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ABSTRACT Bounded synthesis generates a state machine satisfying given temporal specification in linear
temporal logic (LTL) while bounding the number of states of the target solution. Bounded synthesis methods
currently do not support finite-length behavior examples, which are often helpful when formulating the
specification of the desired state machine. In this work we show how to incorporate behavior examples into
bounded synthesis methods and exemplify the approach by presenting BeBoSy (Behavior Examples meet
BoSy), an extension of the bounded synthesis tool BoSy based on reductions to Boolean satisfiability (SAT)
and Quantified Boolean formula satisfiability (QSAT) problems. The proposed approach is to augment
the encodings used in BoSy with additional constraints that ensure the compliance of the generated state
machine with the given behavior examples. Experiments with openly available data from the annual reactive
synthesis competition SYNTCOMP augmented with random behavior examples show that the efficiency of
the proposed approach is superior to both BoSy (with naïve representation of behavior examples with LTL
formulas) and a state-of-the-art counterexample-guided approach EFSM-tools.

INDEX TERMS Bounded synthesis, LTL synthesis, inference algorithms, Boolean satisfiability, quantified
Boolean formula.

I. INTRODUCTION
Finite-state machines are widely used for system design [27],
testing [3], [21], and verification [5], especially in the domain
of control systems and cyber-physical systems. Manual
ad-hoc creation of a finite-state machine for a concrete prob-
lem is often a non-trivial, laborious, and error-prone process.
Thus, a vast amount of research effort has been dedicated
to creation of methods for automatic synthesis of finite-state
machines from specification of various forms [4], [7]–[9],
[12], [14], [23], [26], [28].

One type of specification is a set of behavior examples
of finite length that the sought state machine must satisfy.
Behavior examples as a specification are helpful when the
goal of state machine synthesis is to find a model of some
existing (legacy) system based on its known behavior. In this
case, behavior examples can be recorded automatically from
the legacy system or its simulation model. The problem of
finding the minimal deterministic finite automaton satisfying
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given labeled words (a type of behavior examples) is
NP-complete [13]. Methods capable of finding minimal state
machines satisfying given behavior examples are mostly
based on translation to the Boolean satisfiability problem
(SAT) [4], [5], [7], [14], [26] and related problems [8], [9].
Methods based on heuristics such as state merging are useful
for finding moderate-size models [12], [15], [28], but do not
guarantee that the found model will be minimal.

Another widely used type of specification are linear tem-
poral logic (LTL) formulas [20]. These express properties of
state machine behavior that are not bounded to finite length.
This type of specification is helpful when synthesizing a state
machine ‘‘from scratch’’, solely based on design require-
ments. The problem of synthesizing a state machine satisfy-
ing given LTL properties (so-called LTL synthesis problem) is
2EXPTIME-complete [24]. However, despite this complexity
result, if the size of the LTL specification is small or moder-
ate, LTL synthesis can be solved efficiently formany practical
examples. One of the most successful approaches to LTL
synthesis is bounded synthesis [8], [9], [11], in which the
number of states of the synthesized state machine (so-called
transition system) is bounded, allowing to construct solutions
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with the minimum number of states, unlike other approaches
to LTL synthesis [19], [22].

Described types of specification, behavior examples and
temporal properties, may be combined [5], [6], [26], [28].
Indeed, when searching for a finite-state model of a legacy
system based on its behavior examples, it is often helpful
to restrict its possible behavior by ensuring its compliance
with temporal properties which may be derived from doc-
umentation or analysis. Also, when synthesizing a system
‘‘from scratch’’, use of behavior examples together with LTL
properties may ease the effort of specification preparation,
since behavior examples are simpler to comprehend than LTL
formulas, especially to engineers not familiar with formal
methods.

Known methods allowing synthesis of minimal-sized state
machines from both behavior examples and temporal prop-
erties [5], [6], [26] are based on the use of SAT solvers
and counterexample-guided inductive synthesis (CEGIS) [2],
[18], [25]. CEGIS is an iterative procedure, in which the
model is synthesized from positive and negative examples,
where negative examples are produced by verifying candidate
models against temporal properties and collecting counterex-
amples produced by a model checker. A weak side of this
approach is that the number of CEGIS iterations (synthesize,
verify, forbid counterexamples)may be large if the target state
machine is not sufficiently covered with behavior examples.
In particular, use of the CEGIS approach for synthesis only
from LTL properties is practically infeasible, since it is effec-
tively reduced to random search loosely guided by model
checking results.

Another approach to solve the problem is to encode behav-
ior examples with LTL properties and use existing LTL syn-
thesis tools such as BoSy [8], [9]. However, scalability of such
a naïve approach, as shown below in this paper, is limited,
since conversion of behavior examples to LTL dramatically
increases the overall size of the LTL specification.

Thus, to our best knowledge, currently there is no univer-
sal approach to synthesizing finite-state machines (transition
systems) from LTL properties and finite-length behavior
examples simultaneously: EFSM-tools requires sufficient
completeness of the set of behavior examples, and BoSy
cannot efficiently account for behavior examples. In this
paper we address this challenge by creating a new method
for solving the problem of bounded synthesis from both LTL
properties and behavior examples. The contributions of this
paper are the following.

1) We propose extensions of SAT and Quantified SAT
(QSAT, or Quantified Boolean Formula, QBF) based
methods implemented in the LTL synthesis tool
BoSy [8], [9] that allow the use of behavior examples
as additional input data for bounded synthesis. The pro-
posed extensions are additional SAT/QSAT constraints
that ensure the compliance of the synthesized transition
system with given behavior examples. This result con-
tributes to the state of the art in the area of synthesis by
extending the area of applicability of bounded synthesis

methods, making them applicable to synthesis from
both behavior examples and LTL properties.

2) We perform the first (to the best of our knowledge)
rigorous experimental study comparing state-of-the-
art state machine synthesis methods from two dif-
ferent research directions: bounded synthesis (BoSy)
and counterexample-guided synthesis (EFSM-tools).
We compare the proposed approach with these
state-of-the-art methods using openly available reac-
tive synthesis competition (SYNTCOMP) benchmark
instances [16], [17] augmented with randomly gener-
ated behavior examples.We find that for the considered
synthesis problem bounded synthesis is superior to
counterexample-guided synthesis.

The rest of this paper is structured as follows. In Section II
we review SAT and QSAT based bounded synthesis methods
proposed in [8], [9] that allow generating transition systems
from LTL properties only. Then, Section III describes the pro-
posed approach to augmenting these methods with the new
type of input data, behavior examples. Section IV presents the
experimental evaluation, comparing the proposed approach
with state-of-the-art methods. Finally, Section V concludes
the paper with a short discussion of results and directions of
future work.

II. BOUNDED SYNTHESIS WITH BoSy
In this section we give a brief overview of the bounded
synthesis approaches [8] implemented in the BoSy [9] tool.
We describe only the details essential for understanding the
way how existing BoSy encodings work, and our modifica-
tions. In Section II-A we introduce required definitions. In
Section II-B we describe the general approach to bounded
synthesis implemented in BoSy. Then, in Section II-C and
Section II-Dwe describe two encodings of bounded synthesis
proposed in [8]: the so-called explicit encoding using SAT
and the input-symbolic encoding using QSAT.

A. DEFINITIONS
1) LINEAR TEMPORAL LOGIC
Linear temporal logic [20] (LTL) is a formal specification
language used to formulate statements about the states of
the system at different moments of time. An LTL formula
may include propositional variables (here, input and output
variables of the state machine or predicates assembled from
them), Boolean connectives∨,∧,¬,→, and a set of temporal
operators: Gf (Always, f holds for all states starting from
the current one), Xf (neXt, f holds for the next state), Ff
(Eventually, f holds for some consequent state), gUf (Until,
g holds at least until f becomes true, which must hold for the
current or some future state). For example, if x1, x2, and z1 are
propositional variables, then G((x1 ∧ ¬x2) → X(Fz1)) is an
LTL formula meaning ‘‘Always: if x1 and not x2 then, starting
from the next state, eventually z1 will be true’’.

2) UNIVERSAL CO-BÜCHI AUTOMATON
Auniversal co-Büchi automatonA is a tuple 〈Q, q0, 6, δ,F〉,
where Q is a finite set of states, q0 ∈ Q is the initial state,
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6 is a finite alphabet, δ : Q×6×Q is the transition relation,
and F ⊆ Q is a set of rejecting states. For an infinite word
σ ∈ (26)ω, a run of A on σ is an infinite state sequence
q0q1q2 · · · ∈ Qω, where (qi, σi, qi+1) ∈ δ, i ≥ 0. A run
is called accepting, if there are only finitely many rejecting
states in the corresponding state sequence. A accepts a word
ω if all runs of ω are accepting. The language ofA is denoted
as L(A) and is defined as {σ ∈ (26)ω | A accepts σ }.

3) TRANSITION SYSTEM
A transition system T is a tuple 〈T , t0, 6 = I ∪ O, τ 〉, where
T is a finite set of states, t0 ∈ T is the initial state, I is a finite
set of propositional variables controllable by the environment
(inputs), O is a finite set of propositional variables control-
lable by the system (outputs), and τ : T × 2I → 2O × T is
the transition function. The transition function τ maps a state
t and a valuation of an input vector i ∈ 2I to a valuation of
an output vector o ∈ 2O and a next state t ′. Given an infinite
ω-word i0i1 · · · ∈ (2I )ω over the inputs, T produces an
infinite trace ({t0} ∪ i0 ∪ o0)({t1} ∪ i1 ∪ o1) · · · ∈ (2T∪I∪O)ω,
where τ (tj, ij) = (oj, tj+1) for every j ≥ 0.

4) RUN GRAPH
The product of a transition system T = 〈T , t0, 6 = I ∪ O, τ 〉
and a universal co-Büchi automaton A = 〈Q, q0, 6, δ,F〉
is called a run graph [11]. A run graph is defined as graph
G = 〈V = T × Q,E〉, where E ⊆ V ×V is the edge relation
such that ((t, q), (t ′, q′)) ∈ E ⇔ (∃i ∈ 2I )(∃o ∈ 2O)τ (t, i) =
(o, t ′) ∧ (q, i ∪ o, q′) ∈ δ.

B. BOUNDED SYNTHESIS
The reactive synthesis problem is to decide whether there
exists a state machine (transition system) satisfying the given
LTL specification. Bounded synthesis [11] is able to generate
the minimal (in terms of number of states) transition sys-
tem satisfying given LTL properties. In BoSy, a given LTL
formula ϕ is transformed to a universal co-Büchi automaton
A, which accepts the language L(ϕ). The target transition
system T satisfies the specification ϕ if and only if every trace
generated by T belongs to language L(ϕ).
Authors of [11] propose to connect a transition system

T with a co-Büchi automaton A using a run graph and an
annotation function λ : T × Q → {⊥} ∪ N, which assigns
run graph vertices either a natural number k or the value ⊥
in case the vertex is unreachable. The annotation function is
deemed correct if two conditions are satisfied.

First, the pair of initial nodes (t0, q0) is assigned a natural
number. Second, if the pair (t, q) is assigned a natural number
k , then for all i ∈ 2I and o ∈ 2O such that τ (t, i) = (o, t ′) and
(q, i ∪ o, q′) ∈ δ, the pair (t ′, q′) must be assigned a natural
number, that is no less than k , or strictly greater than k if q′ ∈
F . This is denoted λ(t ′, q′) Fq′ k , where Fq′ ≡ > if q′ ∈ F ,
otherwise ≥. Synthesis is done by searching for a transition
system with a correct annotation.

Since this part of bounded synthesis is not the focus of the
current research, we refer the readers to [8], [11] for more
details. In the following sections we briefly describe two

encodings of the bounded synthesis problem proposed in [8]
that we will augment with additional constraints regarding
behavior examples: the explicit SAT encoding, and the input-
symbolic QSAT encoding.

C. EXPLICIT SAT ENCODING
In the explicit encoding, inputs are considered in the transi-
tion function τ explicitly, and a translation to SAT is used.
Thus, the size of the generated SAT formula is exponential
in the number of inputs. The transition function τ of the
transition system is represented with two types of variables:
ot,i denotes whether output proposition o ∈ O should be
True for state t and input proposition i ∈ 2I , and τt,i,t ′
denotes whether there is a transition from state t to state t ′

marked with input i ∈ 2I .
The transition relation of the co-Büchi automaton is rep-

resented with Boolean formulas δt,q,i,q′ over the output vari-
ables ot,i. The annotation function λ is split into two parts:
λB : T × Q → B for representing reachability and λ# :
T × Q → N for representing the bound on the number of
visits to rejecting states. For each t ∈ T and q ∈ Q a Boolean
variable λBt,q is introduced that is True if and only if the
vertex (t, q) of the run graph is reachable from the root, and a
variable λ#t,q, which is a bit vector of length O(log(|T | · |Q|))
that is assigned the value of the binary encoding of λ(t, q).

The final SAT formula asserts that the initial vertex of the
run graph (t0, q0) is reachable, that the transition system is
complete (meaning that there is at least one transition from
each state for every input), and that the annotation function
represented by variables λBt,q and λ#t,q is well-defined and
consistent with the transition relation represented by variables
τt,i,i′ and ot,i [8]:

∃{λBt,q, λ
#
t,q | t ∈ T , q ∈ Q}

∃{τt,i,t ′ | (t, t
′) ∈ T × T , i ∈ 2I }

∃{ot,i | o ∈ O, t ∈ T , i ∈ 2I }

λBt0,q0 ∧

∧
t∈T

∧
i∈ 2I

∨
t ′∈T

τt,i,t ′


∧

∧
q∈Q

∧
t∈T

λBt,q→ ∧
q′∈Q

∧
i∈ 2I

(
δt,q,i,q′

→

∧
t ′∈T

(
τt,i,t ′ →

(
λBt ′,q′ ∧ λ

#
t ′,q′ Fq′ λ

#
t,q

)))
If the SAT formula above is satisfiable, then the resulting

transition system can be constructed using values of variables
τt,i,t ′ and ot,i found by the SAT solver.

D. INPUT-SYMBOLIC QSAT ENCODING
The input-symbolic encoding proposed in [8] differs from the
explicit one in the way of handling variables that depend on
inputs. The idea is to use a QSAT solver and to add universal
quantification over the input variables, thus reducing the size
of the formula and avoiding the exponential blow-up of its
size produced by the explicit approach. Here, the transition
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relation τ and the output function o are treated as Boolean
Skolem functions whose domain is the set of assignments of
input variables I . Thus, the indices i from τt,i,t ′ and ot,i are
dropped:

∃{λBt,q, λ
#
t,q | t ∈ T , q ∈ Q}

∀I

∃{τt,t ′ | (t, t
′) ∈ T × T }

∃{ot | o ∈ O, t ∈ T }

λBt0,q0 ∧

(∧
t∈T

∨
t ′∈T

τt,t ′

)

∧

∧
q∈Q

∧
t∈T

λBt,q→ ∧
q′∈Q

(
δt,q,q′

→

∧
t ′∈T

(
τt,t ′ → λBt ′,q′ ∧ λ

#
t ′,q′ Fq′ λ

#
t,q

))
E. TRANSITION SYSTEM DETERMINISM CONSTRAINTS
In this work we are targeting controller synthesis, therefore
we require that the generated transition system is determin-
istic. Thus, we augmented both explicit and input-symbolic
encodings with additional constraints forcing the synthesized
transition system to be deterministic: for each state t and each
i ∈ 2I , only one guard condition of outgoing transitions
from t may evaluate to True. For the input-symbolic case the
following constraint is added, where we additionally assume,
without loss of generality, that the set of states T is ordered:∧

t∈T

∧
t ′∈T

∧
t ′′∈T , t ′<t ′′

τt,t ′ → ¬τt,t ′′ .

III. BEHAVIOR EXAMPLES MEET BOUNDED SYNTHESIS
In this section we describe several approaches of handling
behavior examples (scenarios) in bounded synthesis. The
general and overall idea is to augment the SAT and QSAT
encodings developed in BoSy [8] with new constraints that
would ensure the compliance of the resulting synthesized
transition system with given behavior examples (scenarios).
The behavior examples are represented using a data structure
called a scenario tree, and the new constraints aim to find a
correct mapping of nodes and edges of the scenario tree to
states and transitions of the synthesized transition system.

Consider the set of constraints defined in BoSy (for,
example, the SAT version). They require that the resulting
transition system satisfies the given LTL formulas. Essen-
tially, these constraints (denote them FLTL) allow for multiple
different resulting transition systems. In our work we are
interested only in transition systems that additionally satisfy
the given behavior examples. So our new constraints restrict
the set of possible resulting transition systems allowed by
FLTL to only those that satisfy the behavior examples.
First, in Section III-A behavior examples are formally

introduced. Second, in Section III-B, a naïve approach is
described in which behavior examples are represented as LTL

formulas, and existing off-the-shelf bounded synthesis tools
are used. Third, in Section III-C we describe the data struc-
ture used for representing scenarios in a more compact way:
scenario tree. Then, in Section III-D and in Section III-E,
using the scenario tree for representing behavior examples,
we describe propositional constraints for both SAT andQSAT
encodings that restrict the transition system synthesized by
BoSy to comply with the scenario tree. In other words,
proposed constraints encode the relation between scenario
tree vertices and states of the synthesized transition system,
demanding that the synthesized transition system correctly
processes behavior examples stored in the scenario tree.

A. BEHAVIOR EXAMPLES
A behavior example or a scenario {〈ik , ok 〉 | ik ∈ 2I , ok ∈
2O, k ∈ [1..n]} is a finite sequence of n scenario elements,
where each k-th element contains a valuation of input vari-
ables ik ∈ 2I (input event) and a valuation of outputs
variables ok ∈ 2O (output event).
A transition system satisfies a scenario element 〈ik , ok 〉 in

state t if after processing the input ik in state t the output
becomes equal to ok : τ (t, ik ) = (ok , t ′), where t ′ ∈ T is an
arbitrary state. And a transition system satisfies a scenario
{〈ik , ok 〉 | k ∈ [1..n]} if it satisfies all its elements in corre-
sponding states, starting from the initial state t0: τ (t0, i1) =
(o1, t ′1), τ (t

′

1, i2) = (o2, t ′2), etc.

B. NAÏVE APPROACH
The naïve approach to incorporating scenarios into LTL syn-
thesis is to convert each scenario to an LTL formula and
use existing LTL synthesis tools, e.g. BoSy. For a scenario
s = {〈ik , ok 〉 | k ∈ [1..n]} we can construct an LTL formula
ϕs equivalent to s:

ϕs = ik → ok ∧ X(ik+1→ ok+1 ∧ X(. . .)).

Note that by saying that the scenario s is equivalent to the
LTL formula ϕs we mean that any transition system satisfies
the scenario s if and only if it satisfies the LTL formula ϕs.
For example, let I = {i1, i2, i3}, O = {o1, o2, o3}, and

consider the set of input events {e1 = i1i2i3, e2 = i2i1i3, e3 =
i3i1i2} ⊂ 2I and set of output events {z1 = o1 o2 o3,
z2 = o1o2 o3, z3 = o2o1 o3} ⊂ 2O. Then, the scenario
s = 〈〈e1, z2〉; 〈e2, z1〉; 〈e3, z3〉; 〈e2, z1〉〉 is represented with
the following LTL formula ϕs:

ϕs = (i1 ∧ ¬i2 ∧ ¬i3)→ (o1 ∧ ¬o2 ∧ ¬o3
∧X(i2 ∧ ¬i1 ∧ ¬i3)→ (¬o1 ∧ ¬o2 ∧ ¬o3
∧X(i3 ∧ ¬i1 ∧ ¬i2)→ (o2 ∧ ¬o1 ∧ ¬o3
∧X(i2 ∧ ¬i1 ∧ ¬i3)→ (¬o1 ∧ ¬o2 ∧ ¬o3)))).

Such representation increases the size of the LTL specifi-
cation by (|I |+|O|) · (number of elements in scenarios). This
leads to an increase in the size of the co-Büchi automaton
used in BoSy and also an increased time required for its
construction.
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FIGURE 1. Scenario tree constructed from example scenarios (1), each
path in the tree starting from its root corresponds to some prefix of some
scenario from (1): e.g. scenario 〈〈e1, z2〉; 〈e2, z1〉; 〈e3, z3〉; 〈e2, z1〉〉

corresponds to the path (1, 3, 4, 5, 6).

C. SCENARIO TREE
A scenario tree [14], [26] is a prefix tree containing all
prefixes of all scenarios it represents. Each edge is labeled
by an input event and an output event. The tree is constructed
iteratively. Initially, the scenario tree only contains one ver-
tex, the root. Then, scenarios are added one by one, element
by element. Before adding a scenario to the tree, the current
vertex is the root of the tree. Then, if the current vertex
u has an outgoing edge (u, v) labeled with the same label
(input/output pair) as the scenario element currently being
added to the tree, then the current vertex is changed to vertex
v. If, on the contrary, the current vertex has no such outgoing
edge, a new vertex and a new edge with the corresponding
label are created in the tree, and the new vertex becomes the
current one. Consider for example the following scenarios:

〈〈e3, z3〉〉

〈〈e1, z2〉; 〈e2, z1〉; 〈e3, z3〉; 〈e2, z1〉〉

〈〈e1, z2〉; 〈e2, z1〉; 〈e1, z2〉〉

〈〈e2, z1〉; 〈e3, z3〉〉

〈〈e2, z1〉; 〈e1, z2〉; 〈e3, z2〉〉, (1)

where events {e1, e2, e3} and actions {z1, z2, z3} have the
same definition as above.
The scenario tree corresponding to scenarios (1) is shown

in Fig. 1. Note that each path in the tree starting the root node
corresponds to some prefix of some scenario from (1). Use
of the scenario tree reduces the number of variables required
to represent the scenarios in the encoding, since separate
variables are needed for each vertex.

D. EXTENDING EXPLICIT SAT-BASED BoSy WITH
BEHAVIOR EXAMPLES
The general idea is to organize a mapping between nodes
of the scenario tree S and states of the transition system T .
As in synthesis from behavior examples (see e.g., [14], [26]),
the goal is to find a specific coloring of the scenario tree with
N colors, where N is the number of states in T . The coloring
must have the following property: when all nodes of the same
color are joined together, the resulting transition system must
be deterministic and must satisfy the initial scenarios.
To represent node colors, we introduce Boolean variables

cj,t , where j is a scenario tree vertex and t is a transition

system state. For some j and t , cj,t is True if and only
if vertex j is colored with color t (mapped to state t), i.e.
after processing vertex j the transition system is in state t .
To simplify notation, for each node j ∈ S we define a set

of tuples out(j) = {(j′, i, o) | there is an edge j
i/o
−→ j′ in S},

representing outgoing edges of node j.
The constraint representing the mapping from S to T can

be defined as follows:∧
j∈S

∧
t∈T

cj,t →
∧

(j′,i,o)∈out(j)

∨
t ′∈T

(τt,i,t ′ ∧ ot,i ∧ cj′,t ′ ). (2)

It means that if the scenario tree vertex j is mapped to the

transition system state t , then for each edge j
i/o
−→ j′ in S there

must be a state t ′ such that:
• there is a transition from state t to state t ′ labeled with
input i and output o;

• vertex j′ is mapped to state t ′.
Besides this constraint, wemust also require the correspon-

dence between the root of the scenario tree and the initial
state of the transition system by forcing the variable sj0,t0
to be True. Now, if we add the described constraints to the
original SAT encoding from [8], the SAT solver will search
for a transition system which not only satisfies given LTL
formulas, but is also consistent with given scenarios (behavior
examples).

The size of the behavior examples constraint isO(n2 · |S|2 ·
|O|) clauses and the number of variables is O(n · (2|I | · |O| +
|S|)), where n = |T |, and |S| is the scenario tree size.

E. EXTENDING INPUT-SYMBOLIC QSAT-BASED BoSy
WITH BEHAVIOR EXAMPLES
1) BASIC ENCODING
To start with, let us modify the quantifier-free formula (2)
taking into account the fact that variables τt,t ′ and ot are
functions over the inputs now:∧

j∈S

∧
t∈T

cj,t→
∧

(j′,i,o)∈out(j)

∨
t ′∈T

(i→ (τt,t ′ ∧ ot ∧ cj′,t ′ )). (3)

The difference from (2), besides that τt,t ′ and ot are func-
tions now, is that we check if the current input is the same one

as on the edge j
i/o
−→ j′.

Note that variables i and ot do not depend on t ′, hence we
can take them outside the scope of the operator

∨
t ′∈T

:

∧
j∈S

∧
t∈T

cj,t →

 ∧
(j′,i,o)∈out(j)

i→

(
ot ∧

∨
t ′∈T

(
τt,t ′ ∧ cj′,t ′

)) .
The size of the formula isO(n·|S|2 ·(|O|+|I |+n)) clauses,

and the number of variables is O(n · |S|).

2) ENCODING WITH A CLUSTERED SCENARIO TREE
The clustered scenario tree is a modification of the scenario
tree which allows representing behavior examples in a con-
venient way. As the first step, we build clusters according to
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FIGURE 2. An example of a clustered scenario tree: the scenario tree (top
figure) is represented in a clustered form (bottom figure) where a
top-level cluster corresponds to each unique input (here, e1 and e2), and
each bottom-level cluster corresponds to a single unique input/output
pair: for example, the edges of the scenario tree (1, 3) and (3, 5) which
are labeled with the same input/output pair e1/z2 are attributed to one
bottom-level cluster of the clustered tree.

the inputs on edges. Let IS ⊂ 2I to be the set of all inputs
occurring in the scenario tree. Then, clusters are defined as

Cl(i) = {(j, j′) | i ∈ IS and there is a transition j
i/∗
−→ j′ in S}.

As the second step, we separate the edges inside the cluster
according to their outputs, i.e. we build subclusters. A mod-
ified version of function out(j) is used to define the subclus-

ters: out ′(j, i) = {(j′, o) | i ∈ IS ∃ transition j
i/o
−→ j′ in S}.

An example of a scenario tree and its clustered version is
shown in Fig. 2.
Using the clustered version of the scenario tree, we can

take variables i out of the scope of all other operators. For
each input occurring in behavior examples, we encode the
correspondence between the Cl(i) cluster vertices and edges
and the transition system states and transitions:

∧
i∈IS

i→

 ∧
j∈Cl(i)

∧
t∈T

cj,t

→

 ∧
(j′,o)∈out ′(j,i)

ot ∧
∨
t ′∈T

(
τt,t ′ ∧ cj′,t ′

) .
The outer expression

∧
i∈IS

i fixes the current value of input

i ∈ 2I , which might ease the inference of Boolean functions
τt,t ′ and ot by the QSAT solver. The size of this formula is
O(|IS | · (|I | + n · |S|2 · (|O| + n))).

FIGURE 3. Sizes of generated transition systems for SYNTCOMP instances.

FIGURE 4. Cactus plots for all methods and all instances, plots that reach
larger values of the number of instances indicate better performing
algorithms: BeBoSy-clust solves more instances than all other
algorithms, while EFSM-tools solves the smallest amount of instances.

IV. EXPERIMENTAL EVALUATION
The purpose of the experiments was to compare the proposed
BeBoSy approach with the original BoSy [8], [9] and EFSM-
tools [26] in terms of efficiency. First, in Section IV-A we
describe in more detail the EFSM-tools approach, which is
one of the state-of-the-art ones in state machine synthesis.
Then, in Section IV-B the input data preparation process
for considered methods is described. Experimental setup
is described in Section IV-C. Results of experiments are
reported and discussed in Section IV-D.

A. EFSM-TOOLS: COUNTEREXAMPLE-GUIDED SYNTHESIS
OF STATE MACHINES
In this section we describe inmore detail the EFSM-tools [26]
approach to synthesizing finite-state machines from behavior
examples and LTL formulas. Among several methods pro-
posed in [26], we consider the iterative SAT-based approach
that demonstrated the best performance during experiments
reported in the paper. The idea of the approach is to build
a minimum-sized state machine from positive finite-length
behavior examples and then use a CEGIS [2], [18], [25] loop
in order to ensure the compliance of the state machine with
the LTL formulas. On each iteration of the CEGIS loop, a SAT
encoding is used to generate a state machine that complies
with given positive and derived negative behavior examples:
the generated state machine should be able to demonstrate
all behaviors described by positive behavior examples and
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FIGURE 5. Comparison of variants of BeBoSy with variants of BoSy. Each point corresponds to one instance and the running time of the two respective
algorithms. Round points denote instances for which both algorithms found a solution within the time limit, crosses denote timeouts. Point color
corresponds to the number of states N of the corresponding transition system. BeBoSy is faster than BoSy for 81% to 83% of instances, BeBoSy-clust
is faster than BoSy for 84% to 88% of instances, Explicit BoSy is faster than input-symbolic BoSy for 73% to 81% of instances, and Explicit BeBoSy is
faster than explicit BoSy for 85% to 92% of all instances.

should not exhibit any behaviors described by negative exam-
ples. Then the synthesized state machine is checked against
LTL formulas by means of a model checker. If counterexam-
ples to LTL formulas are discovered, they are added to the set
of negative behavior examples.

Based on the nature of this approach, we can anticipate the
following performance. Consider the boundary case when no

behavior examples are supplied and only LTL formulas are
used as input data. In this case, EFSM-tools can, in principle,
be applied, but search will only be done based on negative
behavior examples which, informally, describe what the state
machine should not do. Since the set of undesired behav-
iors is naturally much larger than the set of desired ones,
we can expect that the algorithm will require an extensively
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large number of CEGIS iterations to find the correct
solution.

Then, as the size of behavior examples is gradually
increased, we can expect that the number of iterations needed
to find the correct solution should decrease, since the set
of known desired behaviors increases. In the boundary case,
if the set of positive behavior examples is sufficiently large,
only one CEGIS iteration might be sufficient to find a correct
state machine.

B. INPUT DATA PREPARATION
For experiments we used instances from the SYNTCOMP-
2018 [17] and SYNTCOMP-2019 [1] competitions, specif-
ically, the dataset for the sequential synthesis track. Since
SYNTCOMP instances do not feature finite-length behavior
examples, the behavior examples were randomly generated
based on the transition system generated for SYNTCOMP
instances. Therefore, only instances with realizable specifica-
tions were considered. Each SYNTCOMP instance has been
augmented with randomly generated execution scenarios in
the following way:

1) generate the minimal transition system satisfying the
original LTL specification using QSAT-based BoSy
(with added determinism constraints) with a time limit
of one hour;

2) generate random execution scenarios using NuSMV:
each scenario is generated by performing a random
walk on the NuSMV model of the transition system
starting from the initial state;

3) store generated scenarios in three different forms: plain
scenarios for BeBoSy, scenarios rewritten in terms of
input events for EFSM-tools, and scenarios rewritten
using LTL formulas for BoSy.

Within the time limit the QSAT-based BoSy solved
203 instances, and the maximum execution time was 11 min-
utes. The distribution of the number of states for the generated
transition systems is shown in Fig. 3.

For each SYNTCOMP instance we generated sets of k ∈
{5, 10, 20} scenarios, the length of each scenario was also
equal to k . Since the scenario generation process is ran-
domized, for each SYNTCOMP instance and each size of
scenarios, ten different scenario sets were generated, giving a
total of 203 × 10 = 2030 instances for each value of k , or a
total of 6090 instances.

C. EXPERIMENTAL SETUP
Experiments were run on a computer with an AMD Opteron
6380 CPU @ 2.5 GHz with a memory limit of 10 GB per
run of each algorithm on each instance. We compared all
variations of the proposedBeBoSy approach (simply BeBoSy
for the basic approach and BeBoSy-clust for the approach
with the clustered scenario tree) with the original BoSy and
EFSM-tools. Though in the original paper on BoSy [8] the
input-symbolic encoding has been shown to be superior to
the explicit one in terms of running time, here we compare
both input-symbolic and explicit encodings since the set of

FIGURE 6. Time used in BoSy to construct co-Büchi automaton for
different instances from the entire LTL specification augmented with LTL
representation of scenarios; each line corresponds to a single instance
(target transition system) with varied size of scenarios: the co-Büchi
automaton construction time substantially increases as the size of
scenarios grows.

instances is different to the one considered in [8] due to
added behavior examples. For explicit and input-symbolic
BoSy, behavior examples are converted to LTL formulas as
described in Section III-B.

For each instance, all tools were run with a time
limit of 20 minutes. For all tools, the number of states
was not minimized. Instead, it was fixed to the known
minimal value found by BoSy during instance preparation.
BoSy and BeBoSy were run with the following configura-
tion: -player system (search of environment counter-
strategies is disabled), -min-bound and -max-bound set
to the known minimum number of states, other parameters
were set by default: spot for automata conversion, RAReQS
and bloqqer for QBF solving, cryptominisat5 for
SAT solving.

EFSM-tools was run with the configuration: qbf-
automaton-generator.jar tool was used, -strategy
COUNTEREXAMPLE (counterexample-guided synthesis
method is used), -size set to the known minimum number
of states, default incremental SAT solver lingeling.

D. EXPERIMENTAL RESULTS AND ANALYSIS
First, consider the cactus plots shown in Fig. 4. For each
algorithm the plot shows the number of instances that were
solved within the time limit. As suggested by these plots,
the proposed algorithms BeBoSy-clust, Explicit BeBoSy,
and BeBoSy clearly dominate the other algorithms. BeBoSy-
clust appears to be the most efficient algorithm, allowing
solving more instances than all other algorithms. Hence,
if a competition similar to SYNTCOMP was held with the
instances used in this paper, BeBoSy-clust would be the
victorious algorithm among all other algorithms considered
in this paper.

However, the cactus plots only show an overall effi-
ciency comparison. In order to gain a deeper, more detailed
understanding, we consider scatter plots: each plot compares
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FIGURE 7. Comparison of BoSy and BeBoSy with EFSM-tools: BoSy and BeBoSy dominate EFSM-tools for small sets of scenarios, but loose their
advantage as the size of scenarios grows. The exception is the proposed Explicit BeBoSy approach, which is faster than all other algorithms for the
majority of instances.

the running time of two algorithms on instances with the
specified number of scenarios. Each point corresponds to
one instance and the running time of the two respective
algorithms. Round points denote instances for which both
compared algorithms found a solution within the time limit.
Cross-marks denote instances for which at least one of the
algorithms timed out. Both axes of the plots are in logarithmic

scale. The color of a point corresponds to the number of states
N of the corresponding transition system.
Lets us first analyze the effect of our modifications of

the original BoSy encodings: compare BeBoSy with the
original BoSy. Experimental results in which variations of
BoSy are compared to variations of BeBoSy are depicted in
Fig. 5.
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FIGURE 8. Comparison of algorithms with best performance: BeBoSy, BeBoSy-clust, and Explicit BeBoSy: Explicit BeBoSy is faster than
BeBoSy-clust and BeBoSy for 84% and 88% of instances correspondingly, but has larger amounts of timeouts.

1) BeBoSy AND BeBoSy-clust VS. BoSy
BeBoSy is faster than BoSy for 81% to 83% of instances,
depending on the number of scenarios. As the size of scenar-
ios increases, BeBoSy becomes more preferential than BoSy,
as indicated by the distribution of points moving upwards:
this indicates that the difference in running times of the two
algorithms increases. An increased number of cross symbols
for larger sets of scenarios show that in these cases BoSy
exceeds the time limit, while BeBoSy finds a solution within
the time limit. BeBoSy-clust slightly improves the result of
BeBoSy: it is faster than BoSy for 84% to 88% of instances.

2) EXPLICIT BoSy VS. BoSy
Explicit BoSy is faster than input-symbolic BoSy for
instances with added behavior examples for 73% to 81% of
instances. However, the advantage in the running time is not
very significant as seen from the plots: points are situated
along the reference line.

3) EXPLICIT BeBoSy VS. EXPLICIT BoSy
For the explicit encodings, the difference in BeBoSy and
BoSy performance is more significant than for input-
symbolic encodings. It is especially well seen for runs with
20 scenarios, since the points in the plot are significantly
shifted upwards from the reference line. Explicit BeBoSy is
faster than explicit BoSy for 85% to 92% of all instances.

4) ANALYSIS OF BoSy PERFORMANCE
As we claimed above, BoSy’s low efficiency is due to
increased size of LTL formulas: larger formulas require
more time for constructing the co-Büchi automaton. The plot
in Fig. 6 is evidence supporting this claim, showing the time
used to construct co-Büchi automata for a representative sam-
ple of all instances. Each line corresponds to a single instance
with different sizes of scenarios: the time used to construct the

co-Büchi automaton increases exponentially with the size of
scenarios (the time axis is in logarithmic scale).

5) BoSy AND BeBoSy VS. EFSM-TOOLS
Let us now compare BoSy and BeBoSy with EFSM-tools.
Results of experimental runs are depicted in Fig. 7.

In general, all BoSy/BeBoSy algorithms are better than
EFSM-tools for the case of five scenarios (Fig. 7a). Many
points are shifted upwards along the vertical axis, indicating
that BoSy/BeBoSy algorithms are significantly faster. More-
over, for many instances EFSM-tools timed out (shown with
crosses), while bounded synthesis methods found a solution.
This was to be expected due to low coverage of the target
transition system with only five scenarios: the difference
is especially well seen for instances with more than two
states.

As the number of scenarios increases to 10 (Fig. 7b) and
then to 20 (Fig. 7c), the efficiency of most bounded synthe-
sis algorithms decreases. The distribution of points moves
to the bottom and to the right, indicating that EFSM-tools
starts to perform faster for many instances. This is natural,
since larger number of scenarios means higher coverage
of target transition systems with scenarios, which is favor-
able for EFSM-tools: in fact, for most instances for which
EFSM-tools is faster it only required one CEGIS iteration.

Then, all BeBoSy algorithms are, in general, faster than
BoSy algorithms. For the largest set of scenarios (20),
EFSM-tools clearly dominates all other algorithms, except
the explicit version of BeBoSy. In fact, the explicit BeBoSy is
the best-performing algorithm in terms of running time, being
faster than EFSM-tools for 85% to 89% of instances.

Finally, consider the plots in Fig. 8 comparing the best-
performing algorithms for all 6090 instances with all sizes of
scenarios. According to the plot in Fig. 8a, Explicit BeBoSy
is faster than BeBoSy-clust for most instances (84%). This,
however, comes at the cost of more timeouts for the Explicit
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BeBoSy: 453 instances were not solved within the time limit,
as opposed to only 265 for BeBoSy-clust. The situation
is similar for the plot in Fig. 8b: though Explicit BeBoSy
is faster than BeBoSy for 88% of instances, it timed out
453 times, and BeBoSy did not find a solution for only
340 instances. According to these results, we can recommend
using either the Explicit BeBoSy, or the BeBoSy-clust
algorithms.

6) BeBoSy-clust VS. EXPLICIT BeBoSy WHEN ITERATING
NUMBER OF STATES
As a final set of experiments, we ran BeBoSy-clust vs.
Explicit BeBoSy on the same instances, but with iterating
the number of states starting from one. In each such run,
each method solves Nmin − 1 unsatisfiable formulas and one
satisfiable one, whereNmin is the minimal number of states of
a transition system that satisfies the specification. We used a
larger time limit of one hour per each experiment. Results are
as follows: BeBoSy-clust solved 5862 instances, Explicit
BeBoSy solved 5712 instances, while Explicit BeBoSy was
faster than BeBoSy-clust for 90% of instances. These
results indicate that the analysis above applies to runs with
minimization in a similar way to runs without minimization
of the number of states.

V. DISCUSSION & CONCLUSION
In this work we have proposed an approach BeBoSy for
incorporating finite-length behavior examples, or scenarios,
into the LTL synthesis tool BoSy. Instead of naïvely con-
verting behavior examples to LTL properties, we propose
to encode SAT/QSAT constraints that ensure the corre-
spondence of the synthesized transition system with given
behavior examples. Through an experimental study per-
formed using SYNTCOMP instances and randomly gener-
ated behavior examples we discovered that BeBoSy works
faster thanBoSy inmost cases. Thus, our research contributed
to increasing the area of applicability of bounded synthesis,
extending it to specifications featuring finite-length behavior
examples. The second experimental finding is that the iter-
ative counterexample-guided approach EFSM-tools is faster
than considered bounded synthesis algorithms (both BoSy
and BeBoSy) when the number of behavior examples is
large, and, hence, the coverage of the transition system with
behavior examples is high. The exception is the proposed
explicit BeBoSy, which is faster than EFSM-tools even for
large sizes of behavior examples. Furthermore, EFSM-tools
is the worst algorithm in terms of the number of solved
instances. The proposed encoding BeBoSy-clust, though
not being the fastest method, solves more instances than all
other considered approaches.

Furthermore, to the best of our knowledge, in this paper
we presented the first rigorous experimental comparison of
bounded synthesis (BoSy) with counterexample-guided syn-
thesis (EFSM-tools), and tried to establish cases in which
each approach should be applied. As a result, we draw
the following conclusion. If the specification features only

LTL properties, BoSy should be applied. If a small to
moderate number of behavior examples are also included,
use of our BeBoSy approach is recommended: BeBoSy-
clust or explicit BeBoSy. If the number of behavior exam-
ples is large, then explicit BeBoSy or BeBoSy-clust will
probably be the best option.

One direction of future work may be to devise a means of
bounding other parameters of synthesized transition systems
apart from the number of simple cycles as done in [10]: for
example, one may bound the number of transitions or even
the size of Boolean formulas that represent the transition
conditions in the transition system.
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