], [35]–[37] and the
USPS digit dataset [29]. For the experiments on the datasets,
all the data points from each dataset were scaled to be unitary
in the Euclidean norm.

B. IMAGE CLUSTERING EXPERIMENTS
Graph-based clustering is a spectral clustering-based
model [26], where the K -means clustering algorithm is
employed on the rows of the eigenvector matrix to obtain the
final clustering results. The clustering number is set to be the
number of the classes on the dataset.

We conducted clustering experiments on clean data and
corrupted data, where complex noise is added to each image
in the dataset by mixing three types of noise and data
corruptions: (1) Gaussian noise. Gaussian noise is added
to each image, x; that is, x̃ = x + αn, where α is the
corruption ratio ranging from 0% to 60% with an interval
of 15%, and n is the noise following a standard normal
distribution. (2) Random pixel corruption. To simulate sparse
noise, we randomly choose a set of pixels from each image
and set their pixel values to follow a uniform distribution over
[0, pmax], where pmax is the largest pixel value of the current
image. (3) Contiguous occlusion corruption. To simulate the
contiguous occlusions, we replaced α percent of randomly
chosen pixels from each selected image with the black-white
squares.

For each dataset, we randomly selected eighty percent
of the images and added the same corruption ratio of the
above three types of noises to each image, resulting in
three corrupted datasets. Figure 1 shows the examples of the
corrupted images.

TABLE 1. Clustering on Yale B dataset.

TABLE 2. Clustering on Coil 20 dataset.

TABLE 3. Clusering on USPS dataset.

In our clustering experiments, two popular benchmarks
-Accuracy of Clustering (AC) and Normalized Mutual
Information (NMI) [11] - are used to measure clustering
performance. We independently repeated clustering experi-
ments five times and reported the average clustering results
for comparison. Tables 1-3 show the clustering results.

From Tables 1-3, we observe the following:
Our method consistently outperforms the other methods.

The results are attributed that the fact our method effectively
estimates the mixed noise components, further resulting
in the noise-resistant edges. Specifically, when the level
of corruption is large, the proposed method significantly
outperforms the neighborhood-based methods.
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C. IMAGE CLASSIFICATION EXPERIMENTS
The graph-based classification model adopts the combination
of classification loss function and the graph regularizer
for classification task. The commonly used graph-based
classification framework [21] is defined as follows:

F∗ = argmin
F

{
c∑
i=1

FTi 8Fi + ν‖F−Y‖
2

}
. (24)

where 8 is graph Laplacian, c is the number of data classes;
F signifies the classification relevant scores; Y is the initial
label matrix, in which Yij = 1 if the i-th data sample is
labeled as the j-th class; otherwise, it is Yij = 0 and ν is
the tradeoff parameter that simply set to 1. When obtaining
the closed-form solution of F, the label of the i-th sample is
recognized as j∗ = argmax

j
Fij, (j = 1, 2, · · ·c) .

We added the mixed noise to each image in the datasets in
the same way as in the clustering experiments. Classification
performance is measured by the Classification Accuracy
for Classification (ACC), defined as the ratio between the
number of correct classification and the size of test dataset.
We selected twenty percent of the labeled samples from each
subject to form a training set to conduct the classification
experiments on the resultant corrupted datasets. Tab. 4-6 list
the classification results.

TABLE 4. Classification on Yale B dataset.

TABLE 5. Classification on Coil 20 dataset.

TABLE 6. Classification on USPS dataset.

From Tables 4-6, we observe the following:

The proposed method achieves the highest classification
accuracy.With an increasing in data corruption ratios, the pro-
posed method outperforms corresponding neighborhood-
based methods by a larger performance margin.

D. EFFECTIVENESS OF ERROR ESTIMATION
To know how error estimation affects the performance,
we compute the reconstruction errors for each method

DataError =
error(E)

‖E‖2F
(25)

where error(E) is the error estimation term. e.g. for the
`1-Graph, the error estimation term is ‖E‖2F and for the
proposed method, the error estimation term is λ1‖E1‖1 +

λ2‖E2‖21+λ3‖E3‖
2
F . We calculated the relative values of the

error estimation term and list these results in Table 7.

TABLE 7. The reconstruction errors of different methods.

From Table 7, we observe that the proposed method has the
smallest reconstruction error. The experimental results show
that the proposedmethod effectively estimates the data errors,
which partially explains why our method is superior to the
compared methods.

E. PARAMETER SETTINGS
The proposed method has two essential parameters: µ and γ ,
where µ is the sparse regularization parameter, and γ is the
Shannon entropy regularization parameter. To observe how
the performance depends on the parameters, we conducted
the parameter tuning experiments on a Coil 20 dataset
by varying one parameter values while fixing the others.
Figures 2-3 show the experimental results.

From Figures 2-3, we observe the following:
As the parameter value of µ increases, the performance

of the proposed method increases accordingly. Until the
parameter value is greater than 10, the performance is
degraded a little. These experiments results indicate that
sparse regularization is crucial for representing the data
correlations. When the parameter value is sufficiently small,
the derived coefficients are not discriminate enough to
generate the informative edges.

As the parameter value of γ increases, the proposed
method performs better. When the parameter value is greater
than 1, the performance slightly degenerates. The experimen-
tal results show that when parameter is very small, the error
estimation may over-fit few candidate metrics, indicating
that only very few candidate metrics play important roles in
estimating data errors; when the parameter value is very large,
the error estimation may fit all the metrics, indicating that all
candidate metrics play important roles.
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FIGURE 2. The experimental results versus tradeoff parameter µ: (a) Accuracy of clustering versus µ. (b) Normalized mutual
information of clustering versus µ. (c) Accuracy of classification versus µ.

FIGURE 3. The experimental results versus tradeoff parameter γ : (a) Accuracy of clustering versus γ . (b) Normalized mutual information
of clustering versus γ . (c) Accuracy of classification versus γ .

FIGURE 4. Convergence curves of the proposed method: (a) Yale B dataset, (b) Coil 20 dataset and (c) USPS dataset.

F. CONVERGENCE OF THE ADM-BASED OPTIMIZATION
We adopt the ADM approach to optimize the objective func-
tions of the proposed method. Therefore, the convergence
properties of the ADM optimization approach is crucial.
In this subsection, we present the convergence curves of the
proposedmethod. The changes of the objective function value
are reported in Figure 4.

As shown in Figure 4, the objective function value
decreases rapidly at the outset, and then, decrease slowly.

After fewer than 40 iterations, the objective function values
are stable.

VI. CONCLUSION
In this article, we have proposed a novel multi-metric
induced robust graph constructionmethod. Different from the
existing methods, the proposed method effectively estimates
complex data errors beyond Gaussian noise or sparse noise.
Therefore, a robust graph are constructed, resulting in the
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promising clustering or classification results on real-world
image datasets. Note that the proposed method is designed
to handle the single-view data. When the real-world data
contains multiple view features, it requires to concatenate the
different view features for employing the proposed method.
For future work, we plan to extend the proposed method to
handle the multi-view data.
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