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ABSTRACT Biometric traits such as fingerprint, retina scan, and palm-prints are used to identify a person
at attendance monitoring, banking, passport, travel, and many other applications. Biometric-based person
identification is the only method that never changes according to time, and no one can copy it without
knowledge. Footprint-based biometric is one way to recognize a person based on different features associated
with human footprints. For example, some places, such as airports, nanotechnology laboratories, silicon
industries, temples, and public areas, require high security. It is necessary to add a footprint-based biometric
trait for such high alert areas. The number of subjects taken by existing footprint-based methods is limited
to very few subjects. The above research gaps motivate to add more subjects for this study. The proposed
algorithm utilizes the fuzzy logic-based method for personal identification. Considerably 220 subjects with
temporal aspects are taken into account to fill the existing methods gap. Three approaches, Fine Gaussian
SVM (FSVM), Fine KNN (FKNN), and Fuzzy Ensemble Subspace Discriminant (FESD), have been utilized
to create the enhanced human footprint matcher. The Fine Gaussian SVM approach exhibits an accuracy
of 84.7%, the FKNN approach results in an accuracy of 92.3%, and the FESD approach gives an accuracy
of 98.89%. FESD approach rectifies the recognition rate(to reach the required accuracy of 98.88%) False
Match Rate (FMR, the rate of falsely as genuine classified imposters) at 0.01, False Non-Match Rate at
0.093 which is the rate of falsely as imposter classified genuine users) to a set of different matchers for the
identification task. It improves the speed of recognition with 220 subjects by implementing the prototype
schemes for footprint biometric to evaluate system properties, including accuracy and performance.

INDEX TERMS Biometric, ensemble, fuzzy logic, FDR, FNMR, FRR, footprint, KNN, SVM.

I. INTRODUCTION
There are many biometric matching techniques available
for identification. Footprint-based biometric is a consider-
ably newer technique for personal identification. Some other
methods based on smart cards are also available. One can
easily intrude the methods based on smart cards. Most of
the means for personal identification are used for attendance
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monitoring. The footprint-based matching technique does not
propose it as a method for attendance monitoring though it
has the capability for the same. In cases where a person with-
out hands can use this technique for attendance monitoring.
Aadhar in India is such a card that stores biometric data of
face, retina, palm, and fingers but not the footprint [1]–[4].

The footprint-based is implemented due to its importance
in many instances of the crime scene where an accused must
walk around and left the footwear impressions as well as bare-
foot prints and therefore it is very crucial to recovering the
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footprints to identify criminals. Nowadays, terrorist attacks
are so frequent and become a significant challenge for the
country and society. Industries for example defense orga-
nizations, pharmaceutical, silicon chip manufacturing units,
nanotechnology industries, religious places such as temples,
public areas, market, shops are the soft targets for terrorists.
Naples [5] presented an analysis of foot and footwear charac-
teristics, impressions, and trackways that lead to significant
evidence in a crime scene investigation.

A. RELATED WORK
Nakajima et al [6] developed a BIG-MAT sensor system to
capture the impression of a footprint. They have arranged
110 samples from 10 subjects. Later, the pressure mat using
Hidden Markov Model combined the Levenberg-Marquart
learning method proposed by Jung et al [7]–[10], and
Yun et al [11], which gives a recognition rate of 64% to
80% from among 11 samples. Uhl and Wild [12], [13]
developed a method based on Eigenfeet, ball-print and foot
geometry biometrics for 16 subjects with a recognition rate
of 97%. One application of human footprint is estimating
stature from footprint and foot outline dimension for crime
background identification. In this regard, Krishnan [14] has
applied his analysis among 1040 males between 18 years to
30 years. This method is intended to find foot geometry for
the identification of criminals. A similar kind of study has
completed by Moorthy and Sulaiman [15] for Malay persons
for 400 persons. Despite of manual work, this analysis gives
a direction for the forensic examination of a crime scene.
Takeda et al [16]–[18] implemented a fuzzy-logic-based
solution using a load distribution sensor from 30 subjects.
The EER observed using this method was 6.1 % and FRR
of 13.9 %. Ye et al [19] presented a method based on ANN
amidst a similar pressure sensor mat with 11 volunteers. Here
FRR varies from 28.6 % to 12 % with lesser subjects. The
study on a wavelet and fuzzy-neural network for footprint
has carried out by Wang et al [20] with a recognition rate
of 92.8 % from 80 toe images.

Later on, MSHET was introduced by Kumar and Ramakr-
ishnan [21] for 400 subjects with a 92% recognition rate, but
no dataset has been produced. Kumar and Shekhar [22] devel-
oped a multibiometrics rank-level fusion system for palm and
foot with a claim of using palmprints from 517 subjects and
suggested an accuracy of 92-99% using fusion. Pataky [23]
used 1040 dynamic foot pressure images from 10 volunteers,
and due to the high correlation between images, the accuracy
obtainedwas 99%. The discrete correlation of footprint image
presented by Kumar et al [24]–[26] gives a general frame-
work for the footprint-based system. Fernadez has explained
the use of footprint to identify newborn babies where mul-
tiple births occur with the highest recognition rate of 96%.
Kumar and Ramakrishnan [27] elaborated PCA and ICA
based method, where 21 subjects will give a recognition rate
of 95.24%. Hashem and Ghali [28] used ANN for 40 subjects
with a 92% recognition rate.

B. MOTIVATION
This work has motivated by the gap analysis presented
by Nagwanshi in [39]. According to the study presented
in Table 1, the number of subjects taken by other footprint
based methods is limited to very few, which is motivated
to add more subjects. The human foot-based identification
method includes the gait, footprint, and shoes of a person.
Personal identification using behavioral patterns of gait is
challenging as the volume of data required is very high. The
footwear also not sufficient for the identification of a person.
The existing footprint-based method results in degradation
of performance while adding more subjects. This work also
motivates creating a large dataset, and creating a dataset is
also a very challenging task. The next motivating factor is to
rectify the match rate to reach the required accuracy of 98%.
Ascertain the employability of the footprint concerning tem-
poral and physical features is another encouraging factor.
And the final motivating factor is to improve the speed of
recognition with beyond 200 subjects; and implement the
prototype schemes for footprint biometric to evaluate system
properties, including accuracy and performance; and pro-
motes it to install in legal capacities to identify the person
or impostor [37], [40]–[43].

II. MATERIALS
The materials used for implementation of footprint-based
matcher include hardware resources, the operating system,
tools and publication of data-set. Each of these has described
as follows.

A. HARDWARE RESOURCES
The experimental system is configured with Intel Core i5
2430M 2.4 GHz dual core four thread, 4GB RAM, 4 Intel(R)
HD Graphics 3000, and NVIDIA GeForce GT 520MX
1024 MB Graphics Processor having 48 CUDA cores (Com-
pute Unified Device Architecture). A sum of 12 CUDA cores
has used to a maximum speedup of the image processing task
by three times that of CPUs. For capturing footprint images,
Canon 5400 digital scanner and EPSONStylus CS5500 Scan-
ner has utilized as a sensory module.

B. OPERATING SYSTEM AND TOOLS
The operating system for this system is Microsoft
Windows 10 (10.0) Professional 64-bit (Build 2004). This
experimentation utilizes ImageJ tool for raw image data
capture, BigML for analysis of footprint morphology based
on statistical parameters, IBM Watson Analytics is used for
statistical pattern analysis, MATLAB 2016b (64 bit) is used
for evaluation and implementation of algorithms.

C. DATASET
Currently, only two datasets are available for experimentation
on the human biometric footprint images. Nagwanshi and
Dubey [44] uploaded the first one in IEEE Dataport open
access repository. The author has captured the left footprint
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TABLE 1. Comparison of Accuracy of state-of-the-art alternatives.

from 220 volunteers at the various hue and saturation lev-
els to produce 6 different images at different time periods.
Kumar [45] uploaded the second to the GitHub repository in
the year 2019. For 21 persons, Two to five images per subject
had captured using a flatbed scanner, and further, he has
extended his dataset for 32 individuals as dactyloscopic
images.

This research work has begun with pre-processing phase.
Original footprints have captured using a conventional
EPSON Stylus CS5500 scanner (see setup shown in Fig. 1)
from 220 volunteers of Rungta College of Engineering and
Technology Bhilai, India. These footprints have normalized
for further experimentation. Twenty-one statistical feature
has extracted for 220 × 6 = 1320 multi-spectral footprint
images. The obtained dataset has published for evaluation
purpose. The dataset has tested for applicability in further
experimentation. The dataset has created for 880 footprint
images; later it has created for 1320 footprint images from
220 volunteers. The first impression of images are shown
in Table 2.

III. EXPERIMENTAL SETUP
Fig. 1 shows the experimental setup for footprint acquisition
using EPSON Stylus CS5500 flatbed scanner. The subject
needs to put his/her foot over the scanning plane. The scanner
has the flexibility to scan in multiple-band and with multiple
resolutions. The final outcome of the captured images has
been published at IEEE Dataport [44].

A. EXTRACTED FEATURES
The segmented image has processed through ImageJ appli-
cation to obtained the features. These features include area,
mean gray value, standard deviation, modal gray value, min-
imum gray value, maximum gray value, centroid, the center
of mass, perimeter, bounding rectangle, fit an ellipse, feret,
circularity, roundness, median, mean, kurtosis and area frac-
tion [46]–[48]. Let us describe each feature in brief. The
dataset has been created for segmented images using the
Algorithm 1 and analysed using Algorithm 2 as described
in [49]. Let us describe each features in brief.
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TABLE 2. Footprint sample of all 220 persons.

• Area– Footprint Area covered by a rectangle in square
pixels. This is not convex hull area of a footprint; there-
fore area is coming same for all the footprint images.
Fig. 2, shows the footprint surrounded by a red rectangle
with height 666 pixels and width 256 pixels. In this case
it is 256× 666 = 170496 for all the normalized image.

• Mean Gray Value– is the sum of the gray values (here
all 1’s added together) in the selection divided by the
area. It estimated average gray value for the selected
footprint. See Fig. 5 which highlights both convex hull
area supported by pixel value 1, and the complementary
dark area. This feature received unique values for all the
footprints.

• Standard Deviation – Standard deviation of total con-
vex hull area used to generate the mean gray value above
(See Fig. 5).

• Modal Gray Value – The highest frequency of pixel
value in the bounding box shown in Fig. 5, represents
the modal gray value. Because there are only 0 and 1
will the pixel value for any point, the result may come
concerning 0 or 1. The model gray value for all the
images comes at level 1.

• Min &Max Gray Level - Always yields 0 or 1 because
of a binary image (See Fig. 5).

• Centroid (X, Y) – The center point of the bounded
box shown in Fig. 2 represents centroid. For this
research work the centroid (X,Y) is always reported at
256/2=128 and 666/2 =333 ie [128,333].

• Center of Mass (XM, YM) – is the center of gravity
of the convex hull of the foot. These coordinates are in
the first order spatial moments. In Fig. 5, the cross circle
mark represents the center of mass of the footprint.
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FIGURE 1. Experimental setup for footprint acquisition using EPSON
Stylus CS5500 flatbed scanner.

Algorithm 1 Random Subspace Algorithm
Require: input test sets Ex,
Require: with d features /columns /dimensions

{m be the number of features to sample space for each
learner.}
{ n be the number of learners in ensemble.}

1: i← n
2: repeat
3: Choose unique random set of m predictors from the d

features / dimension.
4: train(weaklearneri, m, y)ni=1
5: i← i− 1
6: until there are n weak learners.
7: predict(HighestAvgScore, weaklearneri)ni=1

• Perimeter – The total length of the outside boundary
surrounds the footprint. Always same, i.e. from Fig. 2,
it yields (2 × 256 + 2 × 666) = 1844 pixels for all
normalized footprint images.

• Bounding Rectangle (BX,BY,Width,Height) – The
smallest red colored rectangle enclosing the footprint
in Fig. 2 represents the bounding rectangle. Here the
value of bounding rectangle parameters represented as
[BX,BY,Width,Height] = [0,0,256,666] for all the foot-
print images in the dataset.

• Fit Ellipse – This is a combination of features which fits
an ellipse to the selection [47], [48]. Fig. 3, describes
fitting an ellipse for the footprint image shown in blue
color. It is not necessary that it appears inside the
bounding rectangle as shown in Fig. 3, it can cross the

Algorithm 2 Discriminant Analysis Model
Require: input test sets Ex,
Require: with d features /columns /dimensions {con-

structs weighted classifiers M is an N − by − K class
membership matrix}

1: M (n, k)←
{
1 if observation n is from class k
0 otherwise

{Estimate the class mean for unweighted data.}

2: µk ←
∑N

n=1M (n,k)xn∑N
n=1M (n,k)

{Estimate the class mean for positive weighted data with
weight wn}

3: µk ←
∑N

n=1M (n,k)wnxn∑N
n=1M (n,k)wn

{Find the weighted sum ωk for classes k }
4: ωk ←

∑N
n=1M (n, k)wn {Find the squared weighted sum

ω2
k for classes k }

5: ω2
k ←

∑N
n=1M (n, k)w2

n
{ The unbiased estimate of the pooled-in covariance
matrix with weights sum to unity}

6: 6←
∑N

n=1
∑K

k=1M (n,k)wn(xn−µk )(xn−µk )T

1−
∑K

k=1
ω2k
ωk

FIGURE 2. Various features of segmented footprint image: Footprint in a
bounded box.

boundary too depending upon the shape. The elliptical
parameter includes a major axis, minor axis, and angle.
The coordinates of the center of the ellipse displayed as
X and Y. For all the normalized images the length of
major axis comes 751.501 pixel, the minor axis comes
288.865 pixel, angle is 90o, and the crossing point of
major and minor axis is the centroid (X,Y).

• Circularity –Circularity is a shape descriptor calculated
by Eq. 1. For normalized footprint the shape descriptor
circularity is obtained as 0.63.

circularity =
4× π × area
perimeter2

circularity =
4× π × 256× 666
[2× (256+ 666)]2

= 0.63 (1)
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FIGURE 3. Various features of segmented footprint image: Footprint fits
an ellipse.

• Aspect Ratio – The ratio between height and width is
known as aspect ratio as shown in Eq. 2.

AR =
height
width

AR =
666
256
= 2.602 (2)

• Roundness – Roundness is another shape descriptor
computed by Eq. 3 [48].

round =
4× area

π × height2

round =
4× 256× 666
π × 6662

= 0.384 (3)

• Solidity – The ratio between area and convex area for
a segmented footprint image gives solidity of shape.
It represents a value 1 which shows the shape is perfectly
solid.

• Feret’s Diameter – Fig. 4 shows the longest distance
from toe to heal of the foot, also known as maximum
caliper [48].

• FeretAngle – It is the angle between the Feret’s diameter
and a line parallel to the x-axis of the image as shown
in Fig. 4. For all normalized footprint image it is coming
111.026o.

• Minimum Feret – For a normalized footprint the mini-
mum caliper diameter is coming 256 pixel.

• Integrated Density – In Fig. 5, the integrated density is
calculated by the product of Area andMean Gray Value;
and the raw integrated density is the sum of the values
of the pixels in the image or selection exhibits the same
result for the footprint images.

• Median – Themedian value of the pixels in the footprint
image or selection as shown in Fig. 5. For a binary image
the value is always 1.

• Skewness – Skewness is the measurement of the sym-
metry represented by the third order moment about the

FIGURE 4. Various features of segmented footprint image:Measurements
of feret.

FIGURE 5. Various features of segmented footprint image: Measurement
of center of mass, Integrated density, and area fraction.

mean. The coefficient of skewness is zero for symmetric
distribution, less than zero for asymmetric distribution to
the left where tail extends left of the center of mass, and
greater than zero for asymmetric distribution to the right
where tail extends right of the center of mass.

• Kurtosis –Kurtosis is the fourth ordermoment about the
mean, and it shows flatness in x and y. The coefficient of
kurtosis is zero for Gaussian distribution, less than zero
for distribution flatter than normal, greater than zero for
distribution more peaked than normal, and a constant -
1.2 for or multimodal distribution.

• Area Fraction – The percentage of pixels in the image
or selection as shown in Fig. 5. For non-thresholded
images, the area fraction is represented by the percent-
age of non-zero pixels.

The feature selection is done on the basis of data analysis
of features. The grayscale images represent unique values
for most of the features, but when go multispectral it is

26646 VOLUME 9, 2021



S. Basheer et al.: FESD: An Approach for Biometric Human Footprint Matching Using Fuzzy Ensemble Learning

showing more diversified results for the same class hence
binary images are best alternative to perform experimentation
where high degree of uniqueness per class is required.

IV. METHODOLOGY
This section presents design of Fuzzy Inference System
for footprint based system. This FIS has been applied into
the algorithms presented in next sections. This section also
explains FIS with the help of grid partitioning method and
subspace clustering system. On the basis of examination
of these features in [50], only eight principle features have
been selected for the experimentation. These features include
area, integrated density, centre of mass (XM ,YM ), skewness,
kurtosis and standard deviation of segmented footprints.

A. FUZZY ENSEMBLE SUBSPACE DISCRIMINANT BASED
FOOTPRINT MATCHER
The ensemble is modern approach combines the outcome of
multiple conventional methods to get faster and better output.
The training set consists of input features called predictors,
and the out classes are known as the response. There are
several aggregation methods for ensemble approach. Because
footprint based method involves in identifying multiple
classes, it can use AdaBoost, LPBoost, TotalBoost, RUS-
Boost, Subspace, and Bag as aggregation method. There are
three weak learners viz. discriminant, KNN, and tree. The
tree is not recommended with subspace aggregator, while
discriminant andKNN is recommendedwith subspace. Fuzzy
logic can be applied to weak learners. According to [51],
the subspace method generates multiple independent par-
allel subspace makes faster learning without hill climbing
and local optima. For discriminant analysis it is required
to choose the optimum value of K in FKNN. Create the
ensemble subsequently for 2-nearest neighbor classification
with diversified set of dimensions and finally, this algorithm
attempts in finding the optimum number of learners for best
result. Initially, the Algo. 1, starts with loading the footprint
dataset for eight predictors and one response. In the next step,
it creates subset of d , into m for n learners. For each weak
learner i, it is trained against y, with m number of features.
This training runs until no weak learners available to train.
Finally, the prediction is completed using highest average
scores among these weak learners. Algorithm 2, presents a
straightforward way to create discriminant analysis model.

Suppose A is a manual table of footprint for a-priori split
of n data items into k different classes. This is a boolean
table represents binary crisp membership data to the one of
the classes k . To make decision more realistic let convert A
into fuzzy set. For a given dataset X = {x1, x2, . . . , xn ⊂ Rs,
the optimal fuzzy set Ã, with associated prototype L ⊂ Rs,
and an a-priori constant η > 0, the fuzzy objective function
is given as Eq. 4.

minimize φ(Ã,L) =
n∑
j=1

Ã(xj)m ‖ xj−L ‖2

+

n∑
j=1

(1− Ã(xj))m
(

η

1− η

)m−1
(4)

subject to m > 0 is the fuzzy membership degree. The value
of Ã(xj), can be obtained from Eq. 5.

Ã(xj) =
η/(1− η)

η/(1− η)+
(
‖xj−L‖

max ‖xj−L‖

)2/(m−1) (5)

The fuzzy discriminant analysis method presented here is
a multiclass method by design, as no restriction with respect
to the number of classes is introduced. This is a parameter
to be set by the human experts as they establish the a-priori
classes split. The FESD algorithm generates following set of
rules. Following rules have been written in verbatim mode.
Graphical mode representation have been listed in Fig. 30 in
page 26657.

V. RESULTS
A set of 220×6 = 1320multi-spectral foot images have taken
into account. It is challenging to represent characteristics of
all 1320 images. Therefore, a sum of 15 classes have taken to
reflect the precise results [52]. All the algorithms have trained
with original multi-spectral dataset and test using median and
average value of each class. Table 3, explores the dataset for
six samples and its median and average values(total 8 sam-
ples). This is helpful in testing the algorithms. Each algorithm
has trained for known six samples per class and test with the
average and median values. In this case training testing pair
is having 75:25 ratio or 6:2 ratio.Fig. 7 gives the comparison
of testing and training error. Fig 7, represents the comparison
of training error with 75% samples, on the other hand Fig 6,
represents the testing error with 25% samples against the
training samples.

FIGURE 6. Training performance of FSVM, FKNN and FESD.

A. CONFUSION MATRIX
A confusionmatrix is an important table used here to describe
the performance of a footprint based matching algorithm on
a set of test data for which the true values are known.

B. NUMBER OF OBSERVATIONS
The confusion matrix based on number of observations per
class are shown in Fig. 8. For number of samples N + P
and false matches TP, the accuracy can be calculated by
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TABLE 3. Sample dataset of five persons with median and average.

FIGURE 7. Average testing performance of FSVM, FKNN and FESD.

ACC = (TP+ TN )/(P+ N ) = 1 − EER. Fine Gaussian
SVM approach has shown in Fig. 9, depicts total 11 number
of falsematches out of 90 combinations, hence, it shows accu-
racy of 87.77%. Confusion matrix of Fine KNN approach
is shown in Fig 10, exhibits 8 number of false matches out
of 90 combinations, therefore, it gives accuracy of 91.11%.
Confusion matrix of Fuzzy Ensemble Subspace Discriminant
approach as shown in Fig. 11 exhibits accuracy of 98.89%

FIGURE 8. Number of true observations obtained from confusion matrix.

with only one false match out of 90. Fig. 8, summarizes the
number of true matches for different approaches.

C. TRUE POSITIVE RATE/FALSE NEGATIVE RATE
This observation is based on true classes to predictive classes.
Fig. 12 reveals the confusion matrix for true positive rate and
false negative rate. Last green column gives the values of
true positive rate, and the column with peach color gives the
value of false negative rates. It also gives the comparison
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FIGURE 9. Confusion Matrix : Based on number of observations per class
Fine Gaussian SVM approach.

FIGURE 10. Confusion Matrix : Based on number of observations per
class Fine KNN.

FIGURE 11. Confusion Matrix : Based on number of observations per
class Fuzzy Ensemble Subspace Discriminant.

of TPR for FSVM, FKNN, and FESD approaches. Table 4
gives the comparison of FNR for FSVM, FKNN, and FESD
approaches. Table 4 gives the Comparison of average TPR
and average FNR. The average TPR for Fine Gaussian SVM
approach has observed 0.8757. For Fine KNN, the observed

FIGURE 12. Comparison of True positive rate.

TABLE 4. Comparison of average TPR and average FNR.

FIGURE 13. Calculation of False negative rates.

TABLE 5. Comparison of average PPV and average FDR (in %).

average TPR value is at 0.9093. And, finally an average
TPR of 0.9886 has observed for Fuzzy Ensemble Subspace
Discriminant approach. From Fig. 13 the average FNR for
Fine Gaussian SVM approach has observed 0.1246, or Fine
KNN, the observed average TPR value is at 0.0906, and,
finally an average FNR of 0.0113 has observed for Fuzzy
Ensemble Subspace Discriminant approach.

D. POSITIVE PREDICTIVE VALUES/FALSE
DISCOVERY RATES
Based on confusion matrix for Positive Predictive Values and
False Discovery Rates. The lower row with green color gives
the values for Positive Predictive Values for each classes,
while the lower row in peach, red and white color indicates
the False Discovery Rates. Class 6 gives PPV and FDR
of 0.5 each using FSVM approach. This is not good result
for a good matcher. Here features of true classed 1, 2, 4,
13, and 14 matched 0.010 each to predicted class 6. Another
true classes 8, and 12 also matched with the features of class
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TABLE 6. Class wise summary of ROC for FSVM, FKNN, FESD approach.

FIGURE 14. Comparison of positive predictive values.

TABLE 7. Average receiver operating characteristics for FSVM, FKNN,
FESD approach.

15 leads to FDR of 0.29. FSVM and FKNN, both exhibits
FDR for 6 classes. While, FESD shows FDR for only one
class. Fig. 12, gives the comparison of TPR for FSVM,
FKNN, and FESD approaches.

Table 5 gives the Comparison of average PPV and average
FDR. The average PPV for Fine Gaussian SVM approach
has observed 90.20%. For Fine KNN, the observed aver-
age PPV value is at 92.33%. And, finally an average PPV
of 99.06% has observed for Fuzzy Ensemble Subspace Dis-
criminant approach. Fig. 15, gives the comparison of FDR for
three approaches. The average FDR for Fine Gaussian SVM
approach has observed 9.8%. For Fine KNN, the observed
average TPR value is at 7.6%. And, finally an average FNR
of 0.93% has observed for Fuzzy Ensemble Subspace Dis-
criminant approach.

E. ROC:RECEIVER OPERATING CHARACTERISTIC
ROC curves obtained in this experimentation gives the
trade-off between footprint matching sensitivity (TPR) and
footprint matching Fall-Out(FPR) or specificity (TNR) as
FPR = 1 − TNR for all possible cut-off for a test or its

FIGURE 15. Comparison of false discovery rates.

FIGURE 16. Comparison of False positive rates.

FIGURE 17. Comparison of Area under the ROC curve.

combination. Also, the area under the ROC curve (AUC)
presents an idea about the advantage of employing the test(s),
which is a measure of the usefulness of an experiment. The
best cut-off has the highest true positive rate together with
the lowest false positive rate leads to a greater area. The TPR
values can be obtained from Fig. 12, and the values of FPR is
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FIGURE 18. Classification Error Plot: FSVM.

FIGURE 19. Classification Error Plot: Manifold feature extraction (PCA
with SVM) [27], [33]–[35].

FIGURE 20. Classification Error Plot: FKNN).

listed in Fig. 16. Table 6 gives class wise summary of ROC for
FSVM, FKNN, FESD approach. Average receiver operating
characteristics for FSVM, FKNN, FESD approach for above
listed figures and table has concluded in Table 7. It shows
(0.01,0.88) cut-off with 0.92 AUC for FSVM, (0.01,0.91)
cut-off with 0.95 AUC for FKNN, and (0.00,0.99) cut-off
with 1.00 AUC for FESD approach.

FIGURE 21. Classification Error Plot: Eigenfeet, Ballprint and Foot
geometry biometrics. [4], [12], [13]

FIGURE 22. Classification Error Plot: Uncorrelated discriminant simplex
analysis (UDSA). [31]

FIGURE 23. Classification Error Plot:FESD.

F. COMPARATIVE ANALYSIS OF THE STATE-OF-THE-ART
METHODS
In the previous subsection, the study discussed three method-
ologies implemented for footprint-based identification. This
section compares state-of-the-art-methods implemented with
the dataset created for this study [44]. The study of footprint
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FIGURE 24. Comparison of Accuracy.

presented in this article utilizes three techniques: Eigenfeet,
Ballprint, and Foot geometry biometrics developed by Uhl
and Wild [4], [12], [13], Manifold feature extraction using
PCAwith SVM produced by Kumar et al. [27], [33]–[35] and
Uncorrelated discriminant simplex analysis (UDSA) given by
Lu and Tan [31].

Table 7 and Fig. 17 gives a comparative analysis of AUC
parameters. The AUC of FSVM is 0.92, FKNN recorded
at 0.95, FESD at 0.99, Foot Geometry Biometrics at 0.94,
UDSA at 0.95, andManifold Feature Extraction at 0.92 level.
The obtained parameters justifies the implemented method.

Fig. 24 gives the comparative plot of accuracy obtained
for the proposed method with existing three methods as dis-
cussed. For around 400 samples or 50 classes all the methods
show better results. As we increase the number of samples
the accuracy of different method gradually decreases. FESD
exhibits almost stable behavior beyond 50 classes at accuracy
reading of 98.89%.

Fig. 18 to Fig. 23 represents the classification error plots
for first 30 iterations. The Manifold feature extraction using
PCA with SVM shown in Fig. 19 exhibits unstable charac-
teristics upto 20 iterations. The classification error can be
calculated as a fraction of number of miss-classifications to
total number of samples [53]. Fig. 25 gives the comparative
plot of classification error with respect to the increase in
number of classes. Among all methods FESD reported lowest
classification error of 0.004545455 level.

Fig. 26 gives a logarithmic comparison of training time
to the increased number of samples. The FESD shows the
minimum training time while the algorithm based on PCA
and SVM requires more time than all other listed approaches
(almost exponential). Table 8 presents a detailed analysis of
training to the number of classes introduced for the time taken
by different approaches to produce the result.

VI. DISCUSSIONS
Several methods have been studied for evaluation of perfor-
mance. Nakajima et al [6] achieved 85% recognition rate with

FIGURE 25. Comparison of Classification Error.

TABLE 8. Comparison of Training Time.

only 11 subjects, [4], [12], [13] claims the highest recognition
rate of 97% with 16 subjects, while with 40 subjects [28]
claims 92% of the recognition rate. This section summa-
rize the result of data testing cross examined by different
approaches.

• Section V on page 26647, gives the positive and negative
data. The FSVM and FKNN give a large number of
negative data for all eight features ranges from 7 to
11 outliers; while, the FESD approach provide a con-
stant set of the outlier, which is only 2. Because cen-
troids XM and YM are based on pixel position, the plot
betweenMean vs.XM, andMean vs.YM exhibits a high
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FIGURE 26. Comparison of Training Time.

degree of scattered characteristics. All the graphs show
a linear characteristic proves that the statistical features
are unique and identifiable from each other.

• Section V on also give the training and testing perfor-
mance. The actual samples are six, median and average
of each features crated 2 more rows of dataset. The algo-
rithm has trained using these 75% samples and tested
against 25% samples. Training and testing performance
overlaps on each other. FSVMalgorithm exhibits a train-
ing error of 1.9008 with the same amount of average
testing error. FKNN algorithm shows a training error
of 1.3693 with the same amount of average testing error.
FESD algorithm exhibit a training error of 0.55193 with
the same amount of average testing error. All three algo-
rithms represents better characteristics, and the FESD
algorithm performs best among all the three.

• Section V-A on page 26647, provides description of
confusion matrix for various performance measurement
parameters. Number of true observation has calculated
for 15 classes. The FSVM exhibits 87.77% accuracy,
FKNN represents 91.11% accuracy, and FESD repre-
sents 98.89% accuracy which is best among three.

• The TPR or TMR for FSVM and FKNN are observed
at 0.8757 and 0.9093 respectively, it is good value but
not suitable for matching problem; while the TPR for
FESD is reported at 0.9886 near to unity exhibits best
value for the matching problem. On contrary, the FNR
or FNMR are obtained as 0.1246 for FSVM, 0.0906 for
FKNN, and 0.013 (best value is zero) for FESD. The true
match ratio and false non match ratio gives the matching
performance. The FESD approach proves best matching
performance.

• The PPV of 0.902, 0.9233, and 0.9906 has obtained for
FSVM, FKNN, and FESD approach respectively. The
FDR has observed rates 0.098 for FSVM, 0.076 for
FKNN, and 0.0093 for FESD approach. The PPV
approaches nearly unity for FESD and a zero for FESD
proves its discoverability or predictability of true foot-
print patterns.

• The FPR or FMR for FSVM is recorded a value of 0.01,
for FKNN it is 0.007, and for FESD it is 0. This per-
formance proves the robustness of FESD indicating no
false match.

• The ROC is a characteristic plot between FPR and TPR.
A sum of 15 samples discussed here for the validity of
performance. The best value for Area under curve is 1.
AUC ranges from 0.86 for FSVM to 1 for FESD. The
overall AUC for FSVM is 0.92. FKNN is.095 and for
FESD it is 1. The higher value shows the usefulness of
employment of experimentation.

• Subsection V-F gives a comparison of implemented
state-of-the-art methods with proposed approaches
using the same dataset. It shows the accuracy of the
methods concerning the number of subjects. It also jus-
tifies the proposed FESD approach with an accuracy
of 98.89% and the minimum training time requirement.

VII. CONCLUSION
The first objective of the research work was to relate the tra-
ditional biometric features to an innovative biometric human
footprint. In this regard, a comprehensive literature survey
work has already completed in [39]. Further testing the foot-
prints for its uniqueness using the traditional minutiae-based
method and it exhibited a positive result in a direction to carry
forward the research work.

The next objective of the research work was to meet all
aspects of existing biometric characteristics to a new biomet-
ric modality human footprint. Universality is every subject in
the system holds some features and human footprints hold a
high number of features like minutiae, toeprint, the area of
footprint, centroid and so forth. The uniqueness of footprint
features has confirmed by Data Testing, FSVM, FKNN,and
FESD algorithms. The permanence of features has proved
by checking some random footprints in a timely order. The
measurability or collectability is the simplicity of attainment
or capacity of the features that permit further processing and
extraction of the appropriate feature sets. The measurability
tradeoff has useful in the creation of footprint dataset. Perfor-
mance is the measurement of accuracy, speed, and robustness
of algorithm used; and this has also proved by experimen-
tation of FSVM, FKNN, and FESD. Footprint biometrics
also exhibit acceptability concerning the measurement of
acceptance of the technology for the biometric feature cap-
tured and arbitrated. And, finally, it is impossible to create
footprints with same features. Therefore, the circumvention
which denotes the ease with which a footprint features might
be counterfeit is not possible.

The next objective was to study the applicability of biomet-
ric footprint approach in industries, government and public
domain, and this was carried out with the help of extensive
literature survey presented and publications [39].

The next objective was to rectify the match rate to reach
the required accuracy of 98%, False Match Rate of value 0.01
(FMR, the rate of falsely as genuine classified imposters), and
False Non-Match Rate at 0.01 level(FNMR, the rate of falsely
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as imposter classified genuine users) to a set of different
matchers. For this purpose, three algorithms FSVM, FKNN,
and FESDwere evaluatedwith the created dataset. The results
are as per this objective and discussed in section VI.

The next objective was to ascertain the employability of the
footprint concerning temporal, and physical features. For this
purpose, some footprint sample has taken time to time from
identified volunteers. The footprint matching performance
does not affect, and this proved employability of the footprint
concerning temporal, and physical features.

Fig. 26 shows improving the speed of recognition with
220 subjects was another objective. With the help of par-
allel processing using GPUs, it has increased recognition
speed as training time decreases compared to the alternative
approaches.

The next objective was to implement the prototype
schemes for footprint biometric to evaluate system properties,
including accuracy and performance. For this purpose, three
algorithms have designed based on the fuzzy logic approach
which fulfills this objective.

The final objective of this work was to promote it to install
in legal capacities to identify the person or impostor. This
objective has fulfilled by the publication produced.

VIII. FUTURE DIRECTION OF PRESENT RESEARCH WORK
Earlier work was based entirely on physical characteristics
of footprints. Present work is based on fuzzy logic based
enhanced matching technique for footprint identification
proves its objective. Every research work has some limita-
tions. Current practice was limited to statistical features and
fuzzy logic domain. Fuzzy logic has a significant restriction
of speedy performance, which cannot be entirely overcome
by GPUs and parallel computing alone. The work can be fur-
ther extensible to newer algorithms base on machine learning
and soft computing technique with the fusion of statistical
plus physical characteristics of human footprints. Adding
other modalities such as iris, signature, fingerprints, voice etc.
with footprint can give a more robust solution. Beside meth-
ods and hardware, one can implement the footprint biometrics
matcher with the help of Mathematica, LabView, Python and
such other tools for better scalability of results.

APPENDIX A
FUZZY LOGIC IN FOOTPRINT IMAGING
Zadeh [54], [55] established the innovative mathematical
framework of Fuzzy logic. A fuzzy set consists of different
classes of objects with membership participation in terms of
a membership function showing a grade range between zero
and one (both inclusive). He has given a new meaning to the
union, the intersection, the complement, etc. of classical set
theory. There are two representations of fuzzy inference sys-
tems Mamdani-type [56] and Sugeno-type [57], which vary
moderately in the way outputs are determined. The footprint
feature set in terms of fuzzy logic can be expressed as Eq. 6

FIGURE 27. Input membership function plots.

[16], [18].

f̃oot = {Mean, StdDev,XM ,YM ,

IntDen, Skew,Kurt,Areap} (6)

A. FUZZIFICATION
The process begins with the fuzzification of the input set.
Here the foot is represented as input set. But the foot itself
consists of eight input sets. The universe of discourse for each
input set is shown in Table 10. Initially, it is required to find
the degree of membership belongs to each of the appropriate
fuzzy sets through membership function. Present work uti-
lizes following input membership function for all the three
approaches.The output is a fuzzy degree of membership in the
qualifying linguistic set (always the interval between 0 and
1). Fuzzification of the input amounts to either a table lookup
or a function evaluation. It is a Gaussian type membership
function. There are 8 inputs with one output. The Fig. 27 gives
the input membership plot for all 8 features (Mean, StdDev,
XM, YM, IntDen, Skew, Kurt, Areap). Subsequently, it also
shows some output membership functions.

1) INPUT MEMBERSHIP FUNCTIONS
[Input1]
Name=’Mean’
Range=[0.582 0.697]
NumMFs=3
MF1=’in1mf1’:’gaussmf’,
[0.0244180017582805 0.582]
MF2=’in1mf2’:’gaussmf’,
[0.0244180017582805 0.6395]
MF3=’in1mf3’:’gaussmf’,

26654 VOLUME 9, 2021



S. Basheer et al.: FESD: An Approach for Biometric Human Footprint Matching Using Fuzzy Ensemble Learning

[0.0244180017582805 0.697]

[Input2]
Name=’SD’
Range=[0.46 0.493]
NumMFs=3
MF1=’in2mf1’:’gaussmf’,
[0.00700690485237615 0.46]
MF2=’in2mf2’:’gaussmf’,
[0.00700690485237615 0.4765]
MF3=’in2mf3’:’gaussmf’,
[0.00700690485237615 0.493]

[Input3]
Name=’XM’
Range=[124.792 144.942]
NumMFs=3
MF1=’in3mf1’:’gaussmf’,
[4.2784585689509 124.792]
MF2=’in3mf2’:’gaussmf’,
[4.2784585689509 134.867]
MF3=’in3mf3’:’gaussmf’,
[4.2784585689509 144.942]

[Input4]
Name=’YM’
Range=[310.931 326.784]
NumMFs=3
MF1=’in4mf1’:’gaussmf’,
[3.36607462499149 310.931]
MF2=’in4mf2’:’gaussmf’,
[3.36607462499149 318.8575]
MF3=’in4mf3’:’gaussmf’,
[3.36607462499149 326.784]

[Input5]
Name=’IntDen’
Range=[99164 118792]
NumMFs=3
MF1=’in5mf1’:’gaussmf’,
[4167.62207401331 99164]
MF2=’in5mf2’:’gaussmf’,
[4167.62207401331 108978]
MF3=’in5mf3’:’gaussmf’,
[4167.62207401331 118792]

[Input6]
Name=’Skew’
Range=[-0.856 -0.331]
NumMFs=3
MF1=’in6mf1’:’gaussmf’,
[0.111473486287802 -0.856]
MF2=’in6mf2’:’gaussmf’,
[0.111473486287802 -0.5935]
MF3=’in6mf3’:’gaussmf’,
[0.111473486287802 -0.331]

[Input7]
Name=’Kurt’
Range=[-1.89 -1.267]
NumMFs=3
MF1=’in7mf1’:’gaussmf’,
[0.132281870394859 -1.89]
MF2=’in7mf2’:’gaussmf’,
[0.132281870394859 -1.5785]
MF3=’in7mf3’:’gaussmf’,
[0.132281870394859 -1.267]

[Input8]
Name=’Areap’
Range=[58.162 69.674]
NumMFs=3
MF1=’in8mf1’:’gaussmf’,
[2.44434814122892 58.162]
MF2=’in8mf2’:’gaussmf’,
[2.44434814122892 63.918]
MF3=’in8mf3’:’gaussmf’,
[2.44434814122892 69.674]

2) OUTPUT MEMBERSHIP FUNCTIONS
MF1=’out1mf1’:’constant’,[0]
MF2=’out1mf2’:’constant’,[0]
MF3=’out1mf3’:’constant’,[0]
MF4=’out1mf4’:’constant’,[0]
MF5=’out1mf5’:’constant’,[0]
MF6=’out1mf6’:’constant’,[0]
MF7=’out1mf7’:’constant’,[0]
MF8=’out1mf8’:’constant’,[0]
MF9=’out1mf9’:’constant’,[0]
MF10=’out1mf10’:’constant’,[0]

B. FUZZY RULES
After the fuzzification process, rule generation will start.
The degree of fuzzification of input membership functions is
known to algorithms in which each part of the antecedent has
been satisfied for each rule. It is necessary to apply the fuzzy
operator (for example OR, AND) if the given rule has more
than one part which yields one number that represents the
result of the antecedent for that rule. This number will then be
applied to the output function. The input to the fuzzy operator
is two or more membership values from fuzzified input vari-
ables. The output is a single truth value. The following listing
will give some set of rules incorporating the fuzzy operators.
Fig. 28 gives corresponding graphical representation of rules
shown in following listing.
Rule 1 . i f (Mean ∈ in1mf1 ) ∧ i f (SD ∈ in2mf1 ) ∧ i f (XM ∈ in3mf1 ) ∧

i f (YM ∈ in4mf2 ) ∧ i f ( In tDen ∈ in5mf1 ) ∧ i f ( Skew ∈ in6mf2 ) ∧
i f ( Kur t ∈ in7mf2 ) ∧ i f ( Areap ∈ in8mf2 ) H⇒ ( o u t p u t =out1mf1 ) ( 1 )

Rule 2 . i f (Mean /∈ in1mf1 ) ∧ i f (SD /∈ in2mf1 ) ∧ i f (XM ∈ in3mf1 )∧
i f (YM ∈ in4mf2 ) ∧ i f ( In tDen /∈ in5mf1 ) ∧ i f ( Skew ∈ in6mf3 )∧
i f ( Kur t ∈ in7mf1 ) ∧ i f ( Areap ∈ in8mf2 ) H⇒ ( o u t p u t =out1mf2 ) ( 1 )

Rule 3 . i f (Mean ∈ in1mf1 ) ∧ i f (SD ∈ in2mf2 ) ∧ i f (XM ∈ in3mf2 )∧
i f (YM ∈ in4mf2 ) ∧ i f ( In tDen ∈ in5mf2 ) ∧ i f ( Skew ∈ in6mf3 )∧
i f ( Kur t ∈ in7mf3 ) ∧ i f ( Areap ∈ in8mf3 ) H⇒ ( o u t p u t =out1mf3 ) ( 1 )

Rule 4 . i f (Mean ∈ in1mf1 ) ∧ i f (SD ∈ in2mf2 ) ∧ i f (XM ∈ in3mf2 )∧
i f (YM ∈ in4mf2 ) ∧ i f ( In tDen ∈ in5mf3 ) ∧ i f ( Skew ∈ in6mf1 )∧
i f ( Kur t ∈ in7mf1 ) ∧ i f ( Areap ∈ in8mf1 ) H⇒ ( o u t p u t =out1mf4 ) ( 1 )
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FIGURE 28. Graphical representation of fuzzy rules shown in listing.

Rule 5 . i f (Mean ∈ in1mf1 ) ∧ i f (SD ∈ in2mf2 ) ∧ i f (XM ∈ in3mf2 )∧
i f (YM ∈ in4mf2 ) ∧ i f ( In tDen ∈ in5mf3 ) ∧ i f ( Skew ∈ in6mf1 )∧
i f ( Kur t ∈ in7mf1 ) ∧ i f ( Areap ∈ in8mf2 ) H⇒ ( o u t p u t =out1mf5 ) ( 1 )

Rule 6 . i f (Mean ∈ in1mf1 ) ∧ i f (SD ∈ in2mf3 ) ∧ i f (XM ∈ in3mf2 )∧
i f (YM ∈ in4mf3 ) ∧ i f ( In tDen ∈ in5mf3 ) ∧ i f ( Skew ∈ in6mf1 )∧
i f ( Kur t ∈ in7mf1 ) ∧ i f ( Areap ∈ in8mf2 ) H⇒ ( o u t p u t =out1mf6 ) ( 1 )

Rule 7 . i f (Mean ∈ in1mf1 ) ∧ i f (SD ∈ in2mf3 ) ∧ i f (XM ∈ in3mf2 )∧
i f (YM ∈ in4mf3 ) ∧ i f ( In tDen ∈ in5mf3 ) ∧ i f ( Skew ∈ in6mf1 )∧
i f ( Kur t ∈ in7mf1 ) ∧ i f ( Areap ∈ in8mf3 ) H⇒ ( o u t p u t =out1mf7 ) ( 1 )

Rule 8 . i f (Mean ∈ in1mf1 ) ∧ i f (SD ∈ in2mf3 ) ∧ i f (XM ∈ in3mf3 )∧
i f (YM ∈ in4mf3 ) ∧ i f ( In tDen ∈ in5mf2 ) ∧ i f ( Skew ∈ in6mf3 )∧
i f ( Kur t ∈ in7mf2 ) ∧ i f ( Areap ∈ in8mf1 ) H⇒ ( o u t p u t =out1mf8 ) ( 1 )

Rule 9 . i f (Mean ∈ in1mf2 ) ∧ i f (SD ∈ in2mf1 ) ∧ i f (XM ∈ in3mf3 )∧
i f (YM ∈ in4mf3 ) ∧ i f ( In tDen ∈ in5mf3 ) ∧ i f ( Skew ∈ in6mf2 )∧
i f ( Kur t ∈ in7mf1 ) ∧ i f ( Areap ∈ in8mf2 ) H⇒ ( o u t p u t =out1mf9 ) ( 1 )

Rule 10 . i f (Mean ∈ in1mf2 ) ∧ i f (SD ∈ in2mf1 ) ∧ i f (XM ∈ in3mf3 )∧
i f (YM ∈ in4mf3 ) ∧ i f ( In tDen ∈ in5mf3 ) ∧ i f ( Skew ∈ in6mf2 )∧
i f ( Kur t ∈ in7mf1 ) ∧ i f ( Areap ∈ in8mf3 ) H⇒ ( o u t p u t =out1mf10 ) ( 1 )

Rule 11 . i f (Mean ∈ in1mf2 ) ∧ i f (SD ∈ in2mf1 ) ∧ i f (XM /∈ in3mf3 )
∧ i f (YM ∈ in4mf3 ) ∧ i f ( In tDen ∈ in5mf3 ) ∧ i f ( Skew /∈ in6mf2 )
∧ i f ( Kur t ∈ in7mf2 ) ∧ i f ( Areap ∈ in8mf1 ) H⇒ ( o u t p u t =out1mf11 ) ( 1 )

Rule 12 . i f (Mean ∈ in1mf2 ) ∧ i f (SD ∈ in2mf2 ) ∧ i f (XM ∈ in3mf3 )
∧ i f (YM ∈ in4mf2 ) ∧ i f ( In tDen ∈ in5mf2 ) ∧ i f ( Skew ∈ in6mf1 )
∧ i f ( Kur t ∈ in7mf1 ) ∧ i f ( Areap ∈ in8mf1 ) H⇒ ( o u t p u t =out1mf12 ) ( 1 )

Rule 13 . i f (Mean ∈ in1mf2 ) ∧ i f (SD ∈ in2mf3 ) ∧ i f (XM ∈ in3mf1 )
∧ i f (YM ∈ in4mf3 ) ∧ i f ( In tDen ∈ in5mf3 ) ∧ i f ( Skew ∈ in6mf3 )
∧ i f ( Kur t ∈ in7mf1 ) ∧ i f ( Areap ∈ in8mf2 ) H⇒ ( o u t p u t =out1mf13 ) ( 1 )

Rule 14 . i f (Mean ∈ in1mf2 ) ∨ i f (SD /∈ in2mf3 ) ∨ i f (XM /∈ in3mf1 )
∨ i f (YM ∈ in4mf3 ) ∨ i f ( In tDen ∈ in5mf3 ) ∨ i f ( Skew ∈ in6mf3 )
∨ i f ( Kur t ∈ in7mf1 ) ∨ i f ( Areap ∈ in8mf3 ) H⇒ ( o u t p u t =out1mf14 ) ( 1 )

Rule 15 . i f (Mean ∈ in1mf2 ) ∧ i f (SD ∈ in2mf3 ) ∧ i f (XM ∈ in3mf2 )
∧ i f (YM ∈ in4mf2 ) ∧ i f ( In tDen ∈ in5mf2 ) ∧ i f ( Skew ∈ in6mf2 )
∧ i f ( Kur t ∈ in7mf3 ) ∧ i f ( Areap ∈ in8mf2 ) H⇒ ( o u t p u t =out1mf15 ) ( 1 )

Rule 16 . i f (Mean ∈ in1mf2 ) ∧ i f (SD ∈ in2mf3 ) ∧ i f (XM ∈ in3mf2 )
∧ i f (YM ∈ in4mf2 ) ∧ i f ( In tDen ∈ in5mf2 ) ∧ i f ( Skew /∈ in6mf2 )
∧ i f ( Kur t /∈ in7mf3 ) ∧ i f ( Areap ∈ in8mf3 ) H⇒ ( o u t p u t =out1mf16 ) ( 1 )

C. AGGREGATE ALL OUTPUTS
All the fuzzy rules need to combine to make a decision. The
process of combining the output of each rule into a single
fuzzy set to get a resolution is known as aggregation. The
rules are combined using probabilistic ORmethod, maximum
method, or summation of each rule of a fuzzy output set.
Aggregation occurs once for each output variable, just before
the defuzzification. In the aggregation process, the input is
the list of pruned output features returned for each rule by the

implication method. A fuzzy set for each output variable is
the output of the aggregation process.

D. DEFUZZIFICATION
The fuzzy logic starts with converting a crisp set into a fuzzy
set. Then fuzzymembership function will be created based on
linguistics. Finally, the defuzzification will be done. Defuzzi-
fication is an essential process to produce the fuzzy quantifi-
able result in crisp logic. In other words, it is a mapping of
fuzzy set into a crisp set. For this research, the output mem-
bership function obtained using FKNN, FSVM, and FESD
are symmetrical; therefore, the weighted-average method of
defuzzification has been applied. This method is also known
as Sugeno defuzzification method. For this purpose, the crisp
values can be obtained from Eq. 7.

X∗ =

∑n
i=1 µCi (Xi).(Xi)∑n
i=1 µCi (Xi)

(7)

where, C1,C2, . . .Cn are the output fuzzy sets and (Xi) is the
value where centre of the fuzzy set Ci is observed.

E. GRID PARTITIONING
The grid partitioning fuzzy inference system as shown
in Fig. 29, consists of 8 input features and one output. Table 9
shows feature space corresponding to input feature. The
name of this FIS is footGP. [57] gives Sugano FIS model,
which generates a sum of 1296 rules. The fuzzy operator
AND method is the product of fuzzified input values, while
fuzzy operator OR follows probabilistic OR of fuzzified input
values. Implication method for computing resulting fuzzy
set in this approach follows product as scale the resultant
membership function by the predecessor result value. Sum of
following fuzzy sets defines the aggregation method. Crisp
output values have figured during the defuzzification phase
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FIGURE 29. Sugano FIS for footprint dataset for 8 input features and
1 output.

TABLE 9. Attribute range of 8 normalized extracted features (Grid
Partitioning).

FIGURE 30. Sample fuzzy rules in verbose mode.

by the weighted average of all rule outputs. Fig. 30-33, shows
grid partitioned Sugano FIS. In these figures, Fig. Fig. 30
shows sample fuzzy rules in verbose mode, Fig. 31 gives
the graphical representation of fuzzy rules, Fig. 32 shows a
membership plot for feature Mean, and Fig. 33 shows the
surface plot between StdDev, Mean, and Output Class.

F. SUBSPACE CLUSTERING
The Subspace Clustering based fuzzy inference system
shown in Fig. 34, consists of 8 input features and one output.

FIGURE 31. Graphical representation of fuzzy rules.

FIGURE 32. Membership plot for feature Mean.

FIGURE 33. Surface plot between StdDev, Mean, Output Class.

Table 10 shows feature space corresponding to input feature.
The name of this FIS is footSC. The Sugano based model
generates a sum of 9 rules. The fuzzy operator AND method
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FIGURE 34. Subspace clustered Sugano FIS :Sugano FIS for footprint
dataset for 8 input features and 1 output.

TABLE 10. Attribute range of 8 normalized extracted features (Subspace
Partitioning).

FIGURE 35. Surface plot between StdDev, Mean, Output Class.

is the product of a fuzzified input values, while fuzzy oper-
ator OR follows probabilistic OR of fuzzified input values.
Implication method for computing resulting fuzzy set in this
approach follows product as scale the resultant member-
ship function by the predecessor result value. Maximum of

FIGURE 36. Fuzzy rules in verbose mode.

FIGURE 37. Graphical representation of fuzzy rules.

FIGURE 38. Membership plot of output MF out1.

following fuzzy sets defines the aggregation method. Crisp
output values have figured during the defuzzification phase
by the weighted average of all rule outputs. Fig. 34-39, shows
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FIGURE 39. Membership plot of input MF Skew.

subspace clustered Sugano FIS. Fig.34 shows Sugano FIS
for footprint dataset for 8 input features and 1 output. The
surface plot between StdDev, Mean, Output Class is shown
in Fig. 35. Fig. 36 and Fig. 37 shows fuzzy rules in verbose
mode, and graphical mode respectively. Fig. 38 and Fig. 39
gives the membership plot for output MF out1, and input MF
Skew respectively.

Fig. 40 give the brief idea about proposed approach. The
algorithm strat with capturing the data then splitting the
dataset and finally evaluated through FKNN, FSVM, and
FESD approach.

APPENDIX B
FINE GAUSSIAN SVM (Fuzzy Kernel) FOOTPRINT
MATCHER
The accuracy is very important in any matching algorithm.
The Support Vector Machine has tremendous learning abil-
ities for such kind of classification and match. The SVM
kernel is a mathematical function that transform input feature
space into desired forms. The coordinates of the training
set closest to classifying hyperplane defines support vectors.
The classifying hyperplane has a scope of maximum margin
both side; it can classify both linear and non-linear problems
with sporadic chances of overfitting. The transformation of
datapoint from non-linear space to linear space gives kernel
trick. Suppose, K (p, q) = 〈f (p), f (q)〉, is a kernel function
over n-dimensional feature space p and q, then f is a func-
tion that maps high-dimensional feature space to optimized
m-dimension feature space(f : n 7→ m). The Gaussian kernel
K (p, q) with the parameter γ > 0, shown in Eq. 8, is used
with the intention of no prior knowledge of input(most of the
literature used γ = 1/(2σ 2)).

K (p, q) = e−γ ‖p−q‖
2

(8)

The FSVM method shown in Algo. 3, is the combination
of fuzzy classifiers and Gaussian kernel machine aiming to

Algorithm 3 Footprint Matcher: Fine Gaussian SVM (Fuzzy
Kernel)
Require: input test sets Ex, and Ey
Require: initial output membership function out0
Require: location parameter zkj ;

{Construct Gaussian Kernel}
for j:=1 to m do
for k:=1 to n do
K (Ex, zj)← K (Ex, zj−1)× ink (xk − zkj )
{ The Gaussian membership function }
µ(x)← e−γ x

2
; ∀γ > 0

{transformed to Fourier transform }

F[µ](ω)← 1
√
2γ
e−

ω2
4γ

end for
end for
t0← 0
out0← 0
j← 1
for i:=1 to p do
for j:=1 to p do
maximize G(Eη) ←

∑p
i=1 ηi −

1
2

∑p
i=j=1 ηi ηjyi yj K (Ex, Exj)

subject to 0 ≤ ηi ≤ 1;
end for
ti← ti−1 + yiηi {Final value of ti must be unity.}
if ηi > 0 then
Ezj← Exi
outj← yiηi
j← j+ 1

end if
m← j− 1

end for

find optimum values for cost function and kernel parameter
to achieve a best footprint match with a low error rate. FSVM
as a unique classification model with powerful generalization
capability, robustness, and good interpretability resembles to
be a promising approach for biometric footprint matching.
The feature set consists of a large set of features for 6 samples
per footprint of 220 volunteers. Consider a fuzzy rule from
grid partitioning method as shown in 9.

Rule 6 : If (Mean == in1mf 1) ∧

(StdDev == in2mf 1) ∧ (XM == in3mf 1)

∧(YM == in4mf 1) ∧ (IntDen == in5mf 1)

∧(Skew == in6mf 1) ∧ (Kurt == in7mf 3)

∧(AreaPC == in8mf 2) then (output == out1mf 6)

(9)

This rule can also be written in general form as shown in 10.

Rule j : IF in1j ∧ IN
2
j ∧ IN

3
j . . . ∧ IN

n
j THEN outj (10)

where, for any fuzzy implication R, the output membership
function outj ∈ R, and IN k

j is the fuzzy set with input
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FIGURE 40. Summarize view of FSVM, FKNN, and FESD algorithm.

membership function inkj : R 7→ [0, 1],∀j = 1, 2, ..,m, and
∀k = 1, 2, . . . , n. Here for this purpose, the grid portioning
model presented in subsection A-E is required. For any input
feature space Ex = [x1, x2, . . . , xn]T , the input to output
mapping F : Rn 7→ R is defined by Eq. 11.

F(Ex) =

∑m
j=1 outj

∏n
k=1 in

k
j (xk )∑m

j=1
∏n

k=1 in
k
j (xk )

(11)

It might be possible that the feature space is not able to cover
all the rules. Then Rule 0 could be added by using Eq. 10,
alternatively, the Eq. 11 transformed into Eq. 12.

F(Ex) =
out0 +

∑m
j=1 outj

∏n
k=1 in

k
j (xk )

1+
∑m

j=1
∏n

k=1 in
k
j (xk )

(12)

Now, it is important to find the incorrect or negative data
from the input output training pair. the sign of Eq. 12 deter-
mines the positive and negative samples shown by a classifier
Label(Ex), in eq 13. A second form can also be productive
because the only numerator is responsible for returning the
sign. After knowing the sign of function F , next step is to
apply Gaussian Kernel into the SVM. Because the SVM
narrows the scope of F , generated from a membership func-
tion µ defined on the footprint matcher. This membership
function become reference function if Eq. 14 satisfies. For
a given location parameter zkj , following property of location
transformation holds in Eq. 15. Then, the Eq. 16 gives the
transform invariant Gaussian Kernel. Thereafter, the Eq. 13,
will now converted to Eq. 17

Label(Ex) = sign(F(Ex)) = sign(out0 +
m∑
j=1

outj
n∏

k=1

inkj (xk ))

(13)

µ(x) = µ(−x) and µ(0) = 1 (14)

inkj (xk ) = ink (xk − zkj ); ∀z
k
j ∈ R (15)

K (Ex, zj) =
n∏

k=1

ink (xk − zkj )

The Gaussian

membership function µ(x) = e−γ x
2
; γ > 0

transformed to Fourier transform F[µ](ω) =
1
√
2γ

e−
ω2
4γ


(16)

Label(Ex) = sign(out0 +
m∑
j=1

outjK (Ex, Ezj)) (17)

For another set of training input Ey = [y1, y2, . . . , yp],
and SVM learning parameter Eη, maximization of classified
matching footprint feature points could be given as Eq. 18.

maximize G(Eη) =
p∑
i=1

ηi −
1
2

p∑
i=j=1

ηi ηjyi yj K (Ex, Exj)

subject to 0 ≤ ηi ≤ 1; ∀i = 1, .., p; and
p∑
i=1

yiηi = 1

(18)

f (Ex) = sign(out0 +
m∑
j=1

ηjyjK (Ex, Exj)) (19)

Finally, from unknown values to given known values,
the 2 input training sets, the SVM learning parameter, and
the initial value of output membership function, upon solving
Eq. 18 which is related to Eq. 17, the classes of positive
match and negative match will be given by Eq. 19.
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APPENDIX C
FINE KNN BASED FOOTPRINT MATCHER
The KNN follows straightforward approach. The training
dataset is helpful to award a class from new cases based on
a similarity value of k nearest neighbors. The problem may
arise, how to find the minimum distances between the subject
and neighbors. This algorithm follows two-step approach,
viz. the first step is to calculate the similarity based on
distance functions d(x, y). For p different points, xi, and yi,
the Euclidean distance can be calculated by Eq. 20, and
Eq. 21 calculates distance by Manhattan function.

de(x, y) =

√√√√ p∑
i=1

(xi − yi)2 (20)

dm(x, y) =
p∑
i=1

‖ xi − yi ‖ (21)

Here, this idea could use to find, how two or more foot-
prints are similarly based on eight listed features. The sec-
ond step is involved in finding the distances for k-nearest
neighbors. Based on minimum distances often called rank,
the subject (here footprint) awarded by the nearest class
value. The footprint dataset consists of parameters of different
units. This is important to standardize the features to find the
similarity score of the diverse set of footprints. Sometimes,
it is also possible the features of the test class may match
with 2 or more classes due to confusion, often known as an
outlier. The value of outliers also plays a vital role in finding
the matching rate of footprints [58].

Algorithm 4 Footprint Matcher: Fine KNN
Require: Input unknown footprint x
{Set K : 1 ≤ K ≤ n}
for i:=1 to n do
Find minimum distance de(x, xi) ←

min
(√∑n

i=1(x − xi)2
)

if i < K then
add(xi) in set of K-nearest neighbors

else if xi is closer than xi−1 then
delete(xi−1) from set of K-nearest neighbors
add(xi) in set of K-nearest neighbors

end if
end for
i← 1
repeat

µi(x)←
∑K

j=1 µi(xj)de(x,xj)
−2/(m−1)∑K

j=1 de(x,xj)−2/(m−1)

i← i+ 1
until x assigned membership in all classes

The Algo. 4, is described as follows. Let, ω =

{x1, x2, .., xn}, be the set of labeled footprint samples. The
assigned membership of unknown footprint vector x is given
by µi(x). The µij, computes the membership of ith class of jth

vector of ω. The µi(x) can be computed by Eq. 22, is deter-
mined by the inverse of distances from their nearest neighbors
and their class membership. The highest membership value
has awarded upon determining all the memberships for a test
footprint sample.

µi(x) =

∑K
j=1 µi(xj)de(x, xj)

−2/(m−1)∑K
j=1 de(x, xj)−2/(m−1)

or, by: µi(x) =

∑K
j=1 µij(1/ ‖ x − xj ‖

−2/(m−1))∑K
j=1(1/ ‖ x − xj ‖−2/(m−1))

(22)

This algorithm follows fine grain partitioning. The success
rate of FKNN depends on the value m, is a weighing factor
to determining the contribution of each neighbors to the
membership values. Typically m ranges from 1.5 to 2.5 for
better result. As the value of m > 1, the membership values
gradually increases.
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