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ABSTRACT The use rate of urban land is a significant sign to evaluate urban construction, and scene
recognition has important application value in improving urban land use rate. In this paper, a new lightweight
model based on VGG16 is proposed to extract distinct features of remote sensing images through five
convolution modules. This model uses depthwise separable convolution to reduce the network parameters.
An adaptive pooling layer is added to solve the inherent non-adaptive problem of the convolution network.
It makes the network insensitive to the size of the input image. The global average pooling layer is used to
sum the information to make the input spatial transformation more stable. This paper conducts training and
testing on two data sets, NWPU-RESISC45 Dataset and SIRI-WHU Dataset, and the recognition scenarios
are 13 and 12 categories. Experimental results show that this method is better than other models in recognition

accuracy and model size.

INDEX TERMS Adaptive pooling, lightweight network, land use, scene recognition.

I. INTRODUCTION

Urban land use/ land cover ratio (LULC) is an important
evaluation sign of urban construction strategy. The rapid
development of cities leads to a change in land cover. Dense
population and highland use rate are the main characteristics
of cities, so reasonable urban regional identification is the
premise of urban management and planning [1]. The change
in urban land use rate is an important reason for the rapid
development of society. Remote sensing has the ability in the
periodically urban area monitoring, and neural network can
carry out systematic modeling, so it has become two major
tools to significantly promote the related research on urban
LULC changes [2].

Remote sensing technology and deep learning are widely
used to study the change of LULC rate in cities. The rapid
development of remote sensing technology has diversified
ways of obtaining urban image data [3]. At the same time,
the emergence of deep learning promotes the study of image
scene classification [4], semantic segmentation [5], target
detection [6], and other fields. Scene image annotation for
scene classification costs a lot of labor, so support vec-
tor machine (SVM) has been widely concerned by pattern
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recognition field and applied to remote sensing image recog-
nition. Lai et al. [7] studied the method of using SVM for
road recognition in remote sensing images with edge features,
extracted the edge features of the image, and achieved good
results. However, SVM is difficult to train large-scale sam-
ples. To solve this problem, a pixel-centric spectral method is
proposed. Chen ez al. [8] first introduced the concept of deep
learning to hyperspectral data classification and verified the
applicability of automatic encoder through the classification
based on spectral information. The framework is a hybrid of
principle component analysis (PCA), deep learning architec-
ture, and logistic regression, which has higher accuracy than
the traditional pixel-centric spectral method. Huang et al. [9]
fused the analysis of multi-spectral images into the classifica-
tion layer, which is called a semi-transferred CNN with a deep
structure. The method solved the problem that the DCNN
method is not ideal for multi-spectral remote sensing images
with more than three channels and the training samples are
limited. It shows superior performance on LULC. Convolu-
tion neural network usually ignores the texture image contain
discriminating information, Huang and Xu [10] proposed
a CaffeNet-based method to overcome this problem. The
method developed an improved bag-of-view-word (iBoVW)
coding method to represent the discriminating information
from each convolutional layer, weighted concatenation is
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employed to combine different features for classification,
which can provide high-resolution remote sensing image with
distinguishing description.

In recent years, convolution neural networks (CNNs) have
been widely used in remote sensing image classification. It is
difficult for the existing CNNs to balance network depth
and model size. The network structure becomes compli-
cated, but fine features are often lost or even disappeared in
the deep convolution process. The training parameters are
greatly increased, and more training time is required [11].
However, too few convolutional layers will cause insuf-
ficient image features, making it impossible to identify
urban scenes quickly and correctly. To solve too many
parameters in deep CNNs, a lightweight end-to-end CNN
is presented (Lightweight Convolution Neural Network,
hereinafter referred to as LW-CNN) to reduces the network
model while ensuring the deep convolution of the network.
Finally, the lightweight network model is embedded in the
Unmanned Aerial Vehicle (UAV) and other mobile devices
to identify the urban remote sensing scene. The main contri-
butions of this paper are as follows:

1. An end-to-end lightweight network (LightWeight-CNN)
is proposed. This network is improved based on VGG16.
It not only utilizes 5 deep convolution modules to extract
remote sensing image features, but also uses depthwise sep-
arable convolution instead of standard convolution to reduce
the parameters during the convolution operation.

2. The adaptive pooling layer is adopted to adjust the image
size after the deep feature extraction of the image. It solves
the problem that the existing neural network can only input
fixed-size images, and makes full use of the image features in
the original image, so that the network can handle the problem
of different input image sizes.

3. Using the global average pooling layer to replace the
flatten layer, extracting the global average feature, and con-
verting the final output feature into a 1 x 1x M tensor. Since
the global average pooling sums the spatial information, it is
more stable in the input spatial transformation, the convolu-
tion structure is simpler and avoids network overfitting.

The Sec. II of this paper introduces related work such
as LULC and scene classification. In Sec.IlI, the methods
proposed in this paper are introduced in detail. Experiments
and analysis are conducted in Sec. IV and conclusions are
presented in Sec. V.

Il. RELATED WORK

Deep learning-based land use and land cover classification
are explored both at pixel-level, object-level, and scene-level.
Due to the limited spatial resolution of optical remote sens-
ing images, the pixel-centered spectral method is the main-
stream of traditional LULC classification work [12]. Li and
Zhang [13] introduced a geostatistics framework based on
the Markov chain to classify pixel-centered images. However,
the pixel-based classification method has the problem of
salinization effect in the classification results. The object-
based classification method fully utilizes the local spatial
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information of irregularly shaped objects in the image, and
deals with the problems of the traditional pixel-based classifi-
cation method [14]. Zhao et al. [15] proposed a combination
of deep learning strategy and object-based classification to
accurately capture the contours of different objects. This
method fills the gap between complex image patterns and
semantic tags. The rapid development of high spatial reso-
lution remote sensing images has brought new opportunities
to land use classification. With the continuous increase of
remote sensing image data, more deep learning models have
been applied to urban land use. Remero et al. [16] proposed
the greedy hierarchical unsupervised pre-training learning
algorithm, which has good performance in aviation scene
classification and high-resolution land use classification. Due
to the lack of remote sensing image categories and insuffi-
cient labeling data, it is difficult to directly apply deep con-
volution features to remote sensing images. Yuan et al. [17]
proposed a pyramid multi-subset feature fusion method.
It can effectively fuse the deep features extracted from dif-
ferent pre-trained CNNs and integrate the global and local
information of the deep features, thereby obtaining stronger
discriminative and low-dimensional features. Ye [18] et al.
proposed a new classification method based on deep learning
and metric learning. The cluster center of each class is preset
on the output feature, and the Euclidean distance is used to
calculate the average center metric loss. In the feature space,
this method improved the classification accuracy by forcing
intra-class compactness and inter-class separability.

The CNN models are used in remote sensing scene clas-
sification, but training a deep CNN will produce large
parameters. In recent years, networks such as AlexNet,
VGG16, GoogleNet, and InceptionV3 have shown strong
generalization capabilities in scene recognition. The use of
ready-made pre-trained CNN models as a general feature
extractor has become a method of remote sensing scene clas-
sification [19]. However, generating large parameters during
the training process leads to higher requirements on hard-
ware devices. To reduce the amount of CNN input data,
Zhao et al. [20] extended a simple linear iterative clustering
algorithm. It makes full use of the spatial spectrum and
environmental information of superpixels to segment images
and generate superpixels. Wei er al. [21] proposed a CNN
classification structure based on cube pairs and established
a three-dimensional full convolutional network model. This
model fully uses the three-dimensional features of hyper-
spectral images and has fewer parameters than traditional
CNN. Liu et al. [22] proposed a dense dilated convolution
merge network, it utilizes the expansive convolution combi-
nation and expands the network’s receptive field with fewer
parameters. The evolution from the traditional pixel-based
method to the model-based method reduces the number of
network parameters to a certain extent. Howard et al. [23]
proposed to use depthwise separable convolution to con-
struct a lightweight neural network. Depthwise separable
convolution consists of two layers, one for filtering and one
for merging, this factorization can significantly reduce the
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computation and model size. Zhang et al. [24] improved
U-Net by taking depthwise separable convolution, proposed
a neural network-based remote sensing image city build-
ing extraction model, and optimized the network hyperpa-
rameters according to the characteristics of the building.
Liu et al. [25] proposed an improved full convolutional net-
work (FCN), the depthwise separable convolution is used to
replace the original convolution of FCN, so that the whole
network has fewer parameters and the performance of the
method is better. Yu [26] et al. introduced a bilinear convo-
lutional neural network and used MobileNetV?2 as a feature
extractor, each feature is transformed into two features with
different convolutional layers to enhance bilinear features.
In this paper, the depthwise separable convolution method
is used to reduce the parameters of the CNN network in the
training process. Under the premise of ensuring the depth of
the network, the network parameters can be reduced to about
67 times.

Due to the different sources and resolutions of remote
sensing images, image size has always been a concern.
Although the CNN-based remote sensing scene recognition
network has deep layers, due to the non-self-adaptability of
convolution operation, the CNN still has limitations, that is,
regardless of the input image size, the convolution has a
fixed weight and cannot be effective in Distinguish all types
of images. Fang et al. [27] proposed a multi-scale adap-
tive sparse representation (MASR) model, the multi-scale
spatial information is effectively utilized to limit the pixels
from different scales to achieve better image representation.
Kim et al. [28] proposed a characteristic response modulation
network based on adaptive convolution, it solves the inherent
inadaptability problem of CNN-based network. Since the
input image is limited by the pixel size, the performance of
the network in large-size image input is affected. To enable
the network to handle large-size input well, Wei et al. [29]
proposed to add an adaptive pooling layer to the network
to process large-size image input, breaking the limitation
of image input size required by deep CNNs. To taking the
non-adaptive problem of the CNN, the algorithm in this paper
adds an adaptive pooling layer to the network, and adjusts the
size and step length of the convolution kernel through feature
mapping.

Deep CNN models are usually trained on ImageNet con-
taining millions of images, while the remote sensing data
set NWPU-RESISC45 contains less than 35,000. Too few
data sets will lead to over-fitting of CNNs. Zhang et al. [30]
proposed a feature extraction algorithm for sparse transmis-
sion, sparse constraint and transfer constraint are introduced
to avoid overfitting caused by too few training samples.
Tian et al. [31] used regularization, loss and fine-tuning
strategies to alleviate the overfitting problem in remote sens-
ing image classification during CNN training. Dai et al. [32]
adopted a CNN combining multi-scale deep residuals. In the
back propagation and forward propagation process, global
average pooling is introduced to solve the above problems.
This paper enhances the data set and adds a global average
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pooling layer to the network structure to solve the over-fitting
problem of CNNs.

To sum up, the LW-CNN proposed in this paper classifies
remote sensing images at the scene level, and uses depth-
wise separable convolution instead of standard convolution to
construct a lightweight network. The adaptive pooling layer
is adopted to solve the problem of different sizes of remote
sensing images. Finally, the global average pooling layer is
used to extract the global average feature. In the CNN training
process, the overfitting problem is solved by avoiding the
process of parameter optimization.

lll. METHODS

A. LW-CNN NETWORK STRUCTURE

VGG16 [33] is a kind of deep learning network model that
has attracted much attention in recent years. VGG16 con-
tains S convolution modules and 3 fully connected layers.
After each convolution module is the maxpooling layer,
the number of convolution channels starts from 64 in the
first layer and doubles after each maxpooling layer until 512.
Each convolution module contains multiple convolutional
layers of a 3 x 3 convolution kernels. On the one hand,
parameters are reduced; on the other hand, more nonlinear
mapping is carried out to enhance the fitting ability of the
network.

VGG16 network is simple and practical, has a deeper
feature extraction than AlexNet, and a simpler network struc-
ture than GooLeNet and ResNet50. Compared with other
lightweight convolutional neural networks, the number of
parameters itself is very small, and the operation of param-
eter reduction will make the identification accuracy of the
network decline. Based on the recognition rate and network
structure, this paper proposes a lightweight model (LW-CNN)
based on VGGI16. It solves the problem of CNN with too
much computation and the inherent inadaptability of the input
image in CNN network. LW-CNN has the following charac-
teristics:

Firstly, the five convolution modules in VGG16 are
retained, including the convolution kernel and the number of
convolution channels. The depthwise separable convolution
method is adopted, and the stride of the first convolution layer
of each convolution module is changed from 1 to 2 to replace
the maxpooling layer in VGG16. The lightweight network is
constructed from two aspects: changing the convolution mode
and reducing the number of network layers.

Secondly, an adaptive pooling layer is added. After the
deep feature extraction of the image, the image size is
adjusted through adaptive pooling, and the image features in
the original image are fully utilized, so that the network can
handle the size of the input image well.

Finally using the global average pooling layer to replace
the flatten layer, extract the global average feature, and con-
vert the final output feature into a 1 x 1x M tensor. Since
the global average pooling sums the spatial information, it is
more stable in the input spatial transformation, the convo-
lution structure is simpler and avoids network overfitting,
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FIGURE 1. LW-CNN network structure.

Class N

combining softmax layer to forecast the result of the iden-
tification.

The LW-CNN network structure is shown in Fig.1. The
lightweight deep feature extraction module is shown in the
Fig.1. DW Block includes depthwise convolution and Batch
Normalization, and PW Block includes pointwise convo-
lution and Batch Normalization. In this paper, features in
remote sensing images are extracted layer by layer through
5 convolution modules of LW-CNN. By changing the con-
volution mode, the number of network model parameters is
reduced from 134M to 1.7M, which is 67 times smaller. After
the feature extraction module, an adaptive pooling layer is
added to solve the problem that the size of the input image is
limited by the CNN. LW-CNN can be used for urban scene
recognition of 50m-100m UAV aerial photograph.

B. DEPTHWISE SEPARABLE CONVOLUTION
Depthwise separation is a form of factoring Convolution,
it divides the standard convolution into depthwise convolu-
tion (hereinafter referred to as DW Convolution) and point-
wise convolution (hereinafter referred to as PW Convolution),
significantly reduce the convolution computation, and add the
batch normalization layer after each convolution. The filters
decomposition process of standard convolution is shown in
Fig.2. Depthwise separable convolution applies a filter to
each input channel, splitting the filtering and combination of
standard convolution into two independent modules [23].
The calculation amount of standard convolution X is:

Xi=DxDxM xN xDw x Dy (1)

The sum of the computations of DW convolution and PW
convolution X» is:

Xo=DxDxM xDw xDyg+MxN x Dy xDyg (2)

The reduced calculation amount X3 is:

_DxDxMxDW X Dy +M x N x Dy x Dy

X3= (3)
DxDxMxN x Dy x Dy

Among them, the input mapping size is (Dw, Dy, M),
the kernel of standard convolution is (D, D, M, N), Dy and
Dy are the width and height of the input map respectively, M
is the number of input channels, D is the height and width
of the convolution kernel, and N is the number of output
channels.

To verify the effect of depthwise separable convolution and
build an appropriate lightweight network, this paper attempts
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FIGURE 3. Four lightweight modules.

to reduce the network model in four ways. The correspond-
ing four models are shown in Fig.3. First, LW_1 changes
the standard convolution in VGG16 to depthwise separable
convolution, and found that the two fully connected layers
produced a large number of parameters during the model
operation. Therefore, LW_2 only deletes two full connection
layers based on LW _1, while LW_3 only deletes two full con-
nection layers of VGG16 without changing the convolution
mode. Based on LW_2, LW_4 changes the stride of the first
convolutional layer of each convolution module from 1 to 2 to
replace the maximum pooling layer. See Sec. IV-C for details
of the experiment. By comparing the model sizes of the four
networks, and the trade-off between the recognition accuracy
and the loss value on the two data sets, LW_4 is finally
selected as the lightweight network model in this paper.

C. ADAPTIVE POOLING LAYER

With the development of remote sensing technology,
the source and resolution of remote sensing images are differ-
ent, and the image size becomes the focus of image classifi-
cation. The existing classical convoluted neural network can
only input images of fixed size. For example, the FC layer
input in VGG161is 7 x 7x 512, including 25088 connections,
so the input picture is fixed to 224 x 224 pixels. For large
input, resizing the image or randomly cropping it to 224 x 224
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FIGURE 5. Two ways to add adaptive pooling layer.

pixels is not enough to take full advantage of the data set.
To make the network insensitive to the input image size,
feature mapping level processing is adopted in this paper, and
an adaptive pool layer is used to carry out down-sampling
for the feature mapping. The adaptive pooling layer converts
the original size of the feature into several smaller sizes.
The adaptive pooling process is shown in Fig.4. For exam-
ple, the input image size is set to 256 x 256 pixels, and
the input size of the adaptive pool layer is 16 x 16 pixels.
Then, the adaptive pooling layer divides the 18 x 18 feature
map into 7 x 7 subcells that are approximately 2 pixels or
3 pixels. Next, the maximum value in each subcell is mapped
to the corresponding output grid position. Finally, we obtain
small-sized features of 7 x 7 pixels.

The adaptive pooling layer mainly solves the limitation of
the input image size. This paper uses two methods to add
the adaptive pooling layer: LW-AdaV1 is shown in Fig.5 (a).
After the input image is subjected to a standard convolution,
an adaptive pooling layer is added, the image size is changed
and then input to the deep convolution feature extraction mod-
ule. As shown in Fig.5 (b), LW-AdaV2 performs deep feature
extraction on the original image and adds an adaptive pooling
layer after the fifth convolution module. This paper compares
the indicators of the two methods, and finally chooses the
LW-AdaV2 method to add an adaptive pooling layer. For the
experimental details, see Sec. IV-D.

D. GLOBAL AVERAGE POOLING

After deep feature extraction, traditional CNN vectorizes
the feature map of the last convolutional layer, connects it
to the FC layer, and finally classifies the feature through
the softmax layer [34]. In this paper, the global average
pooling layer is used to replace the full connection layer in
CNN. Global processing is carried out for the entire feature
graph, and the average value of features is extracted. Finally,
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FIGURE 6. Sample image of NWPU dataset.

a1l x 1x M tensor is generated and directly entered into the
softmax layer. The advantage of global average pooling over
the fully connected layer is that it reduces network param-
eters. In addition, there are no parameters to be optimized
in the global average pooling, so overfitting is avoided at
this layer. And because the global average pooling sums
the spatial information, it is more stable in the input spatial
transformation. Sec. IV-E experimental results show that the
overall recognition accuracy increases after adding the global
average pooling layer.

IV. EXPERIMENT AND ANALYSIS

A. DATASET INTRODUCTION

To evaluate the performance of LW-CNN, we conducted
a large number of comparison experiments on two remote
sensing scene data sets, identifying 13 types and 12 types
of scenes on the two data sets respectively. Compared with
other methods in recognition accuracy, recognition rate, etc.
The two data sets used in this paper are described in detail
below.

NWPU-RESISC45 Data Set (hereinafter referred to as
NWPU) [35] contains 45 types of remote sensing scenes,
each of which consists of 700 images, each with a size
of 256 x 256 pixels. For each scene category, the NWPU
dataset has rich changes in appearance, spatial resolution,
lighting, background, and occlusion, etc. The main appli-
cation scene of this paper is urban land-use scene iden-
tification. Therefore, 13 types of commonly used urban
scenes are selected in this paper, including bridge, commer-
cial_area, dense_residential, industrial_area, lake, meadow,
medium_residential, overpass, parking_lot, railway_station,
river, roundabout, and spare_residential. Fig.6. is an example
image of the NWPU data set.

SIRI-WHU Dataset (hereinafter referred to as SIRI) [36]
contains 12 categories of remote sensing scene images, a total
of 2400 images, each category is composed of 200 images,
each with a size of 200 x 200 pixels. The data comes
from Google Earth and mainly covers urban areas in China.
The 12 land use categories include agriculture, commercial,
harbor idle_land, industrial, meadow, overpass, park, pond,
residential, river, and water. Fig.7. is an example image of
the SIRI dataset.

B. TRAINING DETAILS AND EVALUATION INDICATORS
The LW-CNN model proposed in this paper is built on
the Keras library of python, and it traverses the images in
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FIGURE 7. Sample image of SIRI dataset.

the dataset through ImageDataGenerator, and enhance each
image with random transformation data. The number of
epochs was set to 100, and the number of training batch_size
was set to 36. Use stochastic gradient descent (SGD) opti-
mizer to train the LW-CNN network model, momentum is set
to 0.9, weight decay is set to 0.0002, the initial learning rate
is set to 0.001, with 10 batches of recognition accuracy as a
learning unit, if the value does not increase, the learning rate
will decrease by 10%.

To evaluate the performance of the network in all aspects,
this paper uses Accuracy, Precision, Recall, F1 score, Param-
eter and FPS as the evaluation indicators of the experimental
results. Among them, the Parameter is used to measure the
size of the network model, and FPS is the number of frames
of images identified per second. The calculation formula of
other evaluation indexes is defined as follows:

TP + TN
Accuracy = (@)
TP+ TN + FP + FN
. TP
Precison = ————— ©)
TP + FP
TP
Recall = ——— 6)
TP + FN
2 X Precision x Recall
Fl = @)

Precision + Recall

In the formula, P represents Positive, N represents Negative,
FP is the number of samples that are actually negative but
predicted to be positive, TN is the number of samples that
are actually negative and predicted to be negative, and TP
is actually the number of samples that are predicted to be
positive, and FN represents the number of samples that are
actually positive but predicted to be negative.

C. LIGHTWEIGHT NETWORK COMPARISON EXPERIMENT
To select a better lightweight network, try four ways to reduce
network parameters. Training was conducted on two training
sets respectively, with 80% of the data set as the training
set and 20% as the test set. The recognition results of the
VGG16 and four methods are shown in Table 1. According
to the experimental results, a comparison diagram of the
accuracy and loss of the verification set is drawn, as shown
in Fig.8 and Fig.9. Fig.8 compares LW_4 with the other three
algorithms. The network parameters of LW_4 and LW_2
algorithms are about 2M, and the test on the two data sets
shows that the accuracy is better than LW_1 and LW_3,
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TABLE 1. Recognition results of 4 methods.

Dataset Models Parameter Accuracy
VGG16 134.28M 88.76%
LW_1 121.3M 88.3%

NWPU Lw_2 2.02M 90.76%
LW_3 15.01M 90.84%
LW_4 2.02M 91.15%
VGG16 134.28M 90.20%
LW_1 121.9M 86.45%

SIRI Lw_2 2.00M 93.12%
LW_3 14.99M 90.83%
LW_4 2.00M 92.70%

(a) Accuracy verification curve

(b) Loss curve

FIGURE 8. Performance comparison between LW_4 and other algorithms
(NWPU).

which is due to the effectiveness of the depthwise separable
convolution method adopted by LW_4 and LW_2.

The model parameters of LW_4 and LW_2 are the same.
LW_4 deletes the 4 maxpooling layers based on LW_2, and
reduce the size of the convolution feature map through the
convolution step of DW, thus reducing the number of network
layers. On the NWPU data set, the accuracy of LW_4 in
identifying 13 scenarios was 91.15%, higher than 90.76% for
LW_2. On the SIRI dataset, the accuracy of LW_4 in iden-
tifying 12 types of scenes is 92.7%, which is lower than the
93.12% of LW_2. Observe the loss function graphs in Fig.9
(b) and Fig.10 (b). After multiple iterations of training, it is
found that the loss of the LW_4 network is smaller than the
loss of LW_2, the number of layers of LW_4 network was
smaller, so LW_4 is finally selected as lightweight network
model.

The accuracy of LW_4 in identifying 13 types of scenes
on the NWPU dataset is shown in Table 2, the accuracy of
dense_residential and parking_lot is as high as 99%, and
the accuracy of identifying 12 types of scenes on the SIRI
dataset is shown in Table 3. The recognition accuracy of
meadow and park is as high as 100%. However, the river
recognition accuracy on the two datasets is not ideal, 83% and
77.5% respectively. This is because the convolutional neural
network CNN deep convolution module only retains salient
features when extracting image features, and river images
often contain bridges. Because the river area is too large,
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TABLE 2. Recognition results of LW_4 on NWPU.

Dataset bridge commercial dense industrial lake meadow medium overpass parking railway river roundabout spare
NWPU  92% 90% 99% 86% 92% 94% 87% 88% 99% 91% 83% 86% 98%
TABLE 3. Recognition results of LW_4 on SIRI.
Dataset  agriculture commercial harbor idle land industrial meadow overpass park pond residential  river  water
SIRI 100% 97.5% 92.5% 95% 95% 100% 80% 100%  85% 92.5% 77.5%  97.5%
TABLE 4. Experimental results of adaptive pooling.
Dataset Models Accuracy
LW_AdaVl 76.46%
NWPU -

S S —. L LW_AdaV2 90.38%

(a) Accuracy verification curve SIRI LW_AdaV1 66.04%

) LW_AdaV2 88.74%

(b) Loss curve

(c) Accuracy verification curve

(d) Loss curve

FIGURE 9. Performance comparison between LW_4 and other
algorithms (SIRI).

it is easy to be recognized as a background rather than a
feature, causing the river image to be incorrectly recognized
as a bridge.

o 20 40 60 80 100 o 20 40 60 80 100

(a) NUPW (b) SIRI

FIGURE 10. Accuracy verification curves of LW_AdaV1 and LW_AdaV2.

Accuracy Accuracy

1
08 08
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(a) NUPW (b) SIRI

FIGURE 11. Verification accuracy of LW_AdaV1 and LW_AdaV2.

TABLE 5. Recognition results of ablation experiments.

D. ADAPTIVE POOLING EXPERIMENT Dataset Models Parameter Accuracy
To solve the problem that only fixed-size images can be — LW_AdaV2 2.0M 90.38%
input into the convolutional neural network CNN, this paper LW-CNN 1.70M 91.23%
uses two methods to add an adaptive pooling layer on the SIRI LW_AdaV2 2.0M 88.74%
LW_4 network. LW_AdaV1 adds an adaptive pooling layer LW-CNN 1.70M 93.51%

after one standard convolution. LW_AdaV2 performs deep
feature extraction on the original image, and adds adaptive
pooling layer after the fifth convolution module to fully
extract the features of the original image.

In this paper, experiments were carried out on two data sets,
and the results of adaptive pooling were shown in Table 4.
According to the experimental results, the accuracy verifi-
cation curve on the verification set was drawn, as shown
in Fig.10. The accuracy of LW_AdaV2 on the two data
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sets was 90.38% and 88.74%, which was far better than
LW_AdaV1. The two methods are compared on the two
data sets for the recognition accuracy of various scenes.
The result is shown in Fig.11. In all scenes, the recogni-
tion accuracy of LW_AdaV2 network is higher than that of
LW_AdaV1. LW_AdaV2 makes full use of the information
contained in the image, while the image features extracted
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TABLE 6. Recognition results of ablation experiments on NWPU.

Method bridge commercial dense industrial lake meadow medium Overpass parking Railway river Roundabout spare
LW_AdaV2  92% 87% 98% 82%  92% 95% 86% 84% 99% 93% 87% 83% 96%
LW-CNN 87% 90% 98% 87%  94% 97% 89% 83% 100% 88% 88% 90% 95%

TABLE 7. Recognition results of ablation experiments on SIRI.

Method  agriculture commercial harbor idle land industrial meadow overpass park pond residential river water
LW_AdaV2 95% 97.5% 90%  92.5%  87.5%  97.5%  55%  95% 925% @ 95%  62.5% 97.5%
LW-CNN 97.5% 100% 90% 95% 97.5%  100%  87.5% 92.5% 87.5% 97.5%  80% 97.5%

(a) NUPW

(b) SIRI

FIGURE 12. Accuracy verification curves of LW-CNN and lightweight
networks.

by LW_AdaV1 are not sufficient, leading to the loss of many
important image features in the deep extraction module. How-
ever, LW_AdaV?2 avoids the feature loss of LW_AdaV1, thus
achieving better recognition accuracy.

E. ABLATION EXPERIMENT

To verify the performance of the global average pooling layer,
LW_AdaV2 does not add a global average pooling layer, and
LW-CNN adds. Ablation experiments were performed on two
data sets, and the experimental results are shown in Table 5.
Validated on the NWPU dataset, the accuracy of 13 types
of scene recognition increased from 90.38% to 91.23%, and
verified on the SIRI dataset, the accuracy of 12 types of
scene recognition increased from 88.74% to 93.51%. The
network with the global average pooling layer improves the
overall recognition accuracy while reducing the number of
parameters.

In the ablation experiment, the identification accuracy of
each scene on the NWPU data set is shown in Table 6. The
LW-CNN network has better recognition accuracy in scenes
such as commercial districts, high-density residential areas,
lakes, grasslands, roundabouts, etc. The recognition accuracy
of each type of scene in the ablation experiment on the SIRI
data set is shown in Table 7. The recognition accuracy of
LW-CNN in commercial areas, industrial areas, overpasses,
and rivers have been greatly improved.

F. PERFORMANCE COMPARISON EXPERIMENTS WITH
OTHER ALGORITHMS
To assess the urban scene recognition performance of

LW-CNN, the network model was compared with other
deep learning models (AlexNet, GooglLeNet, ResNet50,
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(a) NUPW (b) SIRI

FIGURE 13. Accuracy verification curves of LW-CNN and non-lightweight
networks.

Inception-ResNet-V1, Inception-ResNet-V2, MobileNet,
VGG16, Xception) on two data sets. In the experiment,
the recognition accuracy and F1 parameters are shown
in Table 8. The LW-CNN method proposed in this paper
has the highest recognition accuracy, with a recognition
accuracy of 91.23% on 13 types of scenes, and recognition
accuracy of 93.51% for 12 types of scenes; The model
parameters in this paper are 1.7M, which is 67 times less
than the VGG16 network parameter, the recognition accuracy
is the best and the model parameter is the smallest. The
recognition rate of LW-CNN on two datasets is better than
that of other networks and only slightly slower than that of
AlexNet. By analyzing the network structure, it is found that
LW-CNN contains 25 convolution layers to extract image
features, while AlexNet contains 5 convolution layers, so it
has more advantages in recognition rate. It can be seen from
Table 8 that the FPS of VGG16 and LW-CNN are equivalent,
but the number of parameters of LW-CNN is significantly
reduced, which proves from another aspect that the number
of parameters of network is not an important factor affecting
FPS, and the difference of network structure has a greater
impact on FPS. But compared with other deep network
models, the recognition rate of this paper still maintains an
advantage. Comparing the method with the lightweight net-
work MobileNet and Xception, LW-CNN model parameters
were 1.5M less than MobileNet, and the recognition accuracy
was about 2% higher on both data sets. LW-CNN model
parameters were 19M less than Xception, and the recognition
rate was faster.

Fig.12. is drawn based on the accuracy comparison
between LW-CNN and lightweight networks (GooleNet,

VOLUME 9, 2021



J. Xia et al.: Urban Remote Sensing Scene Recognition Based on Lightweight Convolution Neural Network IEEEACCGSS

TABLE 8. Identification results of different methods.

Dataset Models Parameter ~ Accuracy Precision  Recall F1 FPS
AlexNet 58.33M 87.15% 0.877 0.871 0.871 170

GoogLeNet 12.45M 89.53% 0.903 0.895 0.895 49

ResNet50 45.76M 87.30% 0.879 0.873 0.873 45

Inception-ResNet-V1 21.06M
NWPU  Inception-ResNet-V2 30.41M

81.61% 0.822 0.816 0.814 44
88.92% 0.896 0.889 0.889 40

MobileNet 3.2M 89.46% 0.899 0.894 0.894 92
VGG16 134.28M 88.76% 0.893 0.887 0.888 91
Xception 20.88M 87.53% 0.883 0.875 0.875 62
LW-CNN(ours) 1.70M 91.23% 0.914 0912 0912 95
AlexNet 58.33M 88.54% 0.885 0.885 0.877 107
GoogLeNet 12.45M 91.45% 0.915 0914 0912 30
ResNet50 45.76M 91.45% 0.916 0914 0913 27

Inception-ResNet-V1 21.05M
SIRI Inception-ResNet-V2 30.40M

91.66% 0.918 0916 0914 27
92.91% 0.928 0929 0927 25

MobileNet 3.2M 91.25% 0.914 0912 0910 58
VGG16 134.28M 90.20% 0.902 0.902 0.899 55
Xception 20.88M 91.45% 0.916 0914 0914 40
LW-CNN(ours) 1.70M 93.51% 0.936 0.935 0934 58
Confusion matrix Confusion matrix
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FIGURE 14. Confusion matrix of this method on two data set.

Inception- Resnet-V1, MobileNet, Xception). The accu-
racy comparison of LW-CNN with non-lightweight net-
works (AlexNet, ResNet, Inception- ResNet-vl, VGG16) is
shown in Fig.13. Compared with the lightweight network,
the depth feature extraction module of LW-CNN is simple
and effective, and the verification curve of LW-CNN tends
to rise steadily. Compared with non-lightweight networks,
LW-CNN has more advantages in parameters. After 100
batches of training, the verification accuracy of LW-CNN is
higher than that of other network structures.
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Predicted label

(b) SIRI

This paper draws confusion matrices on two data sets to
show the recognition performance of the network, as shown
in Fig.14. On the NWPU dataset, the recognition accuracy of
the parking lot reached 100%. Due to the complexity of the
NWPU dataset and the defects in the recognition of similar
scenes in this network, the recognition accuracy of overpass,
industrial_area, and the river is slightly lower. On the SIRI
data set, the recognition accuracy of commercial and meadow
is 100%, and the recognition accuracy of overpass and river
is also lower than the average recognition accuracy.
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V. SUMMARY AND PROSPECT

Aiming at remote sensing scene recognition of urban land
use, this paper proposes a lightweight model (LW-CNN)
based on VGG16, and the number of model parameters is
reduced by 67 times compared with VGG16. This method
adopts an adaptive pooling layer to solve the neural network
that can only input fixed-size images. A large number of
experiments show that LW-CNN is superior to other classical
networks in the recognition of 13 and 12 scenarios on two
data sets of NWPU and SIRI, and has advantages in model
size and recognition speed. However, this method still has
some shortcomings in river scene identification, as too many
convolutional layers cause the feature map of the river not to
be obvious, so it cannot be accurately identified. At present,
the network model is only applicable to urban land-use scene
identification, and we hope that through subsequent research
and improvement, this model can be applied to more scene
identification. At the same time, there are some defects in
the study of applying this network to mobile devices in this
paper, and this part of the content will be improved through
subsequent research and practice.
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