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ABSTRACT As an indispensable part of public transportation systems, the bike-sharing system (BSS) can
improve road resource utilization and alleviate traffic congestion, significantly improving urban mobility.
The disproportion between the demand and supply creates a giant gap for maintaining the smooth functioning
of the system. To address the issue, this paper proposes a dynamic optimization rebalancing model for
docked bike-sharing systems, which aims at minimizing the operation cost of rebalancing while maximizing
the user satisfaction. The rebalancing demand is evaluated using both historical and predicted data so that
a second time service for each station could be avoided within a rebalancing horizon. A time-window based
satisfaction modeling is put forward to evaluate user satisfaction. Multiobjective evolutionary algorithm
based on decomposition (MOEA/D) under the rolling horizon strategy is adopted to solve the model.
To improve the algorithmic performance, local search based on station priority is applied. Numerical
experiments using real-world data were implemented to demonstrate the proposed model and the advantage
of the improved algorithm. As the results indicate, the proposed algorithm outperforms the nondominated
sorting genetic algorithm II (NSGA-II) and MOEA/D without priority-based local search. Solutions with
higher satisfaction profit can be discovered with the help of a local search heuristic based on station priority.
The experiment also revealed that a slight increase of 7.02% (¥29.2) in the rebalancing cost could yield a
significant growth of 1233.7% (¥288.7) in satisfaction profit.

INDEX TERMS Bike-sharing, dynamic rebalancing, multiobjective optimization.

I. INTRODUCTION
Over the past decades, bike-sharing systems (BSSs) have
been developed into a flexible, healthy and environmentally
friendly transportation mode, and have expanded rapidly all
over the world [1]. Currently, more than 2000 BSSs are oper-
ating in the world and more than 300 systems are in planning
phase or under construction [2]. The current BSSs around the
world can be classified into two categories: docked BSSs and
dockless BSSs [3]. In the docked BSS, users rent bikes from
designated docking stations and then return them to available
lockers in the docking stations. The dockless BSSs has two
prevalent practices for parking bikes. The first one is using
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physical or geo-fencing designated parking areas provided
in public space with or without bike racks. In the second
practice, bikes could be scattered almost everywhere as long
as it is at a location accessible to all users [4]. Both types of
the BSSs have improved urban mobility. However, the asym-
metric spatial and temporal distribution of user demand lead
to both systems’ imbalance [5]. Therefore, BSS rebalancing
is operated to relocate bikes to achieve a desired distribution.

Various approaches for rebalancing bikes can be divided
into user-based rebalancing and operator-based rebalanc-
ing [6]. The user-based rebalancing approaches usually
incentivize the users in the bike rebalancing process, encour-
aging them to pick or return bikes in specific stations in
exchange for monetary incentives [6]. However, the effec-
tiveness of station rebalancing is affected by the willingness
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of user participation and incentives may become specific
budget constraints. Therefore, the operator-based rebalancing
approaches are adopted more widely than the former one
in many BSSs [7]. In the process of operator-based BSS
rebalancing, vehicles are utilized starting from the depot
with initial loads of bikes, to pick up or drop off certain
number of bikes at surplus or deficit stations, and finally
returning to their original depot [8]. Specially, operator-based
bike rebalancing optimization can be classified into static
optimization and dynamic optimization [9]. For the static
problem, the rebalancing operation is performed during the
night assuming that the demand for bikes is unchanged, and
the aim is to arrange bikes in the system for the next working
day. The dynamic one is operated during the day and the
routes need to be updated regularly to handle the varying
demand.When the system is in use, it is very intricate to man-
age as it incorporates a scheduling component derived from
the users’ activity into the operation [10]. Recently, certain
amount of studies on dynamic BSS rebalancing have been
proposed. Notably, Brinkmann et al. considered a stochastic
dynamic inventory routing problem (SDIRP) in BSSs [11].
They modeled the problem as a Markov decision process and
a dynamic lookahead policy is applied for future demands
prediction, minimizing the unsatisfied demands. Schemes
for rebalancing are given but costs of the rebalancing are
neglectedwhenmaking the repositioning plan. Caggiani et al.
proposed a dynamic rebalancing model which aims at achiev-
ing a high-level user satisfaction while minimizing the rebal-
ancing costs simultaneously, and a fuzzy decision support
system was designed [12]. The work was later expanded
to free-floating systems in [13]. Kloimüllner et al. devel-
oped a dynamic rebalancing method based on their previous
static rebalancing method, which minimized the unfulfilled
demand as well as the driving time and the number of
loading instructions [14]. A framework is proposed in [15]
by O’Mahony et al., where a clustering optimization was
used to deal with rush hour usage, ensuring that users are
always close to available bikes or docks. Chiariotti et al.
introduced a BSS rebalancing model, which consisted of
both user incentives and traditional truck-based rebalancing
to minimize the time of a station being full or empty. They
formulated the potential departures and arrivals as Poisson
processes, using historical arrival/departure rates as means
of the probabilistic distribution [16]. However, none of the
aforementioned studies considered the station priority when
dealing with the dynamic rebalancing problem. As pointed
out in [17], in operator-based rebalancing, the ability of the
operator to redistribute bikes is limited and priority choices
have to be made. Therefore, to enhance the operation and
management and improve user satisfaction, a model con-
sidering priority of BSS stations is necessary. Specifically,
the dynamic optimization rebalancing model proposed in this
paper aims at minimizing the operation cost of rebalancing
while maximizing the user satisfaction during the BSS rebal-
ancing process. Particularly, the main contributions of this
paper lie in:

1) A multiobjective dynamic rebalancing model which
simultaneously optimizes of user satisfaction and rebal-
ancing cost is formulated, where the satisfaction is mod-
eled based on time-window and refined to take both
timeliness and rebalancing amount into account.

2) Priority of stations is evaluated using a multi-ranking
attribute approach and a novel priority-based heuristic
is introduced in the MOEA/D algorithm to solve the
proposed optimization model.

The remainder of the paper is organized as follows. A liter-
ature review of BSS rebalancing optimization is provided in
the next section. Subsequently, the paper introduces the prob-
lem description and formulation. Afterwards, the proposed
method and numerical studies are presented. The conclusions
and suggestions for future research are summarized in the last
part of the paper.

II. LITERATURE REVIEW
In this section, we will first introduce the objectives of the
BSS rebalancing optimization models in the existing studies.
Then we will review how current research addresses the
determination of rebalancing demand. Next, we will discuss
the existing works on modelling of user satisfaction in BSS
rebalancing. Afterwards, we will report on the algorithms
solving the optimizationmodels. Finally, wewill illustrate the
research gap between our study and the existing literatures.

A. OBJECTIVES OF BSS REBALANCING
As an extension of the vehicle routing problem, minimizing
the cost of BSS rebalancing is the most common objec-
tive in the existing research. Lee et al. minimized the bike
relocating time composed of travel time and time of bike
loading and unloading [18]. Zhu et al. minimized the total
distance travelled between stations and the depots during
the repositioning process [19]. Dell’ Amico et al. minimized
the traveling costs using a destroy and repair algorithm to
solve the problem [20]. Apart from these, the satisfaction
of customers has also been considered in previous works.
A model minimizing total unmet demand was proposed by
Contardo et al. [21]. Brinkmann et al. identified an optimal
policy which leads to the minimum of expected penalties,
i.e., due date violations [22]. Jia et al. brought up an opti-
mization model minimizing the total rebalancing time and the
number of shortage events during the concerned period [23].

Besides single-objective optimization, some literatures
proposed models with multiple objectives. Caggiani et al.
minimized relocation and lost user costs (i.e., costs for
users whose service request cannot be satisfied) at the same
time [24]. Dell’ Amico et al. aimed at minimizing the travel-
ing costs as well as the penalty for unfulfilled demand [2].
You et al. proposed a model that minimizes the total cost
of failing to meet bike rental and return requests and the
total traveling cost and solve the bike repositioning problem
with a two-phase heuristic approach [25]. Regue et al. mod-
eled a problem considering maximizing the utility gained by
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visiting a station with a large inefficiency and its neighbor-
hood that is expected to be in deficit, meanwhile minimiz-
ing the travel time involved in going to those stations [26].
In recent years, some researchers also took environmental
influence in BSS rebalancing into account, notably, total
fuel and CO2 emission costs, as well as unmet demand
were minimized simultaneously by Shui et al. for dynamic
rebalancing [27].

B. DETERMINATION OF REBALANCING DEMAND
Regarding the determination of rebalancing demand, some
stochastic approaches were adopted. Dell’ Amico et al. pro-
posed that demands at each station were represented by
random variables, with associated probability distributions,
which depend on stochastic scenarios [2]. Kloim’ullner et al.
modeled the rebalancing demand as an essentially arbitrary
function [14]. Besides, a series of studies established opti-
mization models to determine the best rebalancing demand
with different objectives. Di et al. decided the rebalancing
amount from a user demand model [28]. Kadri et al. pro-
posed a model for the best inventory of the stations in the
system to fulfil at best the demand while minimizing the
undesirable situations [29]. Zhu et al. calculated the demand
in each region by giving corresponding proportional coeffi-
cients in different radius ranges through a concentric circle
model [19]. Jia et al. set the planned parked bikes at each
station as a decision variable in the rebalancing optimization
model aiming at minimizing the total rebalancing time [23].
In addition, a few works also utilized forecast data to deter-
mine the rebalancing demand. Lee et al. determined the num-
ber of relocation bikes by comparing the predicted demand
with current inventory [18]. Regue et al. used historical
data to predict the inventory of each station by applying the
queuing theory model and formulated an optimization model
ensuring the number of bikes remains inside the range of
the maximum and minimum in historical records in the next
period after rebalancing [26]. Chiariotti et al. used Poisson
processes to formulate the potential departures and arrivals,
which uses historical arrival/departure rates as means of the
probabilistic distribution [16].

C. SATISFACTION MODELING
As is pointed out above, user satisfaction plays a crucial part
in dynamic rebalancing. Lee et al. presented a measurement
called Bike Demand Satisfaction Ratio, which is the percent-
age of the number of stations that have sufficient inventory
to meet bike demand [18]. Rainer-Harbach et al. [30] and
Kloimüllner et al. [14] modeled the dissatisfaction of users
by the deviation of the actual number of bikes and the pre-
determined balanced number of bikes. Some penalty-based
approaches were also adopted. Kadri et al. used a weighted
objective function minimizing the sum of weighted times,
where the weight is the gap between current number of
bikes a confidence level at each station [31]. Caggiani et al.
established a fuzzy logic system tomeasure the satisfaction of
users through the rental and return status of a station and then

determined the starting time of rebalancing accordingly [24].
The user dissatisfaction was defined by Raviv et al. as the
expected number of commuter requests (both rentals and
returns) that will be rejected in a future time [32] and was
later integrated in a novel non-linear time-space network flow
model by Zhang et al. [33].

D. SOLVING ALGORITHMS
Generally, algorithms solving the rebalancing problems
of BSS can be divided into two categories, namely
exact methods and inexact methods. For exact algorithms,
Contardo et al. used column generation combined with ben-
ders decomposition to solve a dynamic rebalancing problem
for BSS [21]. Caggiani et al. solved the problem minimizing
cost and lost users by branch-and-bound algorithm [24].
However, due to the complexity of the rebalancing problem,
it is intractable to use exact methods to solve large, real-
istic repositioning problems [34]. Therefore, heuristic algo-
rithms have become prevalent approaches in solving such
problems for solutions given limited time [23]. Noticeably,
Dell’ Amico et al. handled the problem with heuristic algo-
rithms based on correlations [35] and later developed a
destroy and repair algorithm [20]. You et al. adopted a heuris-
tic approach based on linear programming [25]. For meta-
heuristic algorithms, Lee et al. and Zhu et al. solved the given
problemwith genetic algorithms [18], [19]. Jia et al. proposed
a Modified Artificial Bee Colony (MABC) in order to find
the optimal routes and desired parked bikes of stations [23].
Meanwhile, hybrid algorithms have also been put forward,
such as ant-colony optimization and Constraint Programming
(CP) [36] as well as Large Neighborhood Search (LNS) and
CP [28] by Di Gaspero et al. It is worth mentioning that for
dynamic cases, a series of work applied a rolling horizon
approach to decrease the scale of the problem, e.g., [27] by
Shui et al., [33] by Zhang et al. and [37] by Mellou et al.

E. RESEARCH GAP
Multiple existing studies attempt to improve the user satis-
faction quantitatively, either by minimizing the total unmet
demand [2], [21] or deviation from target fill level of a
station [38]. At the same time, some choose to cope with
satisfaction temporally by minimizing the length of time for
a station short/surplus of bikes [31]. However, none of the
methods above dealt with timeliness and quantity simultane-
ously. In our study, we refine the satisfaction modeling based
on a time-window allowing the tardiness of service, which
gives consideration to both timeliness and demand satisfac-
tion. Furthermore, to the best of our knowledge, none of the
literatures reviewed above considered and utilized the station
priority in the solving algorithms. Therefore, in this paper,
the rebalancing model proposed is solved via a priority-based
MOEA/D (PB-MOEA/D) algorithm. The algorithm decom-
poses the proposed multiobjective problem into a set of scalar
subproblems and a priority-based heuristic is introduced to
improve the solution and the algorithmic performance.

VOLUME 9, 2021 27069



R. Hu et al.: Dynamic Rebalancing Optimization for BSS Using Priority-Based MOEA/D Algorithm

III. PROBLEM DESCRIPTION AND FORMULATION
A. PROBLEM DESCRIPTION
In this paper, we focus on a BSS composed of a certain
number of bike stations within a specific area, which is a 2-D
space X ⊆ R2. Within this space, S := {S1, S2, . . . , SN } ⊆ X
is defined as the location set of bike stations which are used
to deliver and pick up public bikes. sc ∈ X is defined as the
depot, which is used to store bikes and rebalancing trucks.
The dynamic rebalancing of BSS in this paper is the process
in which the truck departs from the depot with some initial
load of bikes, and the rebalancing plan is made and updated
according to the constant change on demand and inventory of
each station over time.

During rush hour in the morning, many users have com-
muting needs, and the demand for renting and returning bikes
sharply increases. Therefore, we choose rush hour in the
morning, e.g., 8:00 A.M. to 9:00 A.M. as our study horizon,
denoted as [0, τ ], which is divided into 4 periods with equal
length ζ and τ = 4ζ . The rebalancing strategy is determined
and updated at the beginning of each stage based on current
demand and inventory of each station. In the first stage, an ini-
tial vehicle rebalancing plan concerning the whole horizon
that meets the constraints is determined based on the initial
information of stations and trucks. After the execution of
the plan for a period of time ζ , the next stage arrives and
the rebalancing strategy concerning the remaining horizon is
updated according to the dynamic changes of the demand and
inventory. The process is repeated until the end of the horizon
as shown in Figure 1.

FIGURE 1. Description of the rebalancing horizon.

The trucks set off from the depot and travel to all the
stations with demand to pickup surplus bikes or deliver insuf-
ficient bikes, and the rebalancing demand for each station is
calculated in order to avoid a second-time rebalancing during
the horizon, therefore each station that requires rebalancing
can be served at most one time. At the end of rebalancing,
each truck should return to the depot. The key problem is
deciding a route for each truck inside the horizon that can
minimize the rebalancing cost and maximize the user satis-
faction simultaneously.

B. MATHEMATIC FORMULATION
The dynamic rebalancing problem can be formulated as fol-
lows. First, we list all the symbols and mathematical nota-
tions used in the article, which contains set, parameters and
the decision variables. Then we give the mathematic model
based on these notations, including the objectives and the
constraints.

1) SETS
S the set of all stations inside the current service

window
S0 the set of all stations and the depot, S0 = S ∪ {sc}

where sc is the depot.
K the set of all trucks

2) PARAMETERS
t0 initial time of the rolling period (unit: minute)
v velocity of the truck (unit: m/min)
U capacity of the truck (unit: bike)
disi,j distance between station i and j (unit: m)
ωr cost of single run (unit: ¥/truck)
ωst loading and unloading cost (unit: ¥/min)
ωd travelling cost for one car (unit: ¥/min)
demandi the rebalancing demand. demandi > 0,

demandi bikes need to be delivered to station
i; demandi < 0, −demandi bikes need to be
picked up from station i (unit: bike)

Ci the number of docks at station i
g satisfaction profit for one bike at its maximum

satisfaction (unit: ¥)
initi initial number of bikes at station i in the

rolling period (unit: bike)
ri variation rate of the bike number at station i

(unit: bike/min)
DMAX travelling distance limit for one truck (unit:

km)
priori priority of station i

3) DECISION VARIABLES
xi,j,k a binary variable that defines the route of

vehicle k , if xi,j,k = 1, truck k travel from
station i to station j, 0 otherwise

yk a binary variable that defines the use of truck,
if yk = 1, truck k is used in this rebalancing
operation, 0 otherwise

li,k actual rebalancing amount of truck k at sta-
tion i, if li,k > 0, truck k delivers li,k bikes
at station i, if li,k < 0, truck k picks up −li,k
bikes at station i

q+i,k the number of bikes on truck k when it leaves
station k

q−i,k the number of bikes on truck k when it arrives
at station k
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m+i,k the number of bikes at station i when truck k
arrives

m−i,k the number of bikes at station i when truck k
leaves

t+i,k the time when truck k leaves station k
t−i,k the time when truck k arrives at station k
wi satisfaction profit of station i
tworki,k working time of truck k at station i

4) MATHEMATIC MODEL
The proposed model consists of two objectives. The first
objective (1) of the route optimization model is minimizing
the rebalancing costs, which consists of the distance cost,
fixed running cost for each truck and the working time cost
at each station.

minF1 = ωd
∑
i∈S0

∑
j∈S0
j6=i

xi,j,k ·
disi,j
v
+ ωr

∑
k∈K

yk

+ωst
∑
i∈S0

∑
j∈S0
j6=i

∑
k∈K

xi,j,k · tworkj,k (1)

The second objective (2) of the route optimizationmodel aims
at maximizing the overall satisfaction profit, which will be
discussed in detail in section IV-A. Here g is the satisfaction
profit for one bike at its maximum satisfaction, and in this
paper we set g as ¥1.

maxF2 = g
∑
i∈S0

∑
j∈S0
j6=i

∑
k∈K

xi,j,k · wi (2)

Several constraints have to be satisfied, andwill be introduced
in the rest of this part. First, the total rebalancing time of
trucks cannot exceed the length of the rolling period, as is
shown in constraint (3).∑

i∈S0

∑
j∈S0
j6=i

xi,j,k

(
disi,j
v
+ tworkj,k

)
≤ ζ, ∀k ∈ K (3)

When picking up or delivering bikes at each station, the num-
ber of bikes picked up from or delivered to a station should
not only meet the rebalancing demand of the station, but also
follow the constraints of the truck capacity and the available
bikes at the station, as is shown in constraint (4).

li,k

=

min
{
demandi, q

+

i,k ,Ci − m
+

i,k

}
, demandi > 0,

−min
{
−demandi,U − q

+

i,k ,m
+

i,k

}
, demandi < 0,

∀i ∈ S, ∀k ∈ K (4)

After rebalancing, the number of bikes of both stations
and trucks are updated, which will be calculated through
constraint (5)-(8). Specifically, constraint (5) represents the
update of the number of bikes on the truck when it leaves a
station. Constraint (6) represents the number of bikes on the
truck when it arrives at a station. Constraint (7) represents the

number of bikes available at a station when the truck arrives
at the station. Constraint (8) represents the number of bikes
available at a station when the truck leaves the station.

q−i,k = q+i,k − li,k ,∀i ∈ S,∀k ∈ K (5)

q+i,k =
∑
j∈S0
j6=i

xj,i,k · q
−

j,k ,∀i ∈ S,∀k ∈ K (6)

m+i,k = initi,∀i ∈ S,∀k ∈ K (7)

m−i,k = initi −
∑
j∈S

∑
k∈K

xj,i,k · li,k ,

∀i ∈ S,∀k ∈ K (8)

Besides the inventory update, the following constraints keep
track of the time when the truck arrives or leaves at a station.
Constraint (9) indicates that the time when the truck arrives at
a station is the time when the truck leaves the previous station
plus the time if travelling from the previous station to this
station. Constraint (10) means the time when the truck leaves
a station is the time when the truck arrives at the station plus
the time for loading and unloading of the bikes at this station.

t+i,k =
∑
j∈S0
j6=i

xj,i,k · t
−

j,k +
∑
j∈S0
j6=i

xj,i,k ·
disj,i
v
, ∀i ∈ S,∀k ∈ K

(9)

t−i,k = t+i,k + tworki,k , ∀i ∈ S,∀k ∈ K (10)

Constraints (11) and (12) limit that in a single rebalancing
process, each station in the concerning service window will
be served and only served once.∑

k∈K

∑
j∈S0
j6=i

xi,j,k = 1, ∀i ∈ S (11)

∑
k∈K

∑
j∈S0
j6=i

xj,i,k = 1, ∀i ∈ S (12)

Constraint (13) represents that xi,j,k is a 0-1 binary variable.

xi,j,k ∈ {0, 1},∀i, j ∈ S0, i 6= j, ∀k ∈ K (13)

Constraint (14) means that once the truck conducts the
rebalancing, it has to depart from the depot.

yk =
∑
j∈S

xsc,j,k , ∀k ∈ K (14)

Constraint (15) means that the truck travel distance cannot
exceed the maximum driving distance of a truck.∑

i∈S0

∑
j∈S0
j6=i

xi,j,k · disi,j ≤ DMAX , ∀k ∈ K (15)
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IV. PROPOSED METHOD
A. DEMAND EVALUATION
The determination of rebalancing demand is critical to solv-
ing dynamic rebalancing problems. After the rebalancing
demand is determined, the dynamic rebalancing problem can
be transformed into a pickup-delivery problem with capacity
and time window constraints. The number of bikes at the
station after service is supposed to maintain within a reason-
able range before the end of the period to avoid the same
station being visited by trucks for a second time, which might
bring unnecessary cost. Therefore, a method of evaluating the
rebalancing demand is proposed, which utilizes the historical
and predicted rental and return data together and aims at
avoiding a second time rebalancing for each station within
the rebalancing horizon.

Let the initial time of the rolling horizon be t0 and the
horizon length be τ . Each rolling horizon is equally spaced
into n = dτ/ζe rolling periods of length ζ , i.e., [t0, t0 +
ζ ), [t0+ζ, t0+2ζ ), . . . , [t0+(n−1)ζ, t0+nζ ]. The number of
initial bikes station i in the mth rolling period is initi,m, then
the available bike at any time t ∈ [t0 + (m − 1)ζ, t0 + τ ],
denoted as availi,m(t) would be (16)

availi,m(t) = initi,m − ri,m · [t − t0 − (m− 1)ζ ]

(t0 + (m− 1)ζ ≤ t ≤ t0 + τ,m = 1, . . . , n) (16)

where ri,m = λr
past
i,m,ζ + (1− λ) r

pred
i,m,τ (0 ≤ λ ≤ 1) is the vari-

ation rate of the bike number at station i, and is determined
by the past variation rate rpasti,m,ζ within time interval [t0+ (m−

2)ζ, t0+(m−1)l] and the predicted variation rate r
pred
i,m,τ within

time interval [t0+ (m− 1)ζ, t0+ τ ]. λ is a weight coefficient
and is set as 0.5 in this paper. These two rates are calculated
through the past and predicted rental and return bike numbers
respectively (denoted as N with corresponding superscript
and subscript)

rpasti,m,ζ =
N past,rent
i,m,ζ − N past,return

i,m,ζ

ζ
(17)

rpredi,m,τ =
N pred,rent
i,m,τ − N pred,return

i,m,τ

τ − (m− 1)ζ
(18)

We intend to make the number of available bikes at every
station inside a safe range ([0.2Ci, 0.8Ci]) through the inter-
ference of rebalancing [39]. Therefore, we investigate the
initial number of bikes initi,m and available bikes at the end of
the rolling horizon availi,m(t0+τ ) and compare themwith the
safe range of station i to determine the rebalancing demand.
If the number of bikes of a station at the end of the horizon
is outside the safe range, we call the station an imbalanced
station. Figure 2(a)-(c) shows bike number variation curves
regarding time of different imbalanced stations. Specifically,
Figure 2(a) shows a station with delivery demand, where
the number of bikes at the station would drop below the
lower bound (0.2Ci) at twarningi,m with the current variation
rate, thus when the rebalancing truck arrives at station i at
tsi,m, the rebalancing could be viewed as an upper shift of

FIGURE 2. Bike number variation curves of imbalanced stations.

the curve, aiming at ensuring the number of available bikes
at this station over 0.2Ci before the horizon ends. Similarly,
Figure 2(b) shows the station with pickup demand whose
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inventory would exceed the upper bound (0.8Ci) at t
warning
i,m ,

thus the rebalancing could be viewed as a downer shift of the
curve, aiming at ensuring the number of available bikes at this
station below 0.8Ci before the horizon ends. For most of the
stations, we can conclude that if a station is an imbalanced
station, the station needs rebalancing and the demand would
be the deviation of the current inventory and its closest bound.
However, there are two exceptions shown in Figure 2(c).
The two curves illustrate two conditions where the inventory
at the end of the horizon is out of the safe range but no
rebalancing demand is required. Obviously, the inventory of
these two kinds of stations are changing in a relatively small
rate. Therefore, these stations are not likely to be inconvenient
for renting or returning bikes despite its bike number at
end of the horizon being outside the safe range. Therefore,
rebalancing for these stations is of little utility. So if the
number of bikes of a station at the end of the horizon is over
upper bound (below lower bound) of the safe range, but its
initial inventory is less than Ci (more than 0), we treat the
station as one with no rebalancing demand. Table 1 discusses
all the possible scenarios and gives the rebalancing target
accordingly. ↑ 0.2Ci means increasing the number of bikes
in the station to 0.2Ci, ↓ 0.8Ci means decreasing the number
of bikes in the station to 0.8Ci and / means no rebalancing is
required.

TABLE 1. Different Scenarios of Rebalancing Demand.

Based on Table 1, the rebalancing demand of each station i
at rolling period m can be calculated through (19)

demandi,m

=



availi,m (t0 + τ)− 0.8Ci,
availi,m (t0 + τ) > Ci or
0 < initi,m < 0.8Ci <
availi,m (t0 + τ) < Ci

0.2Ci − availi,m (t0 + τ),
availi,m (t0 + τ) ≤ 0 or
0 < availi,m (t0 + τ) <

0.2Ci < initi,m

0, otherwise
(19)

B. STATION PRIORITY EVALUATION
Dynamic rebalancing of BSS is a limited resource allocation
problem, and due to the inherent feature of the problem, sta-
tions with higher priority should be considered first. To eval-
uate the importance of a bike station and its location impact in

the bike share network, we propose a multi-ranking attribute
method based on TOPSIS [40], which uses rebalancing
demand (denoted as dem), the time before the inventory run-
ning outside the safe range (denoted as tw), and the minimum
distance from stations to trucks (denoted as dist) as three
criteria for station priority evaluation. The process goes as
follows:
1) Step 1: Quantification of criteria. Among the three

criteria, dem has positive impact on the priority, as more
demand indicates more priority, while tw and dist has
negative impact has negative impact on the priority,
as more time the inventory running outside the safe
range and more distance from stations to trucks indicate
that the station has less priority. Therefore, the quantified
evaluation matrix X = (xij) ∈ Rn×3 (20) is made up
of 3 columns, where the elements in the first column
are values of corresponding demand of each station i
(i.e., xi1 = demi) and the rest two are the values of twi
and disti after a transformation by subtraction with 1 due
to their negative impact on priority (i.e., xi2 = 1 − twi,
xi3 = 1−disti). Here i = 1, 2, . . . , n and n is the number
of stations.

X =


x11 x12 x13
x21 x22 x23
...

...
...

xn1 xn2 xn3

 (20)

2) Step 2: Normalization of the evaluation matrix. The
normalized evaluation matrix N = (nij) ∈ Rn×3 is cal-
culated through (21), where xij is the element from (20).

nij =
xij
n∑
i=0

xij

, ∀i ∈ {1, 2, . . . , n},∀j ∈ {1, 2, 3} (21)

3) Step 3: Construction of the weighted normalized
matrix. The weighted normalized matrix denoted as
Y = (yij) ∈ Rn×3 is calculated through (22), where
ωj is the weight of the jth criterion calculating using the
entropy weight method [41].

yij = nij · ωj, ∀i ∈ {1, 2, . . . , n},∀j ∈ {1, 2, 3} (22)

4) Step 4: Calculation of the ideal solution. Determine
the positive ideal solution Y+ and negative ideal solution
Y− with (23) and (24), where Y is the weighted normal-
ized matrix calculated in step 3.

Y+ = (Y+1 ,Y
+

2 ,Y
+

3 ) = ( max
1≤i≤n

yi1, max
1≤i≤n

yi2, max
1≤i≤n

yi3)

(23)

Y− = (Y−1 ,Y
−

2 ,Y
−

3 ) = ( min
1≤i≤n

yi1, min
1≤i≤n

yi2, min
1≤i≤n

yi3)

(24)

5) Step 5: Calculation of the distance to the ideal solu-
tion. According to the positive and negative ideal solu-
tion Y+ and Y−, calculate the distance of each station to
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the ideal solution using (25) and (26).

D+i =

√√√√√ 3∑
j=1

(yij − Y
+

j )2, i = 1, 2, . . . , n (25)

D−i =

√√√√√ 3∑
j=1

(yij − Y
−

j )2, i = 1, 2, . . . , n (26)

6) Step 6: Calculation of closeness degree. The close-
ness degree of station i, denoted as Ci, represents the
closeness of a station to the ideal station, and is cal-
culated by (27) the distance D+i and D−i obtained in
step 5.

Ci =
D−i

D−i + D
+

i

, i = 1, 2, . . . , n (27)

7) Step 7: Calculation of the station priority.The priority
of a station i is eventually calculated by (28)

priori = exp
n−ranki

n (28)

where ranki is the ranking of the closeness degree
obtained in step 6, n is the number of the candidate
stations [42].

C. TIME WINDOW AND USER SATISFACTION PROFIT
The best service can be obtained if the demand of sta-
tion i is met before the number of bikes in a station goes
empty or reaches the maximum capacity of the station Ci.
In this case, user satisfaction becomes the highest. Given a
rolling period m, the initial number of bikes in station i is
denoted as initi,m, and the variation rate of the station at the
period is denoted as ri,m. The expected service time, denoted
as tusati , which is the time when the number of bikes in a
station goes empty or full, can be calculated by:

tusati =



min
{
τ−t0−(m−1)ζ, t0+(m−1)ζ+

initi,m
ri,m

}
,

ri,m > 0, initi,m ∈ [0,Ci]

min
{
τ−t0−(m−1)ζ, t0+(m−1)ζ+

Ci−initi,m
−ri,m

}
,

ri,m < 0, initi,m ∈ [0,Ci]

τ−t0−(m−1)ζ ,
ri,m=0, initi,m ∈ [0,Ci]

t0+(m−1)ζ ,
initi,m 6∈ [0,Ci]

(29)

However, in a real-world rebalancing process, the trucks
may not be able to arrive at the station to provide service
before the expected service time. If it arrives at the station
later than this time, the satisfaction of the user may start to

FIGURE 3. One-side Satisfaction Time Window.

decrease, but will not immediately drop to 0. A period of time
of tardiness is allowed before the satisfaction decreases to
zero. The exact timewhen the satisfaction becomes 0 is called
accepted time, denoted as tuacci . To make the model closer
to the rebalancing problem in practice, we use a one-sided
soft time window [43] to model such satisfaction allowing
tardiness, as shown in Figure 3. If the service is provided
before the expected service time, the user could obtain a sat-
isfaction of 1. Later on, the satisfaction begin to decline and
becomes 0 at the accepted time. Therefore, the satisfaction
regarding station i regarding time t , denoted as Sati (t) can be
calculated by

Sati (t) =


1, t0 < t ≤ tusati
tusati − t

tuacci − tu
sat
i
, tusati < t ≤ tuacci

0, t > tuacci

(30)

While satisfaction characterizes the timeliness of rebalanc-
ing service, the profits obtained from user satisfaction are not
only related to the time when the truck arrives at the station,
but also the number of demand actually satisfied after the
service of the truck. An extreme condition would be that an
empty truck arrives at a station with huge demand for bike
delivery before tusati , yet no bikes can be delivered. In this
case, one could not say the service provides a maximum
satisfaction. In addition, for some stations, the demand could
be considerably large, thus the impact of loading or unload-
ing time on satisfaction could not be ignored. To this end,
we define the user satisfaction profit of station i, denoted as
wi, combining user satisfaction with the actual rebalancing
amount. Instead of evaluating the satisfaction only in terms of
each station, we made a refinement on the satisfaction to each
single bike picked up or delivered to the station. Specifically,
for each bike rebalanced, if it is picked up or delivered before
the time of the maximum user satisfaction at the station
(i.e., before tusati with satisfaction of 1), a profit of g would
be achieved. After the expected service time, the satisfaction
profits obtained from a bike rebalanced at t will decrease
gradually and is evaluated with g · Sati(t). Overall, the
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FIGURE 4. Rolling horizon strategy.

satisfaction profit at a station can be formulated as

wi = g
∑
k∈K

|li|∑
ρ=1

xi,j,k · Sati
(
t+i,k + ρts

)
(31)

where t+i,k is the arriving time of truck k at station i, ts is the
time needed for loading or unloading one bike at the station.

D. ROLLING HORIZON STRATEGY
As an extension of the vehicle routing problem (VRP), BSS
dynamic rebalancing is an NP-Hard problem [27]. It is diffi-
cult to obtain an accurate solution in polynomial time. Using
a rolling horizon strategy can divide the problem intomultiple
subproblems, and the scheme for each period is solved limited
inside the current search space by some domain specific
criterion. This can not only adapt to the dynamic events, but
also reduce the computing cost by dealing with only part of
the requests in each time horizon [44].

Figure 4 shows the process of the dynamic rebalancing
using rolling strategy. We divide the horizon into 4 stages,
each stage having a current service window. The window
has a fixed limited size (normally smaller than the number
of all the stations with service requirement), and stations
with higher priority are added to the window until it is full.
Optimal route consisting of stations in the service window is
generated by optimization algorithms and the truck executes
the rebalancing according to the scheme until the arrival of
next rolling stage. The rebalancing demand, station priority,
as well as the stations in the service window are updated
dynamically and a new optimal route is calculated. The above
procedure loops until the end of the horizon. The complete
process of rolling horizon strategy is shown in Algorithm 1.

E. PRIORITY-BASED MOEA/D (PB-MOEA/D)
1) MOEA/D
The MOEA/D algorithm adopts the decomposition idea,
which was first proposed by Zhang and Li [45]. The algo-
rithm decomposes the problem of approaching the Pareto
front into a certain number of single-objective optimization
problems, and then uses evolutionary algorithm to solve
these single-objective optimization problems simultaneously.
The algorithm maintains a population composed of the cur-
rent optimal solution of each sub-problem. The neighbor

Algorithm 1 Rolling Horizon Strategy for BSS Rebalancing
Input: S: A set of stations with rebalancing demand,

max_stage: the number of stages in a horizon
Output: optimal route list R1,R2, . . . ,Rmax_stage
current_stage← 1,
R← ∅
while current_stage ≤ max_stage do
|W | ← service window size
update the demand and priority for each station
if |S| ≤ |W | then
W ← S

else
W ← top |W | stations from S in priority

end if
route optimization for stations inW
ropt ← select one route from optimal routes by some

domain-specific criterion
Rcurrent_stage← ropt
current_stage← current_stage+ 1
S ← S \ ropt

end while
return R1,R2, . . . ,Rmax_stage

relationship between the sub-problems is defined as the dis-
tance between the weight vectors of the sub-problems. The
optimization process of each sub-problem is through the evo-
lution between its neighboring sub-problems, which success-
fully introduces the decomposition methods commonly used
in mathematical programming into the field of evolutionary
multi-objectives optimization [46], and has been proved to
be an effective method for solving multiobjective problems
(MOP) [45], [47].

InMOEA/D, a neighborhood of weight vector λi is defined
as a set of its several closest weight vectors in λ1, . . . , λN .
The neighborhood of the ith subproblem consists of all the
subproblems with the weight vectors from the neighborhood
of λi. The population is composed of the best solution found
so far for each subproblem. The optimizationmodel proposed
in III is a typical MOP with two objectives, which could be
solved using MOEA/D. A Pareto-optimal solution is defined
as the best solution archived for one objective without dis-
advantaging at least one of the other objectives [48]. Given
an MOP and two different solutions s1 and s2, if there is
at least one objective value in s1 superior to corresponding
objective in s2, and the rest objective values in s1 are not
inferior to that of s2, then s2 is dominated by s1. Here we
refer to [45] and give the specific algorithm for applying
MOEA/D to BSS rebalancing, as shown in Algorithm 2. Note
that any mathematical aggregation approach can serve for
problem decomposition, and we refer to [49] and use the
Tchebycheff approach. Moreover, as the algorithm demon-
stration proposed in the original literature discussed the max-
imized case, we convert the objective (1) to maximizing its
negative.
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Algorithm 2MOEA/D for BSS Rebalancing
Input: MOP: max f1 = −F1

max f2 = F2,
Stopping Criterion: Algorithm terminates at

the max generation G,
N : The number of sub-problems,
W : Uniformly distributed weight vectors,
T : Neighborhood number for each vector

Output: R∗: Nondominated Solutions of Routes
EP:External Population

EP← ∅
R∗← ∅
Compute the Euclidean distance between any two vectors
inW
Generate the initial population of routes R1, . . . ,RN by
random permutation
current_gen← 0
while current_gen 6= G do
current_gen← current_gen+ 1
for i← 1 to N do
B(i) ← {i1, . . . , iT } where i1, . . . , iT are the closest
T neighbors of λi

FV i
← F(Ri), where F = [f1, f2]

end for
Initialize ideal solution z = (z1, . . . , zm)T by setting
the minimum fitness value of each objective among the
generated initial population
for i← 1 to N do
Randomly pick two indices s ∈ B(i), t ∈ B(i)(s 6= t),
generate a new route y using genetic operator via Rs

and Rt

Apply route improvement heuristic methods on y
including the shortest path and a priority-based
heuristic to get a new route y′

for j← 1 to 2 do
if fj(y′) < zj then
zj← y′

end if
end for
for j ∈ B(i) do
if gte(y′ | λj, z) ≤ gte(r j | λj, z) then
r j← y′,FV j

← F(y′)
end if

end for
end for
Remove all vectors dominated by F(y′) from EP
Remove all the corresponding routes from R∗

Add F(y′) to EP if no vectors in EP dominate F(y′) Add
all the corresponding routes to R∗

end while
return EP, R∗

2) PRIORITY-BASED HEURISTIC
It is noticed that a problem-specific improvement of the solu-
tion after genetic approach is needed in the update process

of MOEA/D. After the new solution y is generated for a
given subproblem, an attempt is made to improve it using
local search. Three local heuristics to search for better routing
solutions in the VRP with time window (VRPTW), namely
Double Shift (DS), Lambda Interchange (LI), and Shortest
Path (SP) have been used to solve a Tri-Objective Vehicle
Routing Problem with MOEA/D, and are associated with
different objectives respectively [49]. DS is affiliated to the
number of vehicles, LI is affiliated to the route balancing and
SP is affiliated to the distance cost. It is observed that SP
is applicable for one of the objectives in our model, and we
adopt it as one of the local heuristics.

At the same time, we notice that the evaluation of the
station priority serves as a vital indicator to help decide which
station should be served first, thus a priority-based heuristic
is designed to improve the quality of a solution. Stations
with higher priority will be moved to the front of the routes
with higher probabilities based on Roulette Wheel selection
method. Specifically, given a sequential encoded route:

R =
[
r11 , r12 , . . . , r1n1 ,−1, r21 , r22 , . . . ,−1, rk1 , . . . , rknk

]
(32)

where rmi represents the i
th station visited by the mth truck

(1 ≤ m ≤ k) and rnm is the last station visited by the mth

truck, and −1 is used to split the route of each truck. Two
problems are of our concern when conducting local search:
i) The distribution of the station priority in the routes

assigned to trucks should be relatively balanced,
i.e., solutions of some trucks serving mostly prioritized
stations and some trucks serving mostly non-prioritized
ones are not expected.

ii) Inside the route of each truck, stations with higher pri-
ority are supposed to appear at the front of the service
queue.

For the first problem, a priority-distribution repairing algo-
rithm is proposed as follows. Let the route of truck i be Ri, for
i = 1, . . . ,K , where K is the number of trucks:
Step 1 Calculate the range of the priority in each route by

rngi = max
j=1,...,ni

priorrj − min
j=1,...,ni

priorrj (33)

Step 2 For all the routes of trucks, choose two trucks p, q
with the lowest range of priority, which indicates that
the priority distributions of these routes are relatively
concentrated and are the possible candidate routes in
need of improvement.

Step 3 Select the first two stations with the highest priority
sh1, s

h
2 and the last two stations with the lowest priority

sl1, s
l
2 in Rp ∪ Rq. Then arrange (sh1, s

l
1) into the first

route and (sh2, s
l
2) the second one at a random position.

If the new solution dominates the original one, update
the original route. Otherwise, the original solution
maintains.

Regarding the second issue, a neighboring search using
roulette wheel selection is proposed. For each route Rk ,
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FIGURE 5. Priority-based Heuristic.

calculate the selection possibility for each station i in Rk with

probi =
priori∑
j∈Rk priorj

(34)

and the accumulated selection probability of each station
would be

probacci =

i∑
j=1

probj (35)

Afterwards, a random number ranging from 0 to 1 is gener-
ated, the selected station is obtained through

sk = argmin
ri∈Rk

|probacci − rand | (36)

The selected station will be moved to the front of the route in
Rk due to its relatively higher priority. The process repeated
until certain amount of stations are selected and moved.
Notice that here greedy search is not adopted, i.e., directly
forcing the station with the highest priority to appear at front
to keep the diversity of the solution because working time
also makes up for the rebalancing cost, and is strictly related
to the rebalancing demand of each station whereas prioritized
stations are likely to hold more rebalancing demand com-
pared to the other stations. Meanwhile, the roulette wheel is
executed for only limited times, because only little fraction of
the stations inside the service window will be visited given a
rolling period. The procedure of the priority-based heuristic
is given in Algorithm 3. Figure 5 gives an example of the
priority-based heuristic. Station 1 is put in the front of the
route due to its higher priority.

V. NUMERICAL STUDIES
We proceed our work to validate and test its perfor-
mance on a real world instance by some numerical studies.
All experiments are run on macOS Big Sur with 2.4GHz
quad-core Intel Core i5 and 16 GB memory and all the
algorithms are implemented using Python 3.7.

A. DATA DESCRIPTION
Nanjing launched the docked bike-sharing programs in Jan-
uary 2013. Supported by the government and as a non-profit
project for citizens, Nanjing docked bike-sharing system has
launched 1027 bike-sharing stations by the end of 2017. The
BSS smart card dataset is provided by Nanjing Public Bicycle
Company, involving BSS trips from 1st Sep. 2017 to 30th Sep,
2017. Each trip records user ID, bike ID, starting timestamps,

Algorithm 3 Priority-Based Heuristic
Input: R: a sequential route encoding,
Output: RLS : the route generated after heuristic search

decode the route into routes, each for one truck
N ← the number of route decoded, i.e, the truck number
for i← 1 to N do
rngi← the range of priority of route i by (33)

end for
rt1, rt2← two routes with the smallest priority ranges
rttmp← rt1 ∪ rt2
sh1 , sh2 ← two most prioritized stations from rttmp
sl1 , sl2 ,← two least prioritized stations from rtmp
rt ′1← rt1 \ (sh1 ∪ sh2 ∪ sl1 ∪ sl2 ) ∪ sh1 ∪ sl1
rt ′2← rt2 \ (sh1 ∪ sh2 ∪ sl1 ∪ sl2 ) ∪ sh2 ∪ sl2
R′← R \ (rt1 ∪ rt2) ∪ rt ′1 ∪ rt

′

2
if R′ dominates R then
RLS ← R′

else
RLS ← R

end if
decode RLS into routes
for i← 1 to N do
sk ← roulette wheel selected station based on priority
for route i
rti← move sk to front of rti

end for
if RLS dominates R then
return RLS

else
return R

end if

starting longitude, starting latitude, ending timestamps, end-
ing longitude and ending latitude. At data preprocessing
stage, docked bike-sharing trips with the following proper-
ties have been removed:trip distance shorter than 100 m or
longer than 5 km, as suggested by Shen et al. [50]; trip
duration less than 30s or longer than 2h, as suggested by
Pal and Zhang et al. [9]; trips without complete journey
details.

In order to measure the effectiveness degree of bike-
sharing stations, Station Turnover Rate (STS) is defined as
follows:

STSreturni =
returni
Ci

(37)

STSrenti =
renti
Ci

(38)

STSreturni is the ratio between the total number of returns
returni at the end of the day at the station i and, the station
capacity Ci. STSrenti can be calculated for the total number of
rents (renti) at the end of the day at the station i. The higher
the rate, the more effective the station is.

Results show that the average STSreturni and STSrenti for
the stations in urban area are 2.98 and 3.03 respectively,
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TABLE 2. Information of the most prioritized stations in stage 1.

which are higher than the stations outside the urban area
(2.27 and 2.26 respectively). This is consistent with the find-
ing of previous research [51], which found that the docked
BSS in Nanjing has indicated significant imbalance of tem-
poral and spatial demand of BSS trips in main urban area.
Considerable efforts are needed to redistribute BSS to keep
a high level of service quality. Therefore, in this research,
164 BSS stations within the 28 km2 main urban area are
selected. Figure 6 shows the BSS station distribution map
of study area. Using the BSS smart card data and a short-
term predictionmodel, the rental and return demand of shared
bikes at the station level are predicted [52].More details about
the prediction model can be obtained in a study from [52].

B. EFFECTIVENESS OF PB-MOEA/D
In order to illustrate the effectiveness of the proposed Priority
Based MOEA/D (PB-MOEA/D) algorithm for solving the
multiobjective rebalancing problem, comparisons with Non-
dominated sorting genetic algorithm II (NSGA-II) [53] and
Multi-objective Evolutionary Algorithm Based on Decom-
position (MOEA/D) [45], two commonly used algorithms in
solving multiobjective optimization problems [23] are con-
ducted. First, the rebalancing demand is determined with the
method proposed in this paper. The information of the stations
in the first stage is shown in Table 2 sorted by priority. Note
that according to the rolling horizon strategy, the demand
and priority of the stations are dynamically altered and are
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FIGURE 6. BSS station distribution map of study area.

recalculated after every rolling period. Here we only list the
information of the first stage.

The lengths of rebalancing horizon are uniformly set to
1 hour from 8:00 A.M. to 9:00 A.M. with 4 rolling stages
of equal length (15 min each). The size of service window
is set to be 1/2 the size of all stations with demand, i.e., the
first 28 stations in Table 2 are selected to be optimized in the
first stage. The distance of any two stations are assumed to
be the Euclidean distance according to the coordinates of the
stations. For the first stage, 3 trucks are used. After the first
stage, due to the reduction of scale of the station in need of
rebalancing, the truck with the least inventory quit service
in the remaining stages and the other 2 trucks continue the
rebalancing work until the end of the horizon. Three initial
quantities of truck load when departing from the depot are
compared, which includes 60 (fully loaded [54]), 30 (half
loaded [26]) and 0 (empty loaded [55]). For each amount of
truck load, 20 runs of the optimization using PB-MOEA/D
are conducted, and the result is shown in Figure 7. Each
point in the figure represents the highest satisfaction profit
and lowest rebalancing cost of the certain trial. It can be
observed that under our data, departing from the depot fully
loaded could achieve the most user satisfaction profit, and
since more users are satisfied, the rebalancing cost would rise
from ¥378.17 (empty loaded) to ¥385.81 (half loaded) and
then to ¥391.41 (fully loaded), but the growth is relatively
slight compared to the satisfaction profit, which increases
from ¥102.50 (empty loaded) to ¥154.37 (half loaded) and
then to ¥206.77 (fully loaded). Therefore, we set the truck
fully loaded when departing from the depot.

The parameter setting of the three algorithms and regarding
rebalancing model are listed in Table 3 and the three algo-
rithms were run under real world data described above.

For each stage, optimal solutions of routes are generated,
and we choose the route with the best satisfaction profit to
proceed to the next stage. The reason for this preference is that
through extensive experiments, we notice that the increase
of rebalancing cost is relatively trivial compared to its corre-
sponding notable raise in satisfaction profit. Figure 8 shows
the nondominated solutions with the lowest cost and highest
satisfaction profit for four stages, respectively. The p-value of

FIGURE 7. Satisfaction Profit and Cost with 3 different initial truckloads.

TABLE 3. Experimental parameter settings.

t-test [66] on the difference between the values on satisfaction
profit generated by PB-MOEA/D and NSGA-II is 7.93E-07,
and by PB-MOEA/D and MOEA/D is 1.09E-11, which are
all less than 0.01, showing the significant differences between
the outputs of the algorithms.

It can be observed that a small increase of 7.02% (¥29.2)
on rebalancing cost can result in drastic growth in satisfac-
tion profit of 1233.7% (¥288.7). However, this preference
still depends on the operators of the rebalancing. If the
BSS is operated by the government, the societal benefit
measure, such as user satisfaction, should be prioritized in
the objective function. However, if the BSS is operated by
a private operator, the rebalancing cost would be the key
concern [67].

Each algorithm was run 20 times, and for each algo-
rithm, nondominated solutions for each run are collected
into a solution set. For PB-MOEA/D, we set the local
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FIGURE 8. Nondominated Solutions of 4 rolling stages in different
preferences.

TABLE 4. The best solutions & computational time of the three
algorithms.

FIGURE 9. Nondominated Solutions of 4 rolling stages under three
algorithms.

search limit as 10 times to limit the computational cost [56].
After 20 runs, we calculate the nondominated solution in the
solution set of the algorithm to get the final nondominated
solutions. We show the solutions with the highest satisfaction
profit (Sat.) and lowest rebalancing cost (Cost.) respectively
in Table 4 and the nondominated solutions of three algorithms
are given in Figure 9. The results in Table 4 show that our
proposed method outweighs NSGA-II and MOEA/D espe-
cially in achieving higher satisfaction profit. It is noticeable
that in the first period, there are many stations waiting to be
rebalanced, and the proposed algorithm shows better perfor-
mance by a large margin. With the stage moving forward,
the number of stations with rebalancing request decreases,

TABLE 5. Comparisons of indicators on satisfaction & truck travel
distance.

TABLE 6. Set Coverage of the other two algorithms versus PB-MOEA/D.

and the corresponding results given by all algorithms become
relatively closer. In terms of the average computational time,
due to the time consumption of the priority-based local
search, PB-MOEA/D consumes slightly more time for iter-
ation of 250 generation compared to NSGA-II (4.7 seconds)
and MOEA/D without local search (11.2 seconds), which is
acceptable for achieving a better result. The amount of served
users and unmet demand are also calculated for comparison,
as is shown in Table 5. It can be observed that the system
could serve more users after rebalancing with any of the three
algorithms proposed, and using PB-MOEA/D could achieve
the most served users and least unmet demand. Note that the
served users increase rate and unmet demand reduction rate
are all based on the value of the system with no rebalancing
conducted. Moreover, using PB-MOEA/D could decrease
the truck travelling distance comparing to MOEA/D and
NSGA-II.

To evaluate the quality of Pareto solution set obtained
from each algorithm, we calculate the set coverage [49] of
nondominated solution set given by one algorithm over the
other. Specifically, letR1 andR2 be two approximations to the
Pareto front of aMOP;C(R1,R2) is defined as the percentage
of the solutions in R2 that are dominated by at least one
solution in R1:

C(R1,R2) =
|{p ∈ R2 | ∃q ∈ R1 : q dominates p}|

|R2|
(39)

It is evident from Table 6 that in four stages, no solution
obtained in MOEA/D without priority heuristics dominates
any solutions in PB-MOEA/D. When it comes to NSGA-II,
the superiority tends to be weaker, but PB-MOEA/D still
performs better than NSGA-II. This is consistent with the
result shown in Figure 9, that the nondominated solutions
found by NSGA-II concentrate in the area of lower satisfac-
tion.When focusing on satisfaction profit below 80 in stage 1
and 40 in stage 2, we could indeed observe some solutions
discovered by NSGA-II dominate PB-MOEA/D. Overall, our
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FIGURE 10. Rebalancing schemes of 3 trucks.

experiment shows that PB-MOEA/D outperforms the other
two algorithms in finding solutions with better quality.

Figure 10 shows the rebalancing schemes of the 3 trucks
including the routes and rebalancing amount at each station.
Different colors of routes indicate different rolling stages, and
the time and rebalancing amount at each station are marked
in the figure as (station ID, time, amount).

FIGURE 11. Optimization results under different sizes of service window.

C. EFFECTIVENESS OF ROLLING STAGE WINDOW SIZE
To decompose the problem and reduce the scale of the search
space, certain prioritized stations are selected into the service
window of each rolling period. If the window size is rela-
tively large, the search space grows, and the solution diversity
will correspondingly increase while the solution quality gets
decreased. However, windows sizes being too small could
prevent the discovery of some solutions due to limited search
space. Therefore, experiments of four scales of window size,
namely |S|, 12 |S|,

1
3 |S| and

1
4 |S| are conducted for compari-

son, where |S| represents the number of stations. The result
of the optimal solutions using PB-MOEA/D under differ-
ent window size for stage 1 are illustrated in Figure 11(a).
Figure 11(b) gives the solution with the highest satisfaction
profit and lowest rebalancing cost and compared in different
window scale respectively. Figure 11 shows that the window
size of 1

2 |S| leads to the best result compared to other three
scales. It is worth mentioning that for real-world application
and based on the analysis of coherent reversing relationship
between the two objectives above, we set a threshold of the
satisfaction of solution to be 120, i.e., only solutions with
satisfaction profit over 120 are compared.
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FIGURE 12. Optimization results under different sizes of service window.

D. EFFECTIVENESS OF THE ROLLING PERIOD LENGTH
Apart from the rolling window size, we also investigate
the influence of rolling period length which is closely
related to the update frequency of the rebalancing system.
Experiments of three length of the rolling period, namely
15min, 30min and 45min are conducted with 20 runs for
comparison. The overall result of the optimal solutions
using PB-MOEA/D under different rolling period length are
demonstrated in Figure 12. Figure 12 shows that the length
of 15 min leads to the best satisfaction profit and rebalancing
cost compared to other three scales.

VI. CONCLUSION
This paper focuses on modeling a dynamic BSS rebalancing
problem with maximum satisfaction profit and minimum
rebalancing costs, attempting to provide optimal routes under
real-world instances. An approach using both historical and
predicted rental and return demand is proposed to dynami-
cally determine the rebalancing demand, which could avoid
a second time rebalancing for the same station. Refinement
of satisfaction is made by differentiating the satisfaction of
each bike scheduled to the station according to the specific
time a bike is delivered or picked up. Moreover, the sat-
isfaction profit is defined to assess the rebalancing service
more scientifically, which takes both timeliness and the
amount of satisfied demand into account. A novel priority-
based heuristic was introduced in the MOEA/D algorithm
to solve the problem, which intends to improve the solution
through local search and further improve the performance
of the algorithm. Numerical studies are conducted to vali-
date the effectiveness of the proposed model and algorithm.
The results show that the proposed PB-MOEA/D algorithm

outperforms theMOEA/Dwithout proposed heuristic search,
as well as NSGA-II. The result shows PB-MOEA/D out-
weighs NSGA-II and MOEA/D in every stage. The results
also demonstrate that slightly expanding the rebalancing cost
can bring significant growth in satisfaction profit. The exper-
imental results also demonstrates that the best optimization
performance can be achieved with a service window of
half the size of the station amount and the rolling length
of 15 minutes.

Future studies could be carried out around the extension
of our current model. First, the model works for the dynamic
rebalancing of docked BSSs, and it cannot be directly applied
to dockless BSSs. However, it can be extended for dynami-
cally rebalancing the dockless BSSs if more conditions are
considered: 1) unlike the docked BSSs, there exist no fixed
stations in dockless BSSs. Therefore, the virtual stations
of dockless BSSs should be generated in the first place;
2) scattered dockless shared bikes should be collected to
virtual stations, which takes more time and costs than rebal-
ancing the docked BSSs; 3) lacking the protection and main-
tenance like docked BSSs, dockless shared bikes, including
their necessary parts such as the original QR codes, seats,
pedals, are deliberately damaged [68]. The collection of mal-
functioning shared bikes should be considered when rebal-
ancing the dockless BSSs. The number of trucks, as well as
the speed of trucks influence the rebalancing cost to a large
extent, thus considering the factors regarding the rebalancing
vehicles in the model is also worth researching. Besides,
the coefficient for bike inventory variation rate directly affects
the demand evaluation, and the maximum satisfaction profit
and is a vital factor in weighing the rebalancing cost and
satisfaction. The analysis of these importance values should
be considered in further research.
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