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ABSTRACT Wireless communication is a significant auxiliary technology of data transmission for industrial
Cyber-Physical system (CPS). While for the complex industrial scenario of coal mine with long and narrow
laneway, lifetime of wireless perception nodes is a potential and nonnegligible problem for safety production.
In order to deal with this problem, a power control algorithm based on deep Q network (DQN) is adopted to
train micro base station (MBS) by two steps so that theMBS can learn an optimal policy to help the cognitive
users (CUs) communicate with a proper transmit power. Firstly, the selection range of transmit power for
CUs is calculated by the lower bound of Signal-to-Interference plus-Noise Ratio (SINR) to guarantee the
transmission condition of both users. Then, the power control problem is modeled as a Markov Decision
Process (MDP) with unknown transition function, where the energy consumption is decreased by giving
the upper bound of CUs’ SINR or threshold of transmit power in formulation of reward. In modeled MDP,
the system state, which collected by primary users (PUs) and fed back to MBS, is reduced dimension by
method of principal component analysis and then treated as the input of DQN. After that, DQN is used to
train a power control optimal policy by minimizing the loss function. Simulation results demonstrate that the
proposed power control algorithm based on DQN has a good performance that the average transition step
and energy utility are 3.56 and 1580h, which is better than the existing solutions.

INDEX TERMS Industrial CPS, power control, DQN, energy consumption.

I. INTRODUCTION
The complex industrial CPS is a multi-dimensional com-
plex system that integrates calculation, network, and physical
environment in many industrial application fields [1]–[3].
In addition, industrial production has been led into the field
of intelligence by CPS thanks to the combination of artificial
intelligence technology [4], [5]. As the interface between
the physical world and the information world, the percep-
tion layer contains a large number of wireless perception
nodes, which undertakes the task of data perception and
transmission. Generally, energy of the nodes is supplied by
external wire or battery. For the transmit power of these
battery-supplied nodes, it needs to be restricted to prolong
the lifetime [6].

The complex industrial CPS integrates many subsys-
tems and the negative environment is a challenge of
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data trans-mission. Cognitive radio (CR) technology has been
widely used due to itsmature technical advantages and unique
cognitive ability to the environment [7]–[9]. While the spec-
trum resource of either daily life or industry production is
in shortage. Consequently, we apply the CR technology by
method of resource sharing to improve the performance of
wireless communication so that the barrier of isolated infor-
mation can be solved and achieve the data integration of
subsystems. Nevertheless, co-channel interference is accom-
panied by resource sharing [10], [11].

Many existing works have studied the optimization of
power control and energy saving for battery-suppliedwireless
users to obtain a good performance [12]–[15]. The authors
in [16] optimized the power control problem of CR net-
works by a non-cooperative game based on sigmoid function.
Ramamonjison et al. aimed at energy-efficient problem of
power control method for CUs in a two-tier cellular network.
Then, PUs are assumed to work in time-slotted manner and
retain the same activity during the entire frame duration [17].
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The work in [18] investigated the maximization of energy
efficiency for the cognitive femto users by optimizing power
control scheme in 5G communications. While they are
not suitable for industrial applications because of the non-
industrial simulation environment. CUI et al. solved the max-
imization and fairness of energy efficiency by alternating
iterative optimization scheme in a practical power consump-
tion model [19]. A distributed power control mechanism
was proposed for the energy harvesting CR network in [20],
where transmit power of nodes was decided dynamically by
themselves based on several parameters. In [21], fixed and
dynamic power control schemes are proposed to maximize
the rate of a CU and limit the interference to PU according
to PU traffic and the temporal correlation of channels. The
authors in [22] proposed a distributed power control method
for the laneway of coal mine, in which the multi-sink nodes
are performed as cluster heads, meanwhile, the optimal trans-
mission range and power are allocated to each sink nodes
combined with scoping routing algorithm, while the nodes
transmit with multiple hops which does not benefit to the
energy efficiency.

Reinforcement learning based method has been applied in
the form of Q learning, deep reinforcement learning (DRL),
and DQN, etc. in many applications [23], [24]. In [25], a deep
reinforcement learning-based power control method is pro-
posed to adjust transmit power of a CU with assistance of
several sensor nodes, where the sensor nodes are used to
collect the received signal strength information (RSSI) of the
CU at different locations. A self-adaptive Q learning based
MAC protocol is proposed in [26] to tweaks the MAC param-
eters by a trial-and-error process method to limit the energy
consumption. Chu et al. [27] considered both the sum rate
and prediction loss with two steps, a long short-term memory
(LSTM) based algorithm was used to predict the states of
users’ battery, then the access and power control problem
was simultaneously solved by the proposed DQN based algo-
rithm. In [28], the power control problem was considered
as a non-cooperative game process and users are assumed
to be selfish, then a stochastic power adaption combined
with conjecture-based Q learning algorithm was developed
for multiple agents in a sufficient condition for the existence
of Nash equilibrium. However, it may be impracticable that
the proposed algorithm requires the channel state information
of each communication link are known by all users in the
network.

In this article, a power control method is adopted to control
the transmit power of CUs for energy saving under the con-
dition that the quality-of-service (QoS) of both PUs and CUs
are satisfied. Then, we specify the industrial environment as
the coal mine, which is one of the most classic, strict, and
complex industrial scenarios. Some key experiments have
been implemented in Suntuan coal mine, Huaibei City. The
limited space in the coal mine results is unfriendly environ-
ment to the wireless communication which is indispensable
for the construction of coal mine CPS. Currently, a large
number of wireless communication terminals has been spread

in the coal mine, and the shortage of spectrum resource is an
objective existence. We adopt CR technology to improve the
efficiency of spectrum resources. Unfortunately, interference
caused by spectrum sharing may seriously affects the safety
production of coal mine as well as the users’ lifetime. In order
to prolong the lifetime of battery-supplied CUs and restrain
the interference in the perception layer of coal mine CPS,
aDQNbased power control algorithm is proposed to optimize
the energy consumption. We assume that the positions of PUs
are fixed and powered with a stable and persistent electricity
supply while CUs are movable and powered by limited bat-
teries. PUs and CUs work in a non-cooperative manner which
means PUs and CUs have no knowledge about the transmit
power of each other. The DQN based power control method
is proposed for CUs and experience replay mechanism is
adopted to weaken the time sequence of experiences attribute
by random sample. The main contributions of this article are
summarized as follows:
• The transmit power of CUs are restricted in a selection
range which is calculated by SINR threshold of CUs
and PUs, so that the QoS of both PUs and CUs are
guaranteed to be satisfied.

• The power control is modeled as anMDP problemwhere
state, action, and reward are given in detail.

• The dimension of state is reduced by principal com-
ponent analysis (PCA), and the state characteristics are
retained in a lower-dimension matrix.

The rest parts of the paper are organized as follows.
In section II, the node distribution and communication model
in the coal mine is introduced as well as the transmit power of
CUs are expressed. Preliminaries including discretization of
transmit power and energy utility are presented in section III.
While in section IV, the implement of DQN based power
control algorithm is demonstrated in detail. Simulation results
and the associated analysis of the algorithm are investigated
in Section V. Finally, the conclusion of the paper and the
direction for future research are presented in Section VI.

II. SYSTEM MODEL
In this section, we first present the node distribution in the
coal mine. Then, the communication model in the coal mine
is introduced. The transmit power of nodes is formulated after
that.

A. NODE DISTRIBUTION IN THE COAL MINE
The laneway in the coal mine is long and narrow, so the archi-
tecture of coal mine CPS is mainly constructed by optical
fiber and cable. While, wireless transmission performs an
indispensable role as an auxiliary communication technology
in the coal mine. Recalling that the perception nodes are
divided into two types according to the energy supply modes,
so we denote the nodes fixed on the laneway wall as PUs and
the battery-supplied nodes as CUs. MBS is in charge of data
forwarding with both users and connects with core network
of coal mine directly. PUs are assume to communicate with
fixed transmit power without change. To assist power control
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FIGURE 1. Placement sketch of laneway users in the coal mine.

of CUs, all of PUs are employed to measure RSSI, which
is the basic function of some nodes such as NB-IoT and
LoRa. For instance, the maximum transmission distance of
LoRa with transmit power of 20dBm and spreading factor
of 12 we have tested is around 200-400m in the coal mine,
and the range is different at the different place (300-400m
in straight laneway and 200-300 in curved one), which is
the universal results of multiple experiments at different
places in the coal mine. Thus, the communication scenario
is considered to be located in a region of 10∗200m which
is similar to the laneway in the coal mine. The positions of
both users are independent identically distributed (i.i.d.) in
the region where CUs and PUs are close enough to satisfy the
maximum constraints of communication distance. PUs are on
the laneway wall and CUs are located at any position in the
region. Ultimately, MBS is located at the middle of laneway
wall as illustrated in Figure. 1.

We adopt the point-to-multiple-point (P2MP) as communi-
cation manner rather than multi-hop mode for wireless data
transmission in underground limited space. The reason is
that energy utilization of multi-hop transmission is low and
results in the reduction of lifetime especially for the battery-
supplied CUs on one hand. On the other hand, the risk of bit
error and frame loss are increased because of the multi-hop
transmission in a poor communication environment. Thus,
each PU and CU communicate with MBS through single hop
without relay. Then, the environment parameters of laneway
like temperature and pressure are ignored because of lit-
tle or no influence on the results of our proposed algorithm.
For example, the basic version of LoRa E49 can work nor-
mally in the temperature from −40◦C to 80◦C. PUs transmit
signals with sub-channels allocated byMBS and CUs are per-
mitted to reuse these sub-channels. Meanwhile, interference
is produced by channel reusing, which means the receiver
also receives interference from other transmitter in the same
sub-channel when the corresponding transmitter send signals
to it. In addition, channel is modeled as the Rayleigh fading
channel. Then, each sub-channel allocated to a PU by MBS
can be reused by one CU at most and each CU can reuse one
sub-channel as well. For the analysis of this article, the other
conditions still need to be met as follows

1) Location of PUs and CUs is known, and function of
receiving and sending is possessed to both users.

2) The communication link has symmetry, that is,
the receiver in a communication link can act as the transmit-
ter, and the transmitter can also act as the receiver.

B. COMMUNICATION MODEL IN THE COAL MINE
In the communication region, the number of CUs is set to
be N . The channel is divided into N mutual orthogonal sub-
channels and then allocated to PUs, and CUs randomly reuse
the sub-channels which occupied by PUs to communicate.
Therefore, the number of PUs, which shares sub-channels
with CUs, is N as well. There is no interference between
PUs because of orthogonal characteristic. In the perception
layer of coal mine CPS, j-th PU transmits signals with j-th
allocated sub-channel, and i-th CU communicates by reusing
j-th sub-channel. Where both i, j ∈ X = {1, 2, . . . ,N}.
The channel sharing can relieve the scarcity of spectrum
resources while results in the interference problem as well.
For the interference problem in this paper, parameter of SINR
is adopted to measure the quality of communication. The
received SINR of i-th CU and j-th PU at MBS are formulated
as follows

γC_i =
pC_id

−α
i,B

∣∣hi,B∣∣2
N∑
j=1
βi,jpP_jd

−α
j,B

∣∣hj,B∣∣2 + Nc (1)

γP_j =
pP_jd

−α
j,B

∣∣hj,B∣∣2
N∑
i=1
βi,jpC_id

−α
i,B

∣∣hi,B∣∣2 + Np (2)

where, pC_i and pP_j denote the transmit power of i-th CU
and j-th PU. di,B and dj,B represent the distance from MBS
to users (i-th CU and j-th PU). Then, hi,B and hj,B are the
channel response between users and MBS, which follows the
i.i.d. complexGaussian distribution CN (0, 1) and is known to
MBS. The channel is modeled as the Rayleigh fading channel
and α denotes the path loss factor where α = 4 in view
of rough laneway wall and quite serious multi-path fading.
Nc and Np are received additive white Gaussian noise at MBS
and follow the distribution CN (0, σ 2). βi,j represents the state
of channel sharing of PUs and CUs, that is, βi,j = 1 if i-th
CU reuse j-th PU’s channel, and βi,j = 0, otherwise. In order
to simplify the interference between CUs and PUs, channel
sharing need satisfy the conditions [29] as follows

N∑
i=1

βi,j ≤ 1 for ∀j = 1, 2, . . . ,N (3)

N∑
j=1

βi,j ≤ 1 for ∀i = 1, 2, . . . ,N (4)

The channels which has been occupied by PUs are ran-
domly allocated to CUs by MBS. Accordingly, each CU
cannot reuse multiple channels at the same time and a channel
only can be reused by one CU as well. So we can conclude
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that there is no interference between CUs because they do not
reuse the same channel.

C. TRANSMIT POWER OF CUs
Lifetime is defined as the successive time that CUs can
communicate normally in this article. So the transmit power
are the significant factor to the lifetime of CUs, which means
lower transmit power cannot satisfy the QoS while can con-
tribute to a much longer lifetime on one hand, on the other
hand, CUs communicate with larger transmit power will
shorten the lifetime. The goal of this article is to prolong
the lifetime of CUs by power control on the premise that
the communication QoS of both PUs and CUs is satisfied.
However, CUs do not knowwhether the transmit powermeets
the communication condition by themselves. In this case, the
transmit power of CUs are estimated by RSSI. Afterwards,
reinforcement learning is used to train a policy for power
control and the brief contents of the method is that, in a time
slot, CUs broadcast test signals to PUs, then the RSSI of CUs
are transmitted to MBS. The neural network is conducted by
MBS to obtain the power regulation strategy and feedback
to CUs. Finally, CUs adjust the transmit power according to
the received strategy. The process of transmitting test signals
requires little data overhead of CUs, so energy consumption
of this process is ignored.

Before training, the threshold of CUs’ transmit power is
calculated by the constraint of SINR. When a CU transmits
signals toMBS, the PU in the same sub-channel may interfere
the signals at MBS. While, communication quality of CUs
cannot be satisfied unless the received SINR of CUs’ at MBS
are not less than the minimum threshold γ Cth . So we have the
inequality as

γC_i =
pC_id

−α
i,B

∣∣hi,B∣∣2
N∑
j=1
βi,jpP_jd

−α
j,B

∣∣hj,B∣∣2 + Nc ≥ γ
C
th (5)

Accordingly, we can obtain the lower bound of CUs’ trans-
mit power

pC_i ≥ pCi_min =

γ Cth

(
N∑
j=1
βi,jpP_jd

−α
j,B

∣∣hj,B∣∣2 + Nc)
d−αi,B

∣∣hi,B∣∣2 (6)

Likewise, PUs will be interfered by the CU in the same
sub-channel and the received SINR of PUs at MBS cannot be
less than the minimum threshold γ Pth as well.

γP_j =
pP_jd

−α
j,B

∣∣hj,B∣∣2
N∑
i=1
βi,jpC_id

−α
i,B

∣∣hi,B∣∣2 + Np ≥ γ
P
th (7)

The upper bound of CUs’ transmit power that calculated
by SINR threshold of PUs is given as follows.

pC_i ≤ pCi_max =
pP_jd

−α
j,B

∣∣hj,B∣∣2/γ Pth − Np
N∑
i=1
βi,jd

−α
i,B

∣∣hi,B∣∣2 (8)

According to the relevant requirements of safety produc-
tion in the coal mine, transmit power has an another upper
bound p’max, so the maximum transmit power of CUs is
shown as follows pmax = min(pCi_max, p’max).
The transmit power of CUs can be written as

pC_i ∈
[
pCi_min, pmax

]
(9)

In summary, the QoS requirement of both CUs and PUs can
be satisfied if the transmit power of CUs are in the range of
Eq. (9). Afterwards, how to reduce the energy consumption
of CUs by power control method is the goal of this article.

III. PRELIMINARIES
In this section, the transmit power of CUs is discretized and
then the energy utility, which is formulated by synthesizing
various factors, is given as an indicator to demonstrate the
performance of the power control methods.

A. DISCRETIZATION OF TRANSMIT POWER
Power control policy based on reinforcement learning needs
CUs carry out an action to select a transmit power. For sim-
plicity, we need transform the continuous value of transmit
power to a discrete selection range. So the discrete process
for range of each CU’s transmit power is given as

Pi(u) = pCi_min + (u− 1)µi (10)

where, u = 1, 2, . . . ,U and U denotes the largest index of
selection range. µi is common difference of i-th CU. Pi (u)
is a discrete value that i-th CU can select. Eq.(10) represents
the selection range is an arithmetic progression for different
CUs so that each CU has the corresponding range of transmit
power. Here, continuous feasible region is transformed into
discrete numerical interval. The selection range of i-th CU’s
transmit power at time slot t is shown as follows

pC_i(t) ∈ Pi , {Pi (1) ,Pi (2) , . . . ,Pi (u) , . . . ,Pi (U)}

(11)

s.t. Pi(1) < Pi(2) < ... < Pi(U ) (12)

Pi(U ) ≤ Pmax < Pi(U + 1) (13)

where, Pi is the definition of discrete range for i-th CU.
Eq.(12) denotes the elements of Pi is arranged from small-
est to largest and Eq.(13) indicates that is not larger than
Pmax while being the largest in the selection range. After
discretization, each CU can select the transmit power in its
corresponding Pi. Meanwhile, Pi starts with and satisfies the
condition in Eq.(10). Ultimately, Eq.(13) is a discrete process
for Eq.(10) so that CUs can select transmit power in a finite
range, which simplifies the complexity of action (transmit
power) selection in reinforcement learning.
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B. ENERGY UTILITY
Transmit power in the Eq.(11) can meet the QoS of both CUs
and PUs. But the goal of this article is energy saving on the
premise of satisfied QoS. By the way, the signals with huge
number of data (e.g. data of video monitoring) need to be
reliably transmitted by cable or optical fiber, while wireless
communication is usually used to transmit the data of location
information or environment parameters (temperature, humid-
ity, pressure, etc.) in the coal mine. The signals with small
number of data can be successfully sent to MBS when QoS
of CUs is satisfied. Consequently, the communication perfor-
mance is guaranteed by lower bound of SINR and the goal of
energy saving is completed by reinforcement learning with
assistance of upper bound of SINR, which will be explained
henceforth. In the formulation of energy utility, we take into
account several factors to indicate the performance of the
proposed power control algorithm. Energy utility is given as
follows

E =

E0
N∑
i

N∑
j
βi,j

p̄CN
(14)

where E0 is initial energy of each CU,
∑N

i=1
∑N

j=1 βi,j and p̄C
represent the number and the average transmit power of active
CUs, respectively. We can observe that Eq.(14) is expected
average lifetime of all CUs, actually. In the condition that
initial energy and the number of CUs are fixed, themore num-
ber of active CUs and the lower transmit power, the higher
the energy utility is. But considering the bad communica-
tion environment in the coal mine, few CUs communicate
unsuccessfully even with maximum transmit power due to
poor channel link state and insurmountable interference, that
is these CUs are inactive. The ideal situation after training is
that all the CUs in the model are active with a proper transmit
power. However, the inactive phenomenon existing in the
complex communication environment cannot be ignored.

IV. DQN BASED POWER CONTROL ALGORITHM
In this section, a power control problem for multi-user is
modeled as an MDP with unknown transition function first.
Then DQN based power control algorithm is carried out for
optimal policy.

Reinforcement learning (or Q learning) is a promising
decision-making method, which has been applied in many
fields. It can be seen as an unsupervised deep learning process
in which CUs interact with the environment to derive rewards.
In this article, multiple CUs are involved in power control by
MBS which is the learning agent and performance of both
CUs and PUs need to be guaranteed.

The difficulty of reinforcement learning for multi-user is
non-static characteristics of environment. For one user, the
other users form part of the environment. More precisely in
the paper, one CU adjusts the transmit power in the pro-
cess of training by interacting with the environment which
consists of all CUs. Then, the experience tuples of all CUs

FIGURE 2. Workflow diagram of DQN based method.

are stored in the replay memory which will be introduced
henceforth. Replay memory is set for training and its contents
are changing with time slot. So the performance of training
system is dynamic before DQN is trained well.. In order to
overcome such problem, DQN is adopted to deal with the case
that the traditional reinforcement learning is difficult to solve
the situation of environment change and the large dimension
of CUs’ state space. The workflow diagram of DQN based
method is illustrated in Fig. 2.

A. MDP
The problem of power control is modeled by MDP here.
CUs in the current state take selected actions to move
into the next state and get an immediate reward. We can
observe that the interaction between CUs and environment
is a sequence process which consists of state, action, and
reward. MDP is an effective method of sequence decision
process and thus the problem of this article is modeled
by MDP here. MDP is a 4-component tuple M = {s, a,
R, T}, where s is state space, a is action space, R is reward
function and T denotes transition function of state. In this
article, the decision maker (MBS) has no way to know the
transition relationship between the state of CUs, that is,
the transition function T is unknown. Thus, the model-free
reinforcement learning is used to train DQN. CUs have to
observe the reward in the current state, and then select the
corresponding action by a certain method to enter the next
state. MDP possesses Markov property. More precisely, i-th
CU in the current state si(t) ∈ s selects an action ai(t) ∈ a to
move into the next state si(t + 1), while the next state is only
related to the current state si(t) and the selected action ai(t),
but not to the past states and actions. After moving into a new
state, i-th CU will receive an immediate reward ri(t) which is
defined as

ri(t) =


1, ifγC_i(t + 1) ≥ γ Cth and γP_j(t + 1) ≥ γ Pth and

(γC_i(t + 1) ≤ c1γ Cth or pi(t + 1) ≤ c2pmax)
0, otherwise

(15)
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And immediate reward for all CUs is

r(t) =
N∑
i=1

ri(t) (16)

where c1 and c2 are constants. γC_i(t + 1) ≥ γ Cth and
γP_j(t + 1) ≥ γ Pth are the premise conditions that PUs
and CUs shall communicate normally [16], [24] and [30].
Satisfying the premise conditions merely cannot obtain the
immediate reward, whichmeans the purpose of energy saving
is not realized at present. By investigating the formulation
of SINR, the controllable parameter that affects the energy
saving is transmit power after the nodes have been spread
in the laneway of coal mine. Therefore, the inequations of
γC_i(t + 1) ≤ c1γ Cth or pi(t + 1) ≤ c2pmax are the manners
to solve the problem of energy saving. The former inequation
denotes that the energy consumption is restricted by the upper
bound of SINR, and the latter one is for the case that the
channel gain of a CU is fine, its SINR may be larger than
c1γ Cth even with a low transmit power. Whichever of two
discussed inequations is true, i-th CU can get an immediate
reward based on that the premise conditions are satisfied.
The constants and c2 are set to be and c2 = 0.4 in our
experiment. The experiment results suggest that and c2 can
be set to some other similar values as long as doing no harm
to the DQN. If and c2 are too large, it will be meaningless to
the power control while too small may result in the case that
the algorithm cannot convergent. The constraints are strict
enough that the state of i-th CU at time slot t need not only
guarantee the QoS of both CUs and PUs, but also reduce the
CUs’ energy consumption. So CUs cannot obtain the reward
unless conforming to the conditions as shown in Eq.(15).
The performance which indicated by Eq.(14) is deservedly
improved as well.

1) STATE SPACE
The optimization of MDP modeled problem is completed in
the process of state transition. The state is input of neural
network. In the communication environment of coal mine,
we employ PUs to measure RSSI of CUs so that we can
obtain a state matrix and each row is a state of one CU, which
includes different channel responses between this CU and all
PUs. ThenRSSI is fed back toMBS as the state input of DQN.
The state value is defined as

si,j(t) = p(r)i,j (t) = pi(t)d
−α
i,j

∣∣hi,j∣∣2 for ∀j ∈ X (17)

where di,j and hi,j represent the distance and channel response
between i-th CU and j-th PU, respectively. The state of i-th
CU at time slot t is given as si(t) = {si,1(t), si,2(t), ..., si,N (t)}

Thus, the state space of MDP for the whole CUs is given
as follows.

s (t) = {si (t) |i ∈ X} (18)

2) ACTION SPACE
In this article, MBS selects actions for CUs from action space
at current state to let CUsmove into the next state. Actions are

selected through the rule of maximumQ value or randomness
with a certain probability and then fed back to CUs by MBS.
The action selection of i-th CU at time slot t is Ai(t) = Pi
The action space of MDP model at time slot t is given as

follows

a(t) = {Ai(t)|i ∈ X} (19)

3) REWARD
After learning in each time slot, CUs will move into a new
state and get an immediate reward, which has been defined
in Eq.(15). Power control of CUs is completed by learning a
policy to select an action a(t) based on the current state s(t) in
away ofmaximizing the discounted cumulative rewardwhich
is given as

R(t) =
I ′∑
n=0

τ nr(t + n) (20)

where τ is the discounted factor of immediate reward and τ ∈
[0, 1]. I ′ represents the time slot of reaching goal state. The
immediate reward obtained in the state which is far away from
the current state has little influence on current state, so we use
τ to discount the earlier immediate reward.

B. STATE REFORMULATION
In this subsection, we reformulate the state of each time
slot into a lower-dimension modality. PCA is a multivariate
analysis method for the synthesized simplification of the data
with multiple dimensions. It can reduce the dimension of
multivariate data on the premise that information loss of data
is minimum. Here, we adopt PCA to reduce the dimension of
state and the reason is that:
• The state dimension of multiple users is increased with
the ascending number of users, which results in the high
sparsity of data. Consequently, it is difficult to obtain the
character of data.

• Lower dimension of data can reduce the computational
complexity of DQN. So the adoption of PCA can pro-
mote the performance of our proposed power control
method.

• The dimension of state is reduced by PCA while the
information of original state can be kept as much as
possible by selecting the proper principal component
vectors.

In each time slot, the dimension number of each user is
N which means the state of each user includes N values.
Therefore, all users’ states consist of an N × N matrix Λ.
For simplicity, we omit the parameter t here and Λ is written
as follows.

Λ =


s1,1 s1,2 · · · s1,N
s2,1 s2,2 · · · s2,N
...

... si,j
...

sN ,1 sN ,2 · · · sN ,N

 (21)

Then we implement the dimension reduction and the steps
are shown as follows.
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1) In order to reduce the possibility of overfitting, we cen-
tralize the original matrix Λ by performing zero-average
operation as

ŝi,j = si,j −
1
N

N∑
i=1

si,j (22)

Thus, the centralized state matrix can be rewritten as

Λ̂ =
[
ŝi,j
]
N×N (23)

Then, we can get the states ŝj =
[
ŝ1,j ŝ2,j · · · ŝN ,j

]T which
is measured by PUs and defined as the feature in the PCA.

2) Calculating the covariance matrix of Λ̂ with
feature ŝj as

COV
(
Λ̂
)

=


cov

(
ŝ1, ŝ1

)
cov

(
ŝ1, ŝ2

)
· · · cov

(
ŝ1, ŝN

)
cov

(
ŝ2, ŝ1

)
cov

(
ŝ2, ŝ2

)
· · · cov

(
ŝ2, ŝN

)
...

...
. . .

...

cov
(
ŝN , ŝ1

)
cov

(
ŝN , ŝ2

)
· · · cov

(
ŝN , ŝN

)

(24)

where cov (x, y) = 1
N−1

N∑
i=1
(xi − x̄)

(
yi − ȳ

)
, x̄ and ȳ is the

mean value of x and y.
3) Calculating the eigenvalue and sorting as λ1 ≥ λ2 ≥

· · · ≥ λN , then obtaining the corresponding unit eigenvector
of covariance matrix.

vi =
[
vi,1 vi,2 · · · vi,N

]
iıX (25)

4) Calculating the cumulative value of maximum m eigen-
values as

δm =

m∑
i=1

Λi

N∑
i=1

Λi

m < N (26)

5) While δm > 0.85, we select the first m eigenvectors
represented as

v (m) =
[
vT1 vT2 · · · vTm

]
(27)

6) we can get the principal component matrix S by

S = Λ̂× v (m) (28)

The dimension reduction has been completed yet and the
multi-dimension statematrix is transformed into a newmatrix
which contains most information with a few principal com-
ponents. The reason we take the first m eigenvectors is that
the larger eigenvalue can contribute to the larger variance of
principal component matrix after dimension reduction, which
means the information of original state can be retained as
much as possible. The new matrix S with lower dimension
is treated as state of DQN henceforth.

C. STATE-ACTION VALUE FUNCTION
State value function is commonly used to indicate the per-
formance of policy learned by decision maker. After training,
MBS is expected to select the action according to the optimal
policy and let CUs move into the next state. State value func-
tion is implemented to calculate the discounted cumulative
reward of all the experienced states which includes the current
state in the process of training. Noticing that state value
function is changeable due to the change of policy, while the
policy lies on the selected action in the certain state. The state
value function can be written as

V π (S) = E[R(t)|S(t) ∈ S] (29)

Recalling that the transition function is unknown and
mode-free reinforcement learning is used to train the optimal
policy, the state value function cannot be expressed with
transition probability and thus we cannot estimate the policy
by state value function. That is to say, it is difficult to obtain
the optimal policy π∗ = argmaxπ V π (S) directly by cal-
culating the discounted cumulative reward while interacting
with environment. Consequently, we estimate the discounted
cumulative reward by selecting action a in current state S.
Then the optimal policy is obtained by repeated iteration
of state-action value function (Q value function) which is
established according to Bellman equation as

Q (S, a) = r (S, a)+ τ max
S′∈S

Q
(
S′, a′

)
(30)

where S′ is the state reached after taking the action a in
the state S, and a′ is the action that will be taken in the
state S′. Q(S, a) represents the expected discounted cumula-
tive reward after selecting action a in the state S. it is obvi-
ously that Q value function is a recursive procedure associated
with immediate reward. After the policy is trained, MBS
selects the optimal actions for CUs which can maximize the
Q value. The model-free problem without transition function
that cannot evaluate the performance of policy directly can be
solved by Q value function [25], [31].

D. DQN BASED POWER CONTROL
The result of Q learning can be demonstrated by a Q table.
After training, decision maker selects an action a that the
corresponding Q value is maximum from Q table as the next
action in the state S. while for this article, the dimension of
the state space will be extremely large because of the multiple
users and non-static characteristic of environment, and even
lead to the result of dimensional disaster. Q learning is dif-
ficult to cope with the problem. In such a case, we combine
Q learning with DNN and expressed as Q(S, a;θ ), where θ
is the weight of DNN. The purpose of DQN training is to
approximate target Q value by updating the weight θ . Expe-
rience replay mechanism is used to train the neural network.
We store the experience tuple e(t)= {S(t), a(t), r(t), S(t+1)}
into replay memory and indicated as D(t) = {e(1), e(2), . . .,
e(t)}. When the number of elements in replay memory is
enough, we sample randomly to train DQN.
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In the process of training, action selection is implemented
by employing ε-greedy strategy to balance exploration and
exploitation. The experience tuple is stored sequentially with
dique manner, so one tuple in replay memory is relational
with surrounding ones, which does not benefit to training.
Consequently, we select randomly in replay memory to sat-
isfy independent property of sample and increase its utiliza-
tion. Then, we calculate the target value of Q function by
Bellman equation in the current iteration as

φ(ξ ) = r(ξ )+ τ max
a′

Q(S(ξ + 1), a′; θ−) for ∀ξ ∈ ϕt

(31)

where θ− is weight value of DQN in current iteration.
ϕt denotes the index set of experience tuples in the mini
batch. Eq.(31) is the target value calculated by Bellman
equation which has been proved to convergent to the optimal
Q function [32]. While Q(S, a;θ ) is the output of DQN i.e.
it is the estimated value. Consequently, the DQN is trained to
approximate to the target value so that the difference between
target value and Q(S, a;θ ) becomes small enough. The target
value is used to calculate the loss function as follows

L(θ ) =
1

Nsamp

∑
ξ∈ϕt

(φ(ξ )− Q(S(ξ ), a(ξ ); θ ))2 (32)

where Nsamp is the size of mini batch. As shown in Eq.(32),
loss function L(θ ) is expected to minimize with iterations,
where iterations mean the rounds we implement the sim-
ulation experiment. If L(θ ) approximate to 0, the value
of Q(S(ξ ), a(ξ ); θ ) will converge to the target value φ(ξ ).
In order to speed up the training of DQN and avoid the
problems of local optimization, the probability parameter ε
is set to be large and decreases linearly with the number of
training iteration. Detailedly, when ε is large, CUs can have
exploration as much as possible, i.e. randomly select actions
with probability ε. While ε becomes small, CUs have much
more exploitation with probability 1-ε to select the actions
that can maximize the value of Q(S, a; θ∗).The DQN based
power control algorithm is illustrated in Table 1.

In the architecture of DQN, after implementing experi-
ments many times, we adopt a 5-layer neural network with
3 hidden layers which can perform well while with a lower
complexity than that of more hidden layers. Then, rectified
linear unit (ReLU) function is used as activation for the first
two hidden layers because that ReLU can convergent stably
and rapidly without gradient vanishing problem. Activation
for the third hidden layer is tanh function which can retain
the characteristic of data well. The details of hidden layers are
introduced in table 2. In order to avoid the system error of the
neural network model being independent of the training sam-
ples’ characteristics and tending to 0, we set the size of mini
batch to beNsamp = 128 to ensure the generalization ability of
the DQN. Specifically, we require that the maximum number
of experience tuples in replay memory is NR = 500 of
recent iterations. The stochastic gradient descent (SGD) is
adopted to update the weight θ . The total number of iterations

TABLE 1. Implementation of DQN based power control algorithm.

TABLE 2. Details of hidden layers.

is 0 = 100000. We validate the performance of DQN based
power controlmethod by implementing 200 independent tests
after every 500 iterations.

After training, MBS can select the optimal transmit power
for CUs by the learned policy of power control. Once the
transmit power of CUs satisfy the condition as shown in
Eq.(15), i.e. the state reaches optimization, CUs will keep
the transmit power in the optimal state until the end of data
transmission.

V. SIMULATION RESULTS AND ANALYSIS
In this section, a numerical simulation experiment is con-
ducted to demonstrate the performance of the proposed DQN
based power control algorithm, where relevant analysis and
evaluation are given behind. The number of CUs (or PUs)N is
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TABLE 3. Simulation parameters.

set to be N = 8, and the rest experiment parameters are listed
in Table 3. We use python 3 as the environment to implement
experiment. Generally, the path-loss model is applied to both
CUs and PUs.

We compared our proposed algorithm with the following
solutions.

LQG (Linear Quadratic Gaussian) regulator: the stochastic
distribution of the exogenous disturbance is assumed as the
Gaussian while the transmit power constraints of CUs are not
considered [6].

Q-learning: State and Action are built into a Q-table to
store Q values which is hard to handle the case with high-
dimension data.

We now investigate the performance of PCA and we ran-
domly select a set of state. The values of state are expanded
by a factor of 107 to simplify the calculation and illustrated
in Table 4. Then, the eigenvalue and the corresponding eigen-
matrix are calculated and sorted which is shown in Table 5.
Here, we give the maximum 3 eigenvalues and the corre-
sponding eigenmatrices because that the cumulative value of
maximum 3 eigenvalues is 3.4316/3.6272= 0.9461, which is
larger than the threshold 0.85 [33]. Finally, we can obtain 3
principal components as shown in Table 6.

The loss function, SINR, average step, and energy utiliza-
tion are used to be the performance indicators of the proposed
algorithm.

Loss function can indicate the difference between pre-
dicted values and target ones as formulated in Eq.(32). The
smaller the loss function, the closer the predicted value is to
the target value. As shown in Fig. 3, logarithm is implemented
to indicate the change of loss. We can conclude that the
loss function of our proposed algorithm converges rapidly
from value of several hundred to 1 with averaged about
104 iterations. Furthermore, the difference becomes smaller
as the training goes on, even the difference is small enough,
which means the trained DQN is convergent. Though, the
curve becomes more unstable as the iteration, the change of
peak value is within 1 actually.

FIGURE 3. Illustration of loss versus iteration.

FIGURE 4. SINR of CUs versus iteration.

FIGURE 5. SINR of PUs versus iteration.

SINR is the main indicator of communication perfor-
mance for CUs and PUs. Here, we evaluate the SINR value
by illustrating the curves of proposed algorithm with PCA
(marked as Proposed-w-PCA) and that without PCA (marked
as Proposed-wo-PCA). As shown in Fig. 4 and 5, we can
observe that PCA has a certain influence on SINR of both
CUs and PUs in the mass. That is, the curves with PCA
is some flatter than that without PCA. Then, SINR of both
users need to be larger than -10dB, otherwise, the format
requirements of modulation and coding scheme (MCS) will
not be satisfied for effective communication. So SINR in the
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TABLE 4. The state values in a random iteration.

TABLE 5. The eigenvalue and the corresponding eigenmatrix.

TABLE 6. The principal component of original state.

FIGURE 6. Average transition versus iteration.

both figures satisfy the QoS of communication even at the
beginning of iteration. Ultimately, SINR value of CUs and
PUs reach rapidly to the level around−4dB and 0.2dB in the
process of training, which satisfies the condition of energy
saving.

As illustrated in Fig. 6, the experiment of average transi-
tion step versus iteration for four kind of methods is imple-
mented based on the number of CUs is 8, which means
after average transition step of training, CUs and PUs can
communicate with satisfied transmit power. Transition steps

are the number of steps that DQN needs implement to obtain
the stable state in each iteration. Firstly, proposed algorithm
has a good performance regardless of dimension reduction
by PCA or not. And both of curves are convergent with
over 104 iterations. While for the proposed algorithm with
PCA, it has a fractional transition superiority of 0.34 com-
pared with proposed algorithm without dimension reduction
which the former can learn the optimal policy by average
3.56 transition steps and the latter is about 3.90, respectively.
Then, curve of the former is much flatter than that of the
latter because the PCA performs well on retaining principle
components. LQG method has a good performance as well
after 2× 104 iterations with a stable curve. While average
transition step of LQG needs at last 5.72 which is some
inferior to our proposed method. After that, performance of
Q learning is barely satisfactory because it never converges
in the whole iterations, though the average transition is less
than that of LQG after 5× 104 iterations. Such an evidence
proofs that Q learning is not a reliable method to handle the
case with multi-dimension states. In summary, the proposed
algorithm which reduces dimensions by PCA performs much
better.

In this case, we evaluate the energy utility of aforemen-
tioned four methods. Fig. 7 illustrates the energy utility of
CUs versus transition step with N = 8 in each iteration
after training. As mentioned previously, energy utility is
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FIGURE 7. Energy utility of CUs versus transition with N = 8.

expected average lifetime of all active CUs. The ordinate
value in Fig. 7 indicates the continuous time that CUs can
communicate normally. We can observe from Fig. 7 that
all the curves increase with the transition while the former
three curves (i.e. proposed-w-PCA, proposed-wo-PCA, and
LQG) increase more fleetly compared with Q learning and
then become gentle after several transitions. Our DQN based
method can converge to the value around 1520h and the
proposed-w-PCA has a good performance with a more sta-
ble curve than that of proposed-wo-PCA, though the latter
performs well likewise in the mass. The energy utility of
LQG regulator is inferior to that of the proposed DQN based
method. Q-learning is a method with low computational com-
plexity, while the performance of energy utility is unstable.
Though the training of DQN needs a high computational
complexity, while after the DQN is trained, the optimal trans-
mit power of CUs can be obtained within several transition
steps which involves amuch lower complexity. That is, giving
a random state, the CU can move into the optimal state with
several transition steps. Conclusively, the proposed algorithm
can realize a high utility to prolong the lifetime of CUs in coal
mine CPS.

FIGURE 8. Energy utility of CUs versus transition with N = 16.

In order to evaluate the stability of the different method,
we give an illustration of energy utility with N = 16.
As shown in Fig. 8, we can observe that the proposed method

with or without PCA can converge to a stable level as well
as LQG regulator in the case that the number of CUs is
increased. Though the utility values of the proposed method
and LQG regulator have a little reduction compared with
Fig. 7, the stability is much better than Q-learning. The curve
of Q-learning illustrates that the high energy utility needs
more transition steps than that with N = 8. In summary,
the proposed method with PCA can perform well with a
satisfied stability.

VI. CONCLUSION
In this article, we propose a power control algorithm to
improve the energy utility for CUs based on DQN in the
perception layer of coal mine CPS, which is a classic case of
industrial CPS. We construct the communication scenario by
referring to the environment of laneway in the coal mine. The
transmit power of CUs is initialized based on the calculated
selection range in which the transmit power can satisfy the
QoS of PUs and CUs. The power control policy is trained by
DQN in a way of reward manner to assist CUs in adjusting
the transmit power. Numerical simulation result demonstrates
that the proposed algorithm is convergent and has a good
performance of energy saving.

As for the future work, joint power control and channel
allocation for CUs and PUs are remained to be the further
investigation. Meanwhile, the application of the proposed
algorithm is planned to adopt in Suntuan coal mine, Huaibei
province and many other industrial productions like transport
service and construction industry.

REFERENCES
[1] B. Lei, J. Wang, Y. Wu, and X. Li, ‘‘From bounded reachability analysis

of linear hybrid automata to verification of industrial CPS and IoT,’’
in Engineering Trustworthy Software Systems—5th International School.
Cham, Switzerland: Springer, 2020, pp. 10–43.

[2] M. T. Higuera-Toledano, J. L. Risco-Martin, P. Arroba, and J. L. Ayala,
‘‘Green adaptation of real-time Web services for industrial CPS within
a cloud environment,’’ IEEE Trans. Ind. Informat., vol. 13, no. 3,
pp. 1249–1256, Jun. 2017.

[3] P. Ren, J. Li, and D. Yang, ‘‘The research on model construction and appli-
cation of coal mine CPS perception and control layer,’’ Int. J. Embedded
Syst., vol. 11, no. 4, pp. 483–492, 2019.

[4] S. Luo, Y. Wen, W. Xu, and D. Puthal, ‘‘Adaptive task offloading auction
for industrial CPS in mobile edge computing,’’ IEEE Access, vol. 7,
pp. 169055–169065, 2019.

[5] J. Li, D. Yang, and X. Zhang, ‘‘Research on modelling and scheduling
strategy for mine transportation control system based on CPS,’’ Int. J.
Embedded Syst., vol. 11, no. 5, pp. 678–686, 2019.

[6] S. Zhang and X. Zhao, ‘‘Distributed power control based on linear
quadratic optimal controller for cognitive radio network,’’ China Com-
mun., vol. 15, no. 8, pp. 77–91, Aug. 2018.

[7] G. Kakkavas, K. Tsitseklis, V. Karyotis, and S. Papavassiliou, ‘‘A software
defined radio cross-layer resource allocation approach for cognitive radio
networks: From theory to practice,’’ IEEE Trans. Cognit. Commun. Netw.,
vol. 6, no. 2, pp. 740–755, Jun. 2020.

[8] S. Demirci andD.Gozupek, ‘‘Switching cost-aware joint frequency assign-
ment and scheduling for industrial cognitive radio networks,’’ IEEE Trans.
Ind. Informat., vol. 16, no. 7, pp. 4365–4377, Jul. 2020.

[9] J. Ren, Y. Zhang, R. Deng, N. Zhang, D. Zhang, and X. Shen, ‘‘Joint
channel access and sampling rate control in energy harvesting cognitive
radio sensor networks,’’ IEEE Trans. Emerg. Topics Comput., vol. 7, no. 1,
pp. 149–161, Jan. 2019.

VOLUME 9, 2021 25381



X. Zhang, J. Li: Power Control for CUs of Perception Layer in Complex Industrial CPS Based on DQN

[10] S. Chaudhari and D. Cabric, ‘‘QoS aware power allocation and user selec-
tion in massive MIMO underlay cognitive radio networks,’’ IEEE Trans.
Cognit. Commun. Netw., vol. 4, no. 2, pp. 220–231, Jun. 2018.

[11] A. Tsakmalis, S. Chatzinotas, and B. Ottersten, ‘‘Interference constraint
active learning with uncertain feedback for cognitive radio networks,’’
IEEE Trans. Wireless Commun., vol. 16, no. 7, pp. 4654–4668, Jul. 2017.

[12] F. Zhou, N. C. Beaulieu, Z. Li, J. Si, and P. Qi, ‘‘Energy-efficient optimal
power allocation for fading cognitive radio channels: Ergodic capacity,
outage capacity, and minimum-rate capacity,’’ IEEE Trans. Wireless Com-
mun., vol. 15, no. 4, pp. 2741–2755, Apr. 2016.

[13] J. Ren, Y. Zhang, N. Zhang, D. Zhang, and X. Shen, ‘‘Dynamic channel
access to improve energy efficiency in cognitive radio sensor networks,’’
IEEE Trans. Wireless Commun., vol. 15, no. 5, pp. 3143–3156, May 2016.

[14] C. Yang, W. Lou, Y. Fu, S. Xie, and R. Yu, ‘‘On throughput maximization
in multichannel cognitive radio networks via generalized access strategy,’’
IEEE Trans. Commun., vol. 64, no. 4, pp. 1384–1398, Apr. 2016.

[15] X. Yang, M. Sheng, H. Sun, X. Wang, and J. Li, ‘‘Spatial throughput
analysis and transmission strategy design in energy harvesting cognitive
radio networks,’’ IEEE Trans. Commun., vol. 66, no. 12, pp. 5938–5951,
Dec. 2018.

[16] Y. A. Al-Gumaei, K. A. Noordin, A. M. Mansoor, and K. Dimyati,
‘‘Acceleration improvement of a sigmoid power control game algorithm
in cognitive radio networks,’’ in Proc. Int. Conf. Smart Comput. Electron.
Enterprise (ICSCEE), Jul. 2018, pp. 1–5.

[17] R. Ramamonjison and V. K. Bhargava, ‘‘Energy efficiency maximization
framework in cognitive downlink two-tier networks,’’ IEEE Trans. Wire-
less Commun., vol. 14, no. 3, pp. 1468–1479, Mar. 2015.

[18] H. Park and T. Hwang, ‘‘Energy-efficient power control of cognitive femto
users for 5G communications,’’ IEEE J. Sel. Areas Commun., vol. 34, no. 4,
pp. 772–785, Apr. 2016.

[19] M. Cui, B.-J. Hu, X. Li, H. Chen, S. Hu, and Y. Wang, ‘‘Energy-efficient
power control algorithms in massive MIMO cognitive radio networks,’’
IEEE Access, vol. 5, pp. 1164–1177, 2017.

[20] M. Zareei, C. Vargas-Rosales, R. V. Hernndez, and E. Azpilicueta, ‘‘Effi-
cient transmission power control for energy-harvesting cognitive radio
sensor network,’’ in Proc. IEEE 30th Int. Symp. Pers., IndoorMobile Radio
Commun. (PIMRC Workshops), Sep. 2019, pp. 1–5.

[21] S. Chaudhari and D. Cabric, ‘‘Power control and frequency band selection
policies for underlay MIMO cognitive radio,’’ IEEE Trans. Cognit. Com-
mun. Netw., vol. 5, no. 2, pp. 304–317, Jun. 2019.

[22] W. W, X. Xia, M. Wozniak, X. Fan, R. Damaševičius, and Y. Li, ‘‘Multi-
sink distributed power control algorithm for cyber-physical-systems in coal
mine tunnels,’’ Comput. Netw., vol. 161, pp. 210–219, Oct. 2019.

[23] Y. Wu, H. Tan, J. Peng, H. Zhang, and H. He, ‘‘Deep reinforcement
learning of energymanagement with continuous control strategy and traffic
information for a series-parallel plug-in hybrid electric bus,’’ Appl. Energy,
vol. 247, pp. 454–466, Aug. 2019.

[24] S. Liu, X. Hu, and W. Wang, ‘‘Deep reinforcement learning based
dynamic channel allocation algorithm in multibeam satellite systems,’’
IEEE Access, vol. 6, pp. 15733–15742, 2018.

[25] X. Li, J. Fang, W. Cheng, H. Duan, Z. Chen, and H. Li, ‘‘Intelligent power
control for spectrum sharing in cognitive radios: A deep reinforcement
learning approach,’’ IEEE Access, vol. 6, pp. 25463–25473, 2018.

[26] C. Savaglio, P. Pace, G. Aloi, A. Liotta, and G. Fortino, ‘‘Lightweight
reinforcement learning for energy efficient communications in wireless
sensor networks,’’ IEEE Access, vol. 7, pp. 29355–29364, 2019.

[27] M. Chu, X. Liao, H. Li, and S. Cui, ‘‘Power control in energy harvesting
multiple access systemwith reinforcement learning,’’ IEEE Internet Things
J., vol. 6, no. 5, pp. 9175–9186, Oct. 2019.

[28] X. Chen, Z. Zhao, and H. Zhang, ‘‘Stochastic power adaptation with
multiagent reinforcement learning for cognitive wireless mesh networks,’’
IEEE Trans. Mobile Comput., vol. 12, no. 11, pp. 2155–2166, Nov. 2013.

[29] J. Li, X. Zhang, Y. Feng, and K.-C. Li, ‘‘A resource allocation mechanism
based on weighted efficiency interference-aware for D2D underlaid com-
munication,’’ Sensors, vol. 19, no. 14, p. 3194, Jul. 2019.

[30] P. Zhou, Y. Chang, and J. A. Copeland, ‘‘Reinforcement learning for
repeated power control game in cognitive radio networks,’’ IEEE J. Sel.
Areas Commun., vol. 30, no. 1, pp. 54–69, Jan. 2012.

[31] B.-N. Trinh, L. Murphy, and G.-M. Muntean, ‘‘A reinforcement learning-
based duty cycle adjustment technique in wireless multimedia sensor
networks,’’ IEEE Access, vol. 8, pp. 58774–58787, 2020.

[32] R. Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton Univ.
Press, 2003.

[33] J. Xi, H. Jiang, B. Chen, and L. Fu, ‘‘Infrared multispectral radiation tem-
perature measurement based on PCA-ELM,’’ J. Shanghai Jiaotong Univ.,
vol. 42, no. 10, pp. 963–968, 2020, doi: 10.16183/j.cnki.jsjtu.2020.027.

XIAOMING ZHANG (Student Member, IEEE)
received the bachelor’s degree in electrical engi-
neering from the College of Electrical and Infor-
mation Engineering, Anhui University of Science
and Technology (AUST), Huainan, China, in 2015.
He is currently pursuing the Ph.D. degree in
mining and electromechanical engineering with
AUST. His current research interests include het-
erogeneous cellular networks, the mine Internet of
Things, and cyber physical systems.

JINGZHAO LI received the M.A. degree from
the China University of Mine and Technology,
Xuzhou, China, in 1992, and the Ph.D. degree
from the Key Laboratory of Power Electronics
and Power Drives, Hefei University of Science
and Technology, Hefei, China, in 2003. He is cur-
rently a Professor with the College of Electrical
and Information Engineering, Anhui University of
Science and Technology (AUST), Huainan, China.
His research interests include computer control

technology, the Internet of Things (IoT), cyber physical systems (CPSs), and
embedded systems. His current research interests include design and analyze
themechanism ofmine information and physical interface, power control and
resource management for the IoT networks, and method of secure interaction
in CPS.

25382 VOLUME 9, 2021

http://dx.doi.org/10.16183/j.cnki.jsjtu.2020.027

