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ABSTRACT Recently, solar energy has been intensively employed in power systems, especially using the
photovoltaic (PV) generation units. In this regard, this paper proposes a novel design of a fuzzy logic based
algorithm for varying the step size of the incremental conductance (INC) maximum power point tracking
(MPPT) method for PV. In the proposed method, a variable voltage step size is estimated according to the
degree of ascent or descent of the power-voltage relation. For this purpose, a novel unique treatment is
proposed based on introducing five effective regions around the point of maximum PV power. To vary the
step size of the duty cycle, a fuzzy logic system is developed according to the locations of the fuzzy inputs
regarding the five regions. The developed fuzzy inputs are inspired from the slope of the power-voltage
relation, namely the current-voltage ratio and its derivatives whereas appropriate membership functions and
fuzzy rules are designed. The benefit of the proposed method is that the MPPT efficiency is improved for
varying the step size of the incremental conductance method, thanks to the effective coordination between
the proposed fuzzy logic based algorithm and the INCmethod. The output DC power of the PV array and the
tracking speed are presented as indices for illustrating the improvement achieved in MPPT. The proposed
method is verified and tested through the simulation of a grid-connected PV system model. The simulation
results reveal a valuable improvement in static and dynamic responses over that of the traditional INCmethod
with the variation of the environmental conditions. Further, it enhances the output dc power and reduce the
convergence time to reach the steady state condition with intermittent environmental conditions.

INDEX TERMS Maximum power point tracking, fuzzy logic, incremental conductance, PV system,
dynamic responses.

I. INTRODUCTION
Globally, the integration of the photovoltaic (PV) system
with the grid spreads progressively where the contribution
of PV generation to the overall worldwide power generation
is augmented. In this regard, the increase of the PV system
efficiency is pivotal for optimal operation. This benefit can
be achieved through continuous acquiring of the maximum
power from the PV arrays as the environmental conditions
vary. Themaximum power point tracking (MPPT) is essential
in the operation of the PV arrays to improve the overall
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system efficiency [1]–[3]. The solar irradiation (G) and the
cell temperature (Tc) are considered to represent the environ-
mental conditions change along the day hours. As G and Tc
vary, the PV array voltage and power depart from the opti-
mum point. Consequently, the PV array voltage is adjusted
to match the maximum output power. The common way to
adjust the PV voltage is via adjusting the duty cycle of the
DC-DC boost converter.

The most widespread MPPT methods are the incremental
conductance (INC), the perturb-and-observe, the fractional
short-circuit current, the fractional open circuit voltage and
the hill climbing [4]–[8]. Driven by the advancements in
artificial intelligence techniques [9], [10], many variants are

26420 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-9860-6550
https://orcid.org/0000-0002-6729-6809
https://orcid.org/0000-0002-9979-7333
https://orcid.org/0000-0001-9782-8813
https://orcid.org/0000-0002-5193-7990


M. N. Ali et al.: Efficient Fuzzy-Logic Based Variable-Step INC MPPT Method for Grid-Connected PV Systems

applied as control methods to the MPPT for PV systems [11].
The fuzzy logic control (FLC) and the artificial neural net-
works are widely used for MPPT, which are robust, accurate
and fast methods [12]–[14]. Some optimization techniques
are used to improve the MPPT accuracy, such as genetic
algorithm [15], [16], ant colony optimization [17], and par-
ticle swarm optimization [18]. In [19]–[21], hybrid MPPT
techniques, which comprise classical and artificial intelli-
gence methods, are introduced. Due to the rapid develop-
ment of metaheuristic optimizations, they are applied to the
MPPT control of PV, e.g. intelligent fuzzy particle swarm
optimizer [22], [23], modified sine-cosine optimizer [24],
adaptive neuro-fuzzy inference system-particle swarm opti-
mization [25], and Jaya optimizer [26]. An appraisal of dif-
ferent MPPT methods is presented in [27]–[31]. The INC
method is one of the most robust and reliable classical MPPT
method [32], [33]. It has a defect of fixed voltage step to react
with the variation in the environmental conditions. Recent
advancements to improve the INC method are presented
in [34]–[36]. A fuzzy logic based control is used for improv-
ing the INCmethodwas presented in [37]–[39]. A fuzzy logic
based auto-scaling variable step-size MPPT method is pre-
sented in [40]. According to the authors’ knowledge, different
attempts have been implemented to solve the MPPT problem
by traditional methods. However, none of them has applied
fuzzy logic algorithm combined with the INC considering
split regions, which is the main focus of this paper.

To cover the gap in the literature, a novel design of fuzzy
logic control for varying the voltage step size is proposed
in this paper to improve the operation of the conventional
INC MPPT method. Five regions are suggested around the
point of maximum power of PV. The voltage (duty cycle) step
size is varied according to the locations of the fuzzy inputs
regarding the five regions. The operation of the incremen-
tal conductance depends on the slope of the power-voltage
relation. This relation is interpreted as the relation between
the ratio of PV current and PV voltage (I/V ) and the ratio
of their derivatives (dI/dV ). Therefore, the proposed fuzzy
inputs are I/V and dI/dV . The fuzzy rule base and the
membership functions of inputs and output are generated
intuitively. The variation of the PV voltage is implemented
by adjusting the duty cycle of the DC-DC boost converter.
Thus, the fuzzy output is a variable step size of duty cycle.
The application of this fuzzy logic based algorithm is pre-
sented to improve theMPPT performance during the constant
environmental conditions (static performance) and during
the switching of the environmental conditions (dynamic
performance).

This paper is organized as follows. In Section II, the
PV array modeling is presented and the effect of the vari-
ations of the environmental conditions on the maximum
power point is declared. In Section III, a description of the
proposed fuzzy logic controller (FLC) based variable step
algorithm for incremental conductance MPPT method is pre-
sented. Section IV presents the results of the application
of the proposed FLC based algorithm and illustrates the

improvement achieved compared to the conventional fixed
step INC method. Section V presents the conclusion.

II. MATHEMATICAL REPRESENTATION OF PV ARRAYS
PV arrays are composed of PV panels, which comprises PV
cells connected in series or parallel. The panels are also
connected in series and parallel to meet the required voltage,
current and power. To present the mathematical model of a
PV array, one diode model is adopted for modeling a PV cell
as shown in Figure 1 [33], [41], [42].

FIGURE 1. One diode model for modeling a PV cell.

The mathematical equations for representing PV panel,
which has number of series cells (Ns) are presented as
follows.

I = Iph − Is(exp(
(V + IRs)
aNsVt

)− 1)−
V + IRs
Rp

(1)

Vt =
kTc
q

(2)

Iph =
G
Gn

(Iscn + KI (Tc − Tcn )) (3)

Is = Isn (
Tc
Tcn

)3exp(
qEg
ak

(1/Tcn − 1/Tc)) (4)

Isn = Iscn/(exp(
Vocn
aNsVtn

)− 1) (5)

where Iph is photo current of PV panel, Is is saturation current,
Isc is short circuit current, Voc is open circuit voltage, Vt is
thermal voltage, G is solar irradiance, Tc is cell temperature,
Eg is band gap of the semiconductor material, k is Boltzmann
constant, q is electron charge, a is ideality factor, Rs is series
resistance, Rp is parallel resistance, Nps is number of parallel
strings, and Nsp is number of series panels.

The standard test conditions are denoted by the subscript
n, at which Gn = 1000 W/m2,Tcn = 25 ◦C . The series
resistance (Rs) accounts for the internal cell resistance and
the contact resistance, whereas the parallel resistance (Rp)
accounts for the leakage current. The two resistances can be
determined by solving nonlinear algebraic equations using
the Newton-Raphson method or optimization methods.

For a PV array having number of parallel strings (Nps ) and
each string has number of series panels (Nsp ), the current-
voltage equation is presented as follows:

I = Nps ∗ Iph − Nps ∗ Is(exp(
(V + IRs ∗ Nsp/Nps )

aNsVt
)− 1)

−
V + IRs ∗ Nsp/Nps
Rp ∗ Nsp/Nps

(6)
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FIGURE 2. The power-voltage and the current-voltage relations of a
100-kW PV array for different solar irradiance at Tc = 25 ◦C .

FIGURE 3. The power-voltage and the current-voltage relations of a
100-kW PV array for different cell temperature at G = 1000 W /m2.

To demonstrate the effect of change of the environmental
conditions (G and Tc) on the maximum power point, a PV
array is simulated using MATLAB/SIMULINK. The simu-
lated array is a 100-kW PV array, which is composed of
5 parallel strings, each string consists of 66 series SUN-
POWER 305 panel, which has 96 all back-contact solar
cells. The current-voltage and the power-voltage relations are
shown in Figure 2 and Figure 3 for different solar irradiance
at Tc = 25 ◦C and for different cell temperatures at G =
1000 W/m2, respectively.
As shown in these figures, the maximum power point

changes continuously as the environmental conditions
change. Therefore, it is indispensable to use MPPT systems
to keep extracting the maximum power of PV panels/arrays.

III. DESCRIPTION OF THE FLC BASED VARIABLE STEP
INC MPPT METHOD
A. CONVENTIONAL FIXED STEP INC MPPT METHOD
The incremental conductance method is one of the widely
used conventional MPPT methods [32], [33]. It is based on

the slope of the power-voltage relation. The maximum power
occurs at zero slope, whereas negative slope requires voltage
decrement and positive slope requires voltage increment to
maintain the PV array voltage and power at their optimum
values. The following equations summarize the incremental
conductance method:

P = VI (7)

dP/dV = I + VdI/dV (8)

where P is the output dc power. At maximum power point
dP/dV = 0, this leads to:

I/V = −dI/dV (9)

When dP/dV > 0, i.e., I/V > −dI/dV , the voltage needs
to be incremented, and when dP/dV < 0, i.e., I/V <

−dI/dV , the voltage needs to be decremented. A flowchart
of the incremental conductance method for MPPT is shown
in Figure 4 [32]. For the conventional INC method, ε rep-
resents a fixed small amount of voltage for increment or
decrement.

FIGURE 4. A flowchart of the fixed step size incremental conductance
MPPT method.

B. FLC ALGORITHM FOR VARIABLE STEP
INC MPPT METHOD
The basic functioning of fuzzy controller is shown in
Figure 5, where crisp inputs are converted to fuzzy inputs
according to their membership functions and degree of mem-
bership (the fuzzification process). Based on the degrees of
the membership function and the rule base, the inference
engine generate the fuzzy output using the implication and
the aggregation methods. The fuzzy output is converted to
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FIGURE 5. Overview of a fuzzy logic control system.

FIGURE 6. Representation of the five proposed regions on the
power-voltage and current-voltage relations at the standard test
conditions.

a crisp output using any method such as the center of area
(the defuzzification process) [43].

The proposed algorithm employs FLC for varying the step
size of voltage increment or decrement of the INC MPPT
method. The algorithm assigns five regions according to
their locations with respect to the point at maximum power.
Figure 6 roughly shows the representation of the five regions
on the power-voltage and current-voltage relations at the stan-
dard test conditions, where R1, R2, R3, R4, and R5 roughly
represent these five regions. To clarify these regions, their
ranges are represented on the voltage axis as follows:
• Region R1 represents the voltage range, which is much
lower than Vmpp.

• Region R2 represents the voltage range lower than Vmpp.
• Region R3 represents the voltage range very close
to Vmpp.

• Regions R4 and R5 represent the replica of regions R2
and R1, respectively, from the other side of Vmpp.

The proposed fuzzy inputs are the ratio between PV
current and PV voltage (I/V ) and the ratio between their
derivatives (dI/dV ). The desired output is the variable volt-
age step (increment or decrement). As the voltage is con-
trolled through changing the duty cycle of the DC-DC boost

converter, the variable voltage step is controlled through a
variable duty cycle step (1D), which is considered as the
fuzzy output. So, referring to the flowchart in Figure 7,
the voltage step (Vstep) is variable and is controlled through
1D based on the two fuzzy inputs and the proposed intuitive
decision rule base.

Figure 8 illustrates the relation between the fuzzy inputs
(I/V and dI/dV ) and the PV array voltage, at the standard
test conditions, where the points representing the five regions
are marked.

The intuitive rules to ensure accuracy and fast tracking to
reach the point of maximum power are as follows;
• If dP/dV � 0, i.e., I/V � −dI/dV (region R1),
the suitable Vstep is positive big (PB).

• If dP/dV > 0, i.e., I/V > −dI/dV (region R2),
the suitable Vstep is positive small (PS).

• If dP/dV ≈ 0, i.e., I/V ≈ −dI/dV (region R3),
the suitable Vstep is very small (VS).

• If dP/dV < 0, i.e., I/V < −dI/dV (region R4),
the suitable Vstep is negative small (NS).

• If dP/dV � 0, i.e., I/V � −dI/dV (region R5),
the suitable Vstep is negative big (NB).

TABLE 1. Fuzzy rules for generating the variable step duty cycle for INC
method with the two inputs I/V and dI/dV .

The fuzzy rules are proposed to generate suitable Vstep
based on the fuzzy inputs (I/V and dI/dV ). Table 1 presents
all the intuitive fuzzy rules. To explain how these rules are
deduced, one rule is explained as follows;

If I/V and dI/dV are very low (VL) compared to their
values at maximum power point (i.e., both are at region R5
as shown in Figure 8), then I/V � −dI/dV , which requires
a negative big Vstep (i.e., positive big (PB) step of the duty
cycle). In other words, the suitable step size can be estimated
based on the sum, I/V + dI/dV , and the region it belongs to
as shown in Figure 8.
Note that the fuzzy output is the variable duty cycle

step (1D), which can be related to Vstep according to the
following equations;

V = (1− D) ∗ Vdc (10)

1V = Vstep = −1D ∗ Vdc (11)

The dc link voltage (Vdc) is considered fixed in this study.
Vdc dc link voltage.

In this table, the abbreviations are as follows; VL: very low,
L: low, VC: very close, H: high, VH: very high, NB: negative
big, NS: negative small, VS: very small, PS: positive small,
PB: positive big. The membership functions of inputs and
output are shown in Figure 9.
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FIGURE 7. A flowchart of the proposed FLC based variable step size INC MPPT method.

FIGURE 8. The relation between the fuzzy inputs (I/V and dI/dV ) and the
PV array voltage at the standard test conditions indicating the five
regions.

The universes of discourse for the fuzzy inputs and out-
put are based on their effective values at the standard test
conditions as shown in Figure 8. Nevertheless, as G and Tc

FIGURE 9. The membership functions of inputs and output of FLC based
variable step INC method.

vary, the effective values of the fuzzy inputs and output vary.
So, some gains are used with the inputs and the output of
the fuzzy system to adjust their values to be suitable for the
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FIGURE 10. An overview of the grid-connected PV array with the
proposed FLC based variable step INC MPPT method.

FIGURE 11. Testing the FLC based algorithm through the step variations
of (a) the solar irradiance (G) (b) the cell temperature (Tc ).

designed universes of discourse. The gains are optimized to
get the best suitability to be used with fuzzy logic variable
step INC MPPT.

IV. APPLICATION OF THE FLC BASED VARIABLE
STEP ALGORITHM
To apply the proposed FLC based variable step INC
MPPT method, a modified MATLAB model of 100-kW
grid-connected PV array is used. This model is com-
posed of 5 parallel strings, each string consists of 66 series
SUNPOWER 305 Panel as mentioned in Section II.
An overview of the grid-connected PV arraymodel, including
the proposed algorithm for MPPT, is shown in Figure 10.
It comprises the PV array, the dc-dc boost converter, the vari-
able step INCMPPT, the inverter and the grid. The FLC block
provides the INCmethod with a variable change of duty cycle
at each step according to the fuzzy inputs. The variable step

FIGURE 12. Comparisons of FLC based and fixed duty cycle of the INC
MPPT method (fixed step=0.0003 s) for step variations of G and Tc :
(a) for the step change at 0.8 s; (b) for the step change at 1 s.

INC MPPT produces the duty cycle to adjust the PV voltage
to its optimum value.

For the simulation purpose, the environmental variables
taken into consideration are the solar irradiation (G) and the
cell temperature (Tc). Two simulation cases are studied to
highlight the effectiveness of the proposedmethod to improve
the MPPT efficiency and to increase the output DC power.
The first simulation case study deals with the step variations
of G and Tc, while the second one deals with their ramp
variations.

A. STEP VARIATIONS OF G AND Tc

The proposed step variations of G and Tc are shown in
Figure 11, which are used for testing the proposed FLC based
variable step INC MPPT method.

The feasibility of the application of such FLC based algo-
rithm to improve the conventional INC MPPT method is
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FIGURE 13. The output dc power comparison when applying the
conventional fixed step INC method, the fixed step P&O method and the
FLC based variable step INC method for MPPT.

FIGURE 14. The difference between the output dc power when applying
the FLC based algorithm and these of the conventional fixed step INC and
P&O methods for MPPT.

declared through the simulation of the grid-connected PV
array. Figure 12 presents sample of comparisons between
the fixed duty cycle step and the FLC based duty cycle
step at different time periods. Two remarks can be extracted;
The first one that the FLC based duty cycle step changes
accordingly as G or Tc to improve the response of the MPPT
system, where the fixed step is always of constant magni-
tude added or subtracted from the previous duty cycle value.
The second remark that the fixed step cannot be zero even if
the optimal point is very close, where the FLC based duty
cycle step adapts its size according to its nearness to the
maximum power point is reached.

To illustrate the efficacy of the proposed FLC variable step
MPPT method, it is compared to two conventional methods.

FIGURE 15. Proximate views of the output dc power comparison when
applying the FLC based algorithm and these of the conventional fixed
step INC and P&O methods for MPPT: (a) from 0.2 to 0.5 s; (b) from
0.7 to 0.95 s; (c) from 1.2 to 1.4 s; (d) from 1.4 to 1.5 s.
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FIGURE 16. Testing the FLC based algorithm through the ramp variations
of: (a) the solar irradiance (G); (b) the cell temperature (Tc ).

FIGURE 17. The comparison of output dc power when applying the
conventional INC and the conventional P&O MPPT methods when using
fixed step size and that of the FLC based variable step size for ramp
variations of G and Tc .

The first one is the conventional INC method with fixed
step sizes of 0.0003 s and 0.001 s. The second one is the
conventional perturb and observe (P&O) method with fixed
step of 0.0003 s. The comparison between these methods is
considered from two points of view. The first one is the output
dc power, which is relevant to the PV system efficiency.
The second point is the tracking speed. This comparison is
shown in Figure 13. The improvement achieved is declared
in Figure 14, where it represents the output dc power differ-
ence between the compared methods.

FIGURE 18. The improvement of the output dc power when applying the
FLC based algorithm over these of the conventional fixed step INC and
P&O methods for MPPT.

To focus on this comparison, proximate views of Figure 13
are presented in Figure 15 to emphasize the improvement
achieved in the amount of the output dc power and the
tracking speed when using the proposed method. It is shown
from Figures 13, 14 and 15 that using the FLC based vari-
able step INC method for MPPT improves the static and
dynamic performance of the output dc power of the PV array.
The static performance improvement is emphasized through
the increase of the amount of the output dc power during the
periods of constant G and Tc. The dynamic performance
improvement is declared through fast tracking when G or Tc
vary.

B. RAMP VARIATIONS OF G AND Tc

The proposed ramp variations of G and Tc are shown in
Figure 16, which are used to emphasize the ability of the
proposed algorithm to deal with different variations in the
considered atmospheric conditions.

The comparison between the output DC power when using
the fixed step INC method, the fixed step P&O method and
the FLC based variable step based MPPT systems is shown
in Figure 17. The improvement in the output DC power is
presented in Figure 18.
Close views of Figure 17 are presented in Figure 19 to

precisely illustrate the improvement in the output dc power.
Table 2 present a quantitative comparison between the

output dc power responses when applying the proposed FLC
based variable step size and these of the fixed step size INC
and P&O MPPT methods. The first quantitative index is the
produced energy over the simulation period, which is the
integration under the power-time curve. The second index
is the average rise time at different step variations of the
response. The first index is given for the two simulation cases
(step and ramp variations ofG and Tc), while the second index
is presented only for the step variation of G and Tc.
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FIGURE 19. Close views of the output dc power comparison when
applying the FLC based algorithm and these of the conventional fixed
step INC and P&O methods for MPPT: (a) from 0.1 to 0.4 s; (b) from
0.6 to 0.8 s; (c) from 1.2 to 1.4 s; (d) from 1.4 to 1.6 s.

TABLE 2. A quantitative comparison of the produced energy and the
average rise time when applying the proposed FLC based and the
conventional INC and P&O MPPT methods.

These two simulation cases of study emphasize the effi-
cacy of the proposed FLC design to improve the INC based
MPPT system for different environmental conditions through
varying the duty cycle step size.

V. CONCLUSION
The PV system efficiency is a crucial index to evaluate the
performance of grid-connected PV systems where the MPPT
performance is a keynote. The conventional fixed step INC
method for MPPT is widely used but it lacks some accuracy
and speed of convergence. To tackle this issue, the proposed
improvement of the INC method is introduced to employ
a fuzzy logic algorithm to generate a variable step voltage
increment or decrement, which is executed through decre-
ment or increment of the duty cycle of the dc-dc boost con-
verter. The voltage (duty cycle) step has five different sizes
according to proposed five regions of the fuzzy inputs. The
simulation results demonstrate that the proposed FLC based
variable step INC method for MPPT enhances the output
dc power and reduce the time of convergence to reach the
steady state when switching of the environmental conditions.
To illustrate the efficacy of the proposed MPPT method,
it is compared to two conventional methods. The first one
is the INC method with fixed step sizes of 0.0003 s and
0.001 s. The second method is the conventional P&Omethod
with fixed step of 0.0003 s. In future work, the experimental
application of the proposed FLC variable step method will be
studied in a grid-connected PV systems.
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