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ABSTRACT The research of unmanned surface vehicles (usually called USV) is becoming a research
hotspot, and real-time and accurate environmental perception is the key technology for achieving
autonomous navigation and completing tasks of USV. In this paper, aiming at the technical problems of
environmental perception of the USV, from the perspective of sensor multi-information fusion, we build
a complete USV perception system (hardware platform and software system). This paper mainly studies
objects on the water detection and obstacle avoidance methods based on the information fusion of lidar and
vision. In addition, we also studies the method based on morphology to process the reflection of the objects
on the water, and the sea-sky detection based on support vector machine (SVM) to assist the objects on the
water detection. Through the construction of the USV environment perception system, improving the ability
of USV environment perception, and ensuring the safety of autonomous navigation of USV. Our proposed
methods have been tested by simulation experiments and actual marine experiment as well as the Hawaii
Unmanned Surface Vehicles Challenge, which proves the practicability and stability of our method in the
actual environment.

INDEX TERMS Unmanned surface vehicle, object detection, sea surface, autonomous vehicles, collision
avoidance.

I. INTRODUCTION
With the comprehensive development of science and tech-
nology, unmanned intelligent marine vehicles are develop-
ing rapidly and are widely used in civil and military fields.
Unmanned surface vehicles (USV) is an intelligent system
that is unmanned, relies on remote control or completely
autonomous way to navigate on the water surface. It can carry
a variety of sensors, special equipment or weapons to perform
anti-mine, anti-submarine, anti-ship, maritime security and
electronicwarfare tasks in the target sea area. As a new type of
surface mobile platform that can navigate independently on
the water surface, the USV has the ability to complete tasks
partially or completely autonomously.

Compared with other conventional marine equipment,
the USV has the characteristics of maintenance cost, low
energy consumption, and long continuous operation time [1].
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It can meet the long-term research tasks and engineering
projects in a large area on the water surface. In addition,
by carrying different functional modules, USV can replace
people in complex and dangerous tasks, such as disaster and
accident search and rescue, hydrological information moni-
toring and collection, marine biological information collec-
tion, regional sea chart and terrain drawing, marine weather
forecast; adjacent sea defense Tasks; search, detection and
demining of specific waters, anti-piracy, anti-terrorism tasks,
etc. USV is an autonomous marine vehicle. Its biggest advan-
tage is that it can operate in special complex and dangerous
environments or when manned vessels are not suitable for
work [2]. Compared with unmanned aerial vehicles, land
robots and underwater robots, USV has the advantages of
the widest observation space, low cost and the most stable
system. The working space of the USV covers the water sur-
face, low altitude and underwater, meeting the requirements
of all-round three-dimensional perception of environmental
information.
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USV is restricted by the working environment when
performing tasks, and often encounter wind and waves,
sea fog or high humidity, and other harsh sea conditions.
At the same time, USV may encounter high-speed ships,
etc. These requirements put forward higher requirements
for the environmental awareness of USV [3]. Traditional
target information perception technologies mainly include
radar information perception, infrared perception, ultrasonic
perception, visible light visual perception, and underwa-
ter acoustic information perception technology. The optical
image obtained by visible light visual perception contains
richer target information and background information, which
can more conveniently obtain target information in the
region through target region segmentation and detection
algorithms. The lidar information can accurately obtain the
three-dimensional position of the target information and
accurately locate the target. Therefore, the fusion of visible
light visual perception information and lidar information can
use the rich information contained in visible light pictures
and the three-dimensional positioning of radar point cloud
information. Carrying out research on surface moving tar-
get detection and obstacle avoidance technology based on
optical vision and lidar information fusion, which will help
it complete tasks such as autonomous planning, autonomous
collision avoidance and environmental monitoring, so as to
avoid collisions between USV and surface targets. On the
other hand, it can also ensure the accuracy of the information
of the monitoring target, and improve the intelligence level of
the USV itself and the ability to perform tasks.

II. RELATED WORKS
Environmental perception technologies based on USV
mainly include sea-sky detection, object detection and track-
ing, and obstacle avoidance technologies. Compared with
other unmanned robots, USV environmental perception tech-
nology is relatively weak, mainly due to limited conditions
and short research time. In this part, we analyze and sum-
marize the characteristics and shortcomings of existing tech-
nologies, and introduce the main contributions of our work.

Sea-sky detection. Sea-sky detection can provide very
meaningful information. For example, the sea-sky line can
be used to solve the calibration problem of a stereo camera;
sea-sky detection is sometimes a key step in target detection,
which can reduce the search space; sea-sky detection can
provide good reference information for binocular ranging.
At present, there are many methods about water boundary
detection, which are mainly based on the principles of row
mapping histogram, gradient transform, wavelet transform,
Radon transform, maximum inter-class variance, texture fea-
tures and Hough transform. Zhao Ningxia, Zhang Bing,
Wei Junjie and Pei Lili detect the water boundary by using
wavelet transform to the image obtained by the unmanned
vehicle [4]–[6]. Usually, the threshold is used to segment the
image, and then the specific position of the sea-sky line in the
image is extracted by wavelet transform to avoid a large num-
ber of calculations caused by iteration. Wang Bo of Harbin

Engineering University proposed a sea-sky line detection
method based on gradient saliency [7]. The region growing
method is used to realize the detection and identification of
the sea antenna, and the accuracy and real-time performance
of the method are excellent. At present, the main popular
methods are to determine the position of sea antenna by
using the assistance of region of interest (ROI). Xiao Zheng
of Nanyang University of Technology selects the region of
interest through conversion and cutting, and further processes
the region of interest to get the location of the sea-sky [8].
In addition, sea-sky line detection is carried out by using the
global sparsity of image blocks, but the real-time effect of this
method is poor compared with the traditional method, and the
practical application effect is not good.

Object detection. For the difficult problem of direct detec-
tion of water surface targets, some researchers have com-
bined the specific characteristics of water surface images
for target detection. Aiming at the problem of unmanned
boat’s detection of aquatic targets in a complex coastal back-
ground, Wan Lei proposed an automatic detection method of
offshore targets based on coastline information [9]. On this
basis, Zhang Tiedong et al. proposed a small and weak
target detection method without the premise of detecting
sea-sky horizons [39]. Chang Li proposed using the concept
of saliency to obtain salient features [10]. The accuracy of
the algorithm is 82%, and the time per frame is 0.268s.
Li Chang et al. aimed at the complex environment faced
by rapid detection of water surface moving targets, object
uncertainty and viewing angle changes, and a fast water sur-
face moving target detection method based on target surface
characteristics [11]. In the later period, Li Chang combined
target characteristics and saliency on the basis of two per-
sons, eliminated false targets, obtained the accurate position
of the target, and verified that the accuracy rate was over
80%. Wang Han developed a real-time obstacle detection
system. The system can detect and locate multiple obstacles
within a range of 30 to 300 meters on the sea surface [12].
The later improved algorithm uses high-definition images
(2736 × 2192) to estimate the object distance to a higher
accuracy. The rise of deep learning has enriched the detection
methods of water surface moving targets. Long Gang et al.
used the deep learning framework of the cascaded princi-
pal component analysis network to conduct research on the
detection algorithm of sea ships, and the effective range of
detection was 20 to 200 meters. Yang Jian et al. proposed
a neural network-based monitoring and tracking system for
surface targets [13]. The use of segmentation accurate detec-
tion results solves the problem of low positioning accuracy of
current CNN-based detection methods. And using KF in the
algorithm can track objects in multiple frames at the same
time to improve efficiency.

To sum up, there are typical methods of object detection
and sea-sky detection for USV. Sea-sky detection is mainly
based on the principles of mapping histogram, gradient
transform, wavelet transform, Radon transform, maximum
inter-class variance, texture features and Hough transform.
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FIGURE 1. USV environment perception system based on the fusion of vision and lidar. It mainly contains five modules: surface image denoising module
(SIDM), water reflection removal module (WRRM), sea-sky detection module (SSDM), surface target detection module (STDM) and obstacle avoidance
module (OAM).

The target detection algorithm is mainly based on the charac-
teristics of water surface background or the method based on
deep learning. However, these schemes still have the follow-
ing shortcomings: (1) Most of the methods are not applied to
USV, only the data collected by USV are used for simulation
experiments [14]–[18]; (2) The existing methods have the
problem of incompatibility between real-time and robustness,
which affects the stability of USV environment perception
performance; (3) The environmental perception system needs
to have good signal transmission with the control system,
power system, and communication system [19]–[23].

In order to overcome the shortcomings of the above meth-
ods, we propose a newmethod of target detection and obstacle
avoidance based on the fusion of image information and
lidar information. We apply the USV environment perception
system to the USV instead of just using the collected data
for simulation experiments. Moreover, our image processing
method is based on deep learning, which has the character-
istics of high accuracy and high robustness. Our computer is
equipped with a GPU to ensure real-time performance. The
USV platform we designed is an overall structure. The envi-
ronmental perception system interacts with other systems,
which truly improves the intelligence of the USV. It consists
of five modules: surface image denoising module (SIDM), a
water surface image quality evaluation index based on image
three-channel information is proposed, which can accurately
determine image quality. If the image quality is lower than the
threshold, the image denoising process is performed. water
reflection removal module (WRRM), sea-sky detection mod-
ule (SSDM), surface target detection module (STDM) and
obstacle avoidance module (OAM). TheWRRMmainly uses

morphological methods to distinguish surface targets and
water surface reflections, and then removes the reflections to
prevent the reflections from interfering with target detection;
The SSDM mainly uses the support vector machine method
to classify water and non-water areas, and the separating
hyperplane of the two areas is the sea-sky line; In the STDM,
we fuse image information and lidar information to detect and
locate the target, and obtain the target’s category, position and
confidence; In the OAM, we mainly use lidar to record the
position of obstacles and avoid obstacles.

The main contributions of this paper are summarized as
follows:

(1) A morphological-based method for removing water
surface reflections is proposed, which can avoid interference
with target detection;

(2) Through data labeling and pre-training of SVM-based
water and non-aquatic classifiers, sea antennas can be labeled
by separating hyperplanes;

(3) Propose a new type of water surface target detection
and obstacle avoidance scheme fusing image information and
lidar information, which can be applied stably on USV.

III. METHODS
The research is based on ‘‘WAM-V-USV’’ as the experimen-
tal platform, which is a complex system platform that inte-
grates many advanced subjects such as mechanical design,
electronic communication, environmental perception and
ship maneuverability. This part first introduces the architec-
ture of the ‘‘WAM-V-USV’’ test platform, and then designs
an environment perception system based on the hardware sys-
tem and software system of the test platform. The following
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introduces the principles of the algorithm of the environment
perception system: SIDM, WRRM, SSDM, STDM, OAM.

A. ‘‘WAM-V-USV’’ PLATFORM SYSTEM STRUCTURE
1) MAIN STRUCTURAL SYSTEM OF ‘‘WAM-V-USV’’
‘‘WAM-V-USV’’ is a small USV, the hardware frame is
produced by Marine Advanced Research Company. We later
added a power system, a sensing system, a communication
system, and a control system, which can be remotely con-
trolled and have a certain degree of autonomy for small
USV. In order to further improve safety, we have addition-
ally developed safety indicator lights and emergency brake
valves. The appearance view of ‘‘WAM-V-USV’’ is shown
in Figure 2 below. The carrier of ‘‘WAM-V-USV’’ is with
an inflatable fender on the side. The power unit adopts the
propeller propulsion method powered by lithium batteries.
The total length is 3.91m and the height is 1.27m and the
width is 2.44m.

FIGURE 2. ‘‘WAM-V-USV’’ structure.

The structure of the USV defines the interrelationship
and function allocation among the various parts of a USV.
‘‘WAM-V-USV’’ is mainly composed of control system,
environment perception system, communication system and
safety system, power system, etc.:

(1) Control system: This part is mainly responsible for the
control strategy of the ‘‘WAM-V-USV’’ test platform, mainly
responsible for USV heading, speed control, and autonomous
and remote control mode switching. The control platform is

composed of a shore console and a shipboard computer.
(2) Environmental perception system: This part is mainly

responsible for collecting the environmental perception data
of the ‘‘WAM-V-USV’’ test platform, which consists of the
corresponding image processing program, laser radar data
processing program and camera, laser radar and processing
industrial computer (image processing Board) hardware com-
position. This platform is equipped with an industrial camera
(VCXG-25M.I) based onGige protocol andVelodyneVLP16
lidar. The computing board is Jetson Tx2 from NVIDIA.

(3) Communication system: The shore console and the
onboard computer transmit commands and send and receive
data via radio. The internal information transmission of the
onboard computer, such as image processing program and
lidar processing program, exchange data through TCP/IP.

(4) Safety system: In order to ensure the safety of naviga-
tion, we have added a safety system, which mainly refers to
the emergency brake valve and safety indicator. The emer-
gency brake valve is located on the side of the boat.

(5) Power system: It mainly includes two lithium batteries
and a pair of thrusters, which are responsible for providing
control points and power electricity.

2) ‘‘WAM-V-USV’’ ENVIRONMENT PERCEPTION SYSTEM
According to the environmental information collection and
processing process, the software architecture of the envi-
ronment perception system of the ‘‘WAM-V-USV’’ can be
divided into five parts. The specific structure diagram is
shown in Figure 3.

FIGURE 3. ‘‘WAM-V-USV’’ environment-aware software system.

(1) The information data collection layer mainly includes
two parts: image data collected by cameras and point cloud
information data collected by laser mines.

(2) Information data preprocessing layer, which mainly
includes image de-dusting filtering and lidar point cloud
filtering. The laser radar point cloud sampling range is limited
to a range of 45 degrees in front of the USV, and then all
scattered data points in the point cloud that do not meet the
clustering requirements are removed, and finally the target is
segmented.

(3) The information data processing layer mainly includes
target detection on the preprocessed image to obtain the target
type; target extraction on the preprocessed lidar point cloud
data to obtain the target position.

(4) The information data fusion layer refers to data fusion
between the results of image detection and the results of lidar
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point cloud data processing to obtain the type and location of
the final target.

(5) The information data transmission layer refers to the
transfer of the results obtained by data fusion to the control
system and the shore-side monitoring computer.

B. WATER REFLECTION REMOVAL MODULE
1) THE CHARACTERISTICS OF THE REFLECTION OF THE
SURFACE TARGET
The surface target forms a reflection on the surrounding water
surface, which will interfere with the subsequent detection
and tracking of the surface moving target. It can be analyzed
that the reflection of the surface target has the following
characteristics:

1. Irregularities. Because of the influence of water waves
or ripples, the reflection of the target on the water surface is
not exactly the same as the side view of the target, and there
is irregular deformation.

2. Light absorption. There is an error between the color of
the reflection and the target, and the color of the reflection
will be darker than that of the surface target.

3. Variety. The reflection of the surface target’s own move-
ment and the influence of waves is constantly changing.

According to the difference between the reflection of the
surface target and itself, the surface target and the reflection
can be quickly separated in the image. In order to remove
irregular water reflections, opencv can be used to perform
threshold segmentation, contour detection and other related
processing on the image. The specificmethods are as follows:

(1) First, convert the input image into a grayscale image
according to formula1, and use the mean threshold function,
formula 2 and 3 to convert the image into a binary image.

Grayij =
(
Rij ∗ 0.299+ Gij ∗ 0.587+ Bij ∗ 0.114

)
(1)

m =

a∑
i=1

b∑
j=1

Grayij

a∗b
(2)

m∗ij =

{
0 Gray ij ≤ m
255 Gray > m

(3)

(2) We use the 9-square grid method for contour detection.
If there is a difference in 8 pixels around a pixel, it is set
as the background, otherwise it is the same as the contour,
the calculation formula is shown in (4) and (5). Then use
ContourArea and ArcLength functions in Opencv to remove
large-scale white spots in the sky and ocean caused by strong
light.

Nij =
i−i+1∑
i=i

j-j±1∑
j=j

m∗ij (4)

N ∗ij =


255 if

i-i±1∑
i=i

j-j±1∑
j=j

m∗ij = 0 or 2295

0 0 others

(5)

(3) Perform the straight line detection operation on
Figure 4(c) again, use the Hough Lines function to detect
the approximate straight line of the contour, and remove
the contour without a straight line, and then project the
remaining contour points into the original image, as shown
in Figure 4(d), the detection of cylindrical water surface
targets has been completed at this time.

(4) First convert the color space in Figure 4(d) to HSV,
and then use the point PolygonTest function to determine
whether a certain point is within the contour. This function
can be used to find all in Figure 4(d) Surrounding pixels
outside the outline. Take out the pixel value and determine
whether the value meets the range of colors such as yellow,
white, and blue in the HSV color space. If it meets (that
is, the reflection in the water), let the pixel be replaced by
the pixel value of the surrounding sea water, complete The
operation to remove the reflection. The final result is shown
in Figure 4(e).

FIGURE 4. Flow chart of water reflection removal. (a) Original color
image; G(b) Binary image; (c) Binary graph contour detection; (d) Straight
line detection; (e) The final reflection image is removed.

C. SURFACE IMAGE DENOISING MODULE
The images collected by the USV sometimes have more
noise interference, which affects the image quality, which
requires denoising processing to improve the image quality
so as not to affect the subsequent detection tasks. How-
ever, the denoising task will waste computing resources and
time, so we recommend to judge the image quality first.
If the image quality is high enough, the denoising step is
omitted.

1) IMAGE QUALITY EVALUATION PARAMETERS
Image quality can refer to the accuracy with which different
imaging systems capture, process, store, compress, transmit
and display the signals that form the image. Traditional meth-
ods of objectively evaluating image quality mainly include
structural similarity (SSIM) and peak signal-to-noise ratio
(PSNR) [24], [25]. PSNR is an objective standard for eval-
uating images. It is the most common objective evaluation
method used to evaluate image quality. The higher the PSNR,
the higher the image quality. SSIM is a more direct way to
compare the difference in information structure between the
test image and the reference image.

MSE =
1
mn

m−1∑
i=0

n−1∑
j=0

‖I (i, j)− K (i, j)‖2 (6)

PSNR = 10× log10

(
(2n − 1)2

MSE

)
(7)
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SSIM (x, y) =

(
2uxuy + c1

) (
2σxy + c2

)(
u2x + u2y + c1

) (
σ 2
x + σ

2
y + c2

) (8)

where µx is the average of x, µy is the average of y, σ 2
x is

the variance of x, and σ 2
y is the variance of y, σxy2 , is the

covariance of x and y. c1 = (k1L)2 , c2 = (k2L)2 is a
constant defined for stability.
k1 = 0.01, k2 = 003,L represents the floating range of the
pixel.

We add salt and pepper noise to the original picture with an
intensity of 0.02∼0.2. It can be seen that as the intensity of the
salt and pepper noise increases, the original picture becomes
more and more blurred, and the picture quality becomes
worse and worse. Through statistics, it is known that PSNR
and SSIM are suitable for judging the quality of water surface
images.

FIGURE 5. Original image and noise-added image.(a) Original image;
(b) Noise is 0.04; (c) Noise is 0.08; (d) Noise is 0.16; (e) Noise is 0.20.

2) IMAGE QUALITY EVALUATION DESIGN
Image quality attributes mainly include: clarity, resolution,
noise, contrast, color accuracy, and whether it is true or not.
We, our parameters for image quality judgment are derived
from the analysis of image channels. Each image has at least
one color channel, and the number of color channels of an
image is determined by its color mode. RGB images have
3 color channels, and the three color channels store different
color information. Comparing the three-channel difference of
two images, you can analyze the difference and quality of the
two images. First, the original color image and the image with
salt and pepper noise added are separated in three channels,
and the standard deviation of the three channel matrices are
calculated at the same time, and then the mean value of the
standard deviation of the three channels is calculated. Finally,
the variance of the standard deviation of the three-channel
matrix is obtained, which is our evaluation parameter.

σ1 =

m∑
i=1

n∑
j=1

√√√√(
xij1 − x ′ij1

)2
m∗n

(9)

σ2 =

m∑
i=1

n∑
j=1

√√√√(
xij2 − x ′ij2

)2
m∗n

(10)

σ3 =

m∑
i=1

n∑
j=1

√√√√(
xij3 − x ′ij3

)2
m∗n

(11)

FIGURE 6. PSNR,SSIM and E vs noise intensity curve.

E =

√
σ 2
1 + σ

2
2 + σ

2
3

3
(12)

In the above formula, m and n respectively indicate that
the dimension of the image is m ∗ n ∗ 3, xij indicates the pixel
with coordinates (i, j) in the original image, and x ′ij indicates
the pixel with coordinates (i, j) in the image after adding
noise. That is, σ1, σ2, σ3 are the standard deviation of the two
images of the R,G,B channels. Finally, find the color space
difference between the two images, which can also reflect
the quality of the images. It can be seen that as the noise
intensity increases, the picture quality becomes worse and
worse, and the E value becomes larger and larger. It not only
meets the comfort of human eyes, but also meets the accuracy
of the calculation model, so this method of calculating image
quality is effective.

3) IMAGE DENOISING ALGORITHM
When the image quality evaluation parameter E > 10.5
(Because when the PSNR ≤ 15, it is recognized that there is a
large loss in image quality, and the corresponding noise is 0.1.
at this time, E is 10.5.), we believe that the image quality has
unacceptable distortion, and it is necessary to remove noise.
We choose the best denoising algorithm-BM3D algorithm,
which finds two-dimensional image blocks that are similar
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to the reference block through similarity determination, com-
bines similar blocks into three-dimensional groups, performs
collaborative filtering processing on the three-dimensional
groups, and aggregates the processing results to the position
of the original image block.

FIGURE 7. BM3D algorithm denoising comparison.(A) is an image with a
noise of 0.2,PSNR = 12.0902,SSIM = 0.371,E = 11.76;(B) is the image after
denoising, PSNR = 18.473,SSIM = 0.4697,E = 9.72 (C) is an image with a
noise of 0.12, PSNR = 14.2285,SSIM = 0.3981,E = 10.32 (D) is the image
after denoising, PSNR = 20.4725,SSIM = 0.5183,E = 9.41.

D. SEA-SKY DETECTION MODULE
Generally, the detection, recognition, positioning and track-
ing of targets in water surface images require sea-sky line
to play an auxiliary role, so the extraction of sea-sky line
information is of great significance. For example, a sea-sky
line can be used to solve the problem of stereo camera
calibration; water boundary detection is sometimes a key
step in surface target detection, which can narrow the search
space. At present, there have been many detection meth-
ods for sea-sky line, which are mainly based on the princi-
ples of row mapping histogram, gradient transform, wavelet
transform, Radon transform, and maximum inter-class
variance.

SVM is a two-class classifier. It is trained according to
the sample training set, and a relatively optimal hyperplane
is obtained through training (as shown in Figure 2-7). This
hyperplane can perfectly separate the two types of data, and
the distance between the two types of data separated at the
same time is the largest among all planes. Support vector
machines have the advantages of strong adaptability, opti-
mization, substantial theory, and low training cost [26]. The
sea-sky we need is the hyperplane that separates the sky area
and the water surface in the water surface image, so the SVM
idea can be used for sea-sky detection.

We set the training set as: S = {(x1, y1) . . . (xi, yi)}. Among
them, xi ∈ Rn, yi ∈ {−1, 1}, n is the dimensionality of each
training point, that is, the number of features. The goal of
the support vector machine is to construct a decision function
f (x) = (w̄ ∗ x)+ b̄ that can correctly divide the training data
into two parts as much as possible. The final classification
hyperplane of the support vector machine is:

(w̄ · x)+ b̄ = 0 (13){
((w̄ ∗ x)+ b̄) ≥ 0, yi = +1
((w̄× x)+ b̄) ≤ 0, yi = −1

i, . . . 1 (14)

Among them: w̄ is the normal vector of the hyperplane,
which can be obtained:

yi(w̄ ∗ x)+ b ≥ 0, i = 1, ..1 (15)

There is ε for a finite number of samples, such that:

yi(w̄ · x)+ b ≥ ε, i = 1, . . . 1 (16)

We set w = w̄
ε
, b = b̄

ε
, we can get: yi (w̄∗xi)+ b̄ ≥ 1,∀i.

In order to get the best classification results, wewill choose
to train such a hyperplane, which can accurately separate
the training sample data, and the closest distance to the
hyperplane in the two types of training data is the largest.
This hyperplane is the optimal hyperplane. This maximum
distance is recorded as ρ(w, b), (w · x) + b = ±1, is called
the support hyperplane.

FIGURE 8. Sea-sky line (Hyperplane, that is the red line $ · x + b = 0)
detection method based on SVM.

The existing sea-sky detection methods mainly include
Hough detection, and based on gradient saliency. we have
compared these two methods with our method. It can be
seen that the detection method based on gradient saliency
detects many interference lines, and detects some waves on
the water surface as straight lines, and the real sea-sky cannot
be detected correctly.We have performed the longest line seg-
ment detection based on the Hough line detection, as shown
in the blue line segment in Figure (b), because the sea-sky
is the longest line segment in the image. It can be seen that
this method also produces many interference line segments,
and it cannot accurately detect the sea-sky. Our SVM-based
sea-sky detection method can accurately detect the sea-sky,
but the disadvantage is that a large amount of data needs to
be calibrated in advance, which is not required by the first
two methods. The next improvement method is to improve
the SVM into multiple classifications, that is, the image is
divided into three parts: sky, shore and water surface, which
is more useful for sea-sky detection.

E. SEA-SKY DETECTION MODULE
In order to achieve high-quality perception in a complex
environment, a variety of sensors must be used to achieve
a more comprehensive perception by fusing a variety of
different sensor data. In the perception layer of USV sys-
tems, the most commonly used sensors are cameras and
lidars. Lidar can obtain high-precision depth information.
However, only sparse point clouds with limited resolution
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FIGURE 9. Sea-sky detection comparison experiment.(a) Sea-sky
detection based on gradient significance;(b) Sea-sky detection based on
Hough;(c) Our sea-sky detection based on SVM.

can be obtained. The camera can obtain high-resolution color
and texture information from the environment, but cannot
obtain high-precision depth information. Therefore, cameras
and lidars are complementary at the data level. In order to
achieve high-quality sensor fusion, the calibration of external
parameters of the camera and lidar is a very important part.
When the precise coordinate system transformation relation-
ship between the camera and the lidar is obtained, can the
camera image data and the lidar point cloud data be accurately
matched, and data can be merged at various levels.

1) JOINT CALIBRATION OF CAMERA AND LIDAR
There are four coordinate systems in the camera model,
world coordinate system, camera coordinate system, image
physical coordinate system and pixel coordinate system. The
world coordinate system, on which the spatial position of
the camera and the object to be measured can be described.
The position of the world coordinate system can be freely
determined according to the actual situation [27]. The camera
coordinate system’s origin is at the center of the lens, the
x and y axes are parallel to the opposite sides of the phase,
and the z axis is the lens optical axis, perpendicular to the
image plane.

In the coordinate system conversion, the world coordi-
nate system (xw, yw, zw) and the camera coordinate system
(xc, yc, zc) can be described by the following formula, where
R is the rotation matrix and t is the translation matrix

xc
yc
zc
1

 = [R t
0 1

]
xw
yw
zw
1

 (17)

Considering that the unit length of the pixel and the unit
length of the image coordinate system are scaled by α times
and β times respectively in the x direction and the y direction,
and the pixel coordinate system takes the upper left corner
of the image as the origin, and the image coordinate system
has offsets of cx and cy in the x direction and y direction,
respectively. The relationship between the pixel coordinates
and the image coordinates is:

µ = αx + cx , v = βy+ cy (18)

In summary, the relationship between arbitrary world coor-
dinates and pixel coordinates can be obtained:

zc

 xy
1

 = K

 xcyc
zc

 =
 fx 0 cx

0 fy cy
0 0 1

 xcyc
zc



FIGURE 10. Baumer camera(VCXG-25M).

FIGURE 11. Opencv camera calibration tool.

=

 fx 0 cx
0 fy cy
0 0 1


×

R11 R12 R13
R21 R22 R23
R31 R32 R33

XWYW
ZW

+
 txty
tz


(19)

According to formula (19), divided by the scale factor Zc,
we establish a mapping relationship from world coordinates
to pixel planes. For the convenience of calculation, we assume
that the plane where the object point is located in the world
coordinate system passes through the far point of the world
coordinate system and is perpendicular to the z axis, so that
Zw = 0. Define the homography matrix as:

H = s

 fx 0 cx
0 fy cy
0 0 1


×

R11 R12 R13
R21 R22 R23
R31 R32 R33

XWYW
0

+
 txty
tz


= s

[
R1 R2 1

]XWYW
1

 (20)

Among them, s is the scale factor, R1,R2 are the correspond-
ing column vectors in the rotation matrix.

h1 = sKR1, R1 = λK−1h1
h2 = sKR2, R2 = λK−1h2
h3 = sKt, t = λK−1h3, λ = s−1 (21)

According to the property that the length of the rotation
vector does not change after rotation, we can get:

‖R1‖ = ‖R2‖ = 1 (22)

RT1 R1 = RT2 R2 (23)

hT1K
−1τK−1h1 = hT2K

−1rK−1h2 (24)
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TABLE 1. Internal parameter values for calibration of camera.

B =
(
K−1

)T
K−1

=



1
f 2x

0 −
cx
f 2x

0
1
f 2y

−
cy
f 2y

−
c2x
f 2x

−
c2y
f 2x

c2x
f 2x
+
c2y
f 2y
+ 1


=

B11 B12 B13
B21 B22 B23
B31 B32 B33

 (25)

The formula (24) can be simplified to:

hT1 Bh2 = hT2 Bh2 (26)

Since B is a symmetric matrix, so the formula (25) is:

hTi Bhj = vTij b (27)

vij =
[
h1hj1, h11hj2 + hi2hj1, hi2hj2, hi3hj1
+h1hj3, hi3hj2 + hi2hj3, hi3hj3

]
(28)

Therefore, the formula (27) can be written as:[
vT12

(v11 − v22)T

]
b = 0 (29)

When we provide a certain amount of data, equation (29)
has a solution to b, and then the camera internal parameter k
can be obtained. After the internal parameters are obtained,
the external parameters can be further solved by formula (24).

The image data captured by the camera is represented by
a 3-dimensional lattice cloud captured by Lidar. The goal is
to create a transformation matrix that maps 3D points to 2D
points, namely:

 u
v
1

 =
 fu 0 u0

0 fv v0
0 0 1

(R t
0 1

)
x
y
z
1



=


m11 m12 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34
m41 m42 m43 m44



x
y
z
1

 (30)

The matrix is the camera parameter, and is the XY axis
direction scale factor (the effective focal length in the hor-
izontal and vertical directions), and the center point of the
image plane, also known as the principal point coordinates.
For the rotation matrix, the translation vector.

TABLE 2. The distortion coefficient of the camera.

FIGURE 12. Schematic diagram of the joint calibration of camera and
lidar.

FIGURE 13. Lidar point cloud and calibration board image matching.

TABLE 3. The rotation matrix and translation matrix values obtained by
the joint calibration of the camera and the lidar.

2) TARGET DETECTION BASED ON INFORMATION FUSION
YOLOv3 is the third version of the YOLO (You Only Look
Once) series of target detection algorithms. Compared with
the previous algorithms, especially for small targets, the accu-
racy has been significantly improved. Our surface targets
have many small targets, so this algorithm is also suitable for
the application environment of USV. The main improvements
of YOLO3 are: adjust the network structure; use multi-scale
features for object detection; use Logistic to replace softmax
for object classification [28].

The basic idea of YOLO V3 algorithm can be divided into
two parts:

(1) A series of candidate regions are generated on the
picture according to certain rules, and then the candidate
regions are labeled according to the positional relationship
between these candidate regions and the real frame of the
object on the picture. Those candidate regions that are suf-
ficiently close to the ground truth box will be marked as
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FIGURE 14. YOLOV3 target detection used in our paper. On the basis of
the original YOLOV3, we improve the size of anchor and introduce sea-sky
assistance, both of which improve the accuracy of target detection.

positive samples, and the position of the ground truth box will
be used as the position target of the positive sample. Those
candidate regions that deviate greatly from the true frame will
be marked as negative samples, and negative samples do not
need to predict the position or category.

(2) Use convolutional neural network to extract image
features and predict the location and category of candidate
regions. In this way, each prediction box can be regarded as a
sample, and the label value is obtained according to the posi-
tion and category of the real box relative to it. The network
model predicts its location and category, and compares the
network prediction value with the label value to establish a
loss function.

a: DATASETS
We produce16 types of surface targets, including red, green,
blue, black, white, and yellow surface buoys, red, green,
and blue triangle signs, red, green, and blue circle signs,
and red, green, and blue cross signs. Surface floats and
so on. Firstly, image data is collected, and video data is
collected using the camera carried by the USV. Pass the
video data through FFMPEG to obtain pictures that meet the
requirements, the number of pictures is 8000, and the picture
size is 1920∗1080; then use Labelimg to label the collected
8000 pictures. And according to the difficulty of the target,
calibrate the difficult nature, and generate the data set in VOC
format.

b: DATA ENHANCEMENT
In order to improve the generalization ability and the robust-
ness of the model, so we increase the amount of training
data. We change the brightness of the image and adjust it
to 0.5, 0.8 and 1.2 times of the original image, as shown in
the following figure (b), (c) and (d); rotate the image, change
the angle of the target in the image, respectively, 5, −5, 10,
−10, the scores are (e), (f),, (g) and (h); mirror operation,
symmetrical operation of the position of the target in the
image, as shown in figure (I);change the size of the target
in the image and zoom in, as shown in figure (m);change

FIGURE 15. Data enhancement operations, including brightness, rotation,
mirroring, scale, contrast, hue changes, etc.

the contrast and increase the contrast of the image, as shown
in figure (n);change the hue of the image and adjust the
saturation of the image, as shown in (o). Therefore, the data
set has increased from the original 8000 images to the current
96000 images.

c: GENERATE NEW ANCHORS
The size of the target in our surface environment is different
from the VOC and COCO data sets, so if we continue to use
the default anchor size in the algorithm for target detection,
there will be errors, so we recalculate the anchor size for
the target in the USV specific environment, the calculation
method adopts the K-means method. The specific calculation
steps are as follows:
Step 1: We need to extract all bounding box coordinates,

extract all rectangular boxes of all pictures, and put them
together.
Step 2:Data processing to obtain the width and height data

of all the training data bounding boxes. The training data
given is often the 4 coordinates of its bounding box, but we
need to convert the coordinate data to the width and height of
the box. The calculation method is as follows:

w = anchorwiath × inputwidith/downsamples

h = anchorheight × inputheight/downsamples (31)

Length = abscissa of lower right corner-abscissa of upper
left corner, width= ordinate of lower right corner-ordinate of
upper left corner.
Step 3: Initialize k anchor boxes, and randomly select k

values from all the bounding boxes as the initial values of the
k anchor boxes.
Step 4: Calculate the IOU value of each bounding box and

each anchor box.
The original official default anchor size is (10, 13 16,

30 33, 23 30, 61 62, 45 59, 119 116, 90 156, 198 373,
326). After K-means calculation [29], set the input net-
work image size to 416∗416, get new anchors, the size
is (12.2742 11.9937, 29.3959 26.8536, 43.8952 41.6611,
53.2567 64.8536, 72.9625 53.5407, 77.5597 86.2044,
126.3383 85.6498, 104.5958 119.1917, 224.8133 184.2880)
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FIGURE 16. Anchors calculated based on K-means.

FIGURE 17. False targets that may be detected in target detection.

d: SEA-SKY LINE ASSISTS IN ELIMINATING FALSE POSITIVE
TARGETS
Water surface target detection is different from natural image
target detection in that the targets are distributed on the water
surface, that is, below the sea-sky line. This is the prior
experience of surface target detection, which is why the sea-
sky detection is performed before surface target detection.
Therefore, many false targets can be removed based on this
prior experience, as follows:

FIGURE 18. Schematic diagram of sea-sky line assists target detection to
eliminate false targets.

Since we know the position of the sea-sky line according to
the SSDM, we can get the two-point coordinates of the two
possible maximum X coordinates xm1, xm2 according to the
target detection bounding box (such as the position of the red
point and the green point on the detection frame), and also
get the two points N1 (xn1, ym1) ,N1 (xn1, ym1) on the sea-sky
line corresponding to the Y coordinate value, and some of the
surface targets must exist below the sea-sky line, that is, they
exist, so the judgment formula is as follows:

M =

{
True xn1 ≤ xm1 or xn2 ≤ xm2
False others

(32)

FIGURE 19. Comparison of loss curves of the four methods.

TABLE 4. YOLOV3 and YOLOV3+anchors, YOLOV3+sea-sky and
YOLOV3+anchors+sea-sky four methods MAP comparison.

e: TRAINING
Train on our data set and set different parameters for training.
When the input network image size is 416∗416, batch = 32,
subdivisions = 8, the learning rate is set to 0.001, the anchor
point is the official default size, and the number of training
times is set to 70,000. The loss curve is as follows: (1) Clas-
sic YOLOV3; (2) use K-means to generate new anchors
instead of default anchors; (3) use sea-sky to help eliminate
false targets; (4) combine K-means to generate new anchors
and sea-sky to assist with false targets. The model trained
by the four methods calculates the mean average precision
(MAP)on the test set, and the original YOLOV3 is 0.834,
the YOLOV3+ anchors is 0.846, the YOLOV3+sea-sky is
0.843 and the YOLOV3+anchors +sea-sky is 0.849. There-
fore, it can be seen that the two auxiliary target detection
methods are effective, and the maximum increase is 1.5%.

f: LIDAR DATA PROCESSING
The point cloud image of the lidar is processed to obtain
the point cloud cluster information of the surface target. The
specific segmentation target steps are as follows:

(1) The lidar uses 16 threads. After actual water tests,
the test distance is set to 60m as the longest distance.

(2) Use a straight-pass filter to limit the sampling range to
45 degrees on the port and starboard sides of the USV, reduce
the number of data points that need to be processed and
reduce the amount of calculation to achieve real-time require-
ments, which is beneficial to the angle of view of 90 degrees
with the camera.

(3) Then use Conditional Removal filter to delete all scat-
tered data points in the input point cloud that do not meet the
clustering requirements. Due to the particularity of the water
surface environment and the impact of shore objects when the
USV is near the shore, the point cloud density distribution
obtained by lidar scanning is uneven, and the point cloud
data under the water surface environment is more sparse.
And there are scattered interference points. This will cause
interference to point cloud feature recognition and point
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cloud clustering, resulting in missed or false target detection.
The Conditional Removal filter analyzes the neighborhood of
each point.

(4) Calculate the Euclidean distance between all neigh-
boring points of a certain point, and identify the points with
too few neighboring points as outlier interference points and
remove them from the data set.

(5) This removes scattered data points on the water surface.
Then input the filtered point cloud data into Kd-Tree to
simplify the calculation. Kd-Tree is a high-dimensional index
tree data structure developed from BST. It can save the time
required for clustering andmeet the requirements of real-time
detection.

(6) Then use Euclidean clustering to segment the target
object. The feature points are extracted and the 3D points in
the depth point cloud image are projected to the 2D image
coordinate system.

(7) By searching the neighboring points in Kd-Tree, based
on the distance threshold from a certain point to other neigh-
boring points, segment the filtered point cloud to obtain
the target. At the same time get the bounding boxes of the
segmented target, and add the label

FIGURE 20. Image and point cloud two-dimensional bounding boxes
fusion process.

g: IMAGE AND LIDAR INFORMATION FUSION
Image information and lidar point cloud information are
fused. Multi-sensor information fusion includes the unity
of space and time. The GPS frequency on the USV is 6,
the camera frequency is 20, and the lidar frequency is 15.
We take the same image frame and point cloud data in the
time dimension.

In order to ensure the uniformity of lidar data and image
data in space, we use the following methods, which mainly
includes the following steps:

(1) Project the obtained target point cloud cluster and
the bounding boxes surrounding it onto the two-dimensional
image plane to obtain the two-dimensional bounding boxes
of the point cloud;

(2) Then calculate the two-dimensional bounding boxes
and image bounding boxes Ai IOU of all point clouds,

(3) Obtain the two-dimensional bounding boxes Bj of the
point cloud with the maximum value of the bounding boxes
Ai IOU of the image target detection frame;
(4) Obtain the Ai and Bj obtained in the above steps, and

merge the information of the two, that is, the target type of
the target detection frame Ai, and the Bj point cloud detection
frame includes the distance and orientation of the target from
the USV.

F. OBSTACLE AVOIDANCE MODULE
In the marine environment with unknown dynamics, USV
will inevitably encounter obstacles during autonomous nav-
igation. USV can identify and avoid obstacles based on data
collected by lidar and cameras. According to STDM, get the
type of surface target, the distance and direction angle relative
to USV. According to the electronic compass and inertial
navigation, we can collect the USV’s latitude and longitude
position information and heading angle in real time. Accord-
ing to the distance and direction angle of the obstacle relative
to the USV, we use the longitude and latitude calculation
formula to calculate the longitude and latitude coordinates
of the obstacle. Therefore, we save the types of obstacles,
latitude and longitude coordinates in the perception map we
constructed.

FIGURE 21. USV, obstacles and geodetic coordinate system.

Suppose the positions of USV U and obstacle A are as
shown in the figure below. The USV’s own coordinate sys-
tem XbObYb is the right-handed coordinate system, and the
geodetic coordinate system XeOeYe is the true north and true
east coordinate system. According to the inertial navigation,
the longitude and latitude of the USV is DU (JU ,WU ), and
according to the formula (36), the longitude and latitude of
the obstacle DA (JA,WA) can be obtained.

JA = JU +

[
L ∗ sin (θ∗pi/180)

]
[111 ∗ cos (WU ∗ pi/180)]

(33)

WA = WU +

[
L∗ cos (θ∗pi/180)

]
111

(34)

We stipulate that the distance between USVU and obstacle
A is L, in km. (JU ,WU ) , (JA,WA), are all angles, the direction
angle θ is the angle, and clockwise in the north direction
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is positive. At the same longitude, the latitude differs every
other degree by 111 km; at the same latitude, the longitude dif-
fers every other degree by 111∗cos(latitude of the point) km;
the latitude distance difference between two points at the
same longitude is L ∗ cos(θ ∗ pi/180); the longitude dis-
tance difference between two points at the same latitude
is L ∗ sin(θ ∗ pi/180). So the offset in longitude is
[L ∗ sin(θ ∗ pi/180)]/ [111 ∗ cos (Wb ∗ pi/180)]; the offset
degree in latitude is [L ∗ cos(θ ∗ pi/180)]/111.

Based on the above information, we can construct a USV
environment perception map to mark the types and real-time
locations of targets within the perception range. Based on
the above information, we can construct a USV environment
perception map to mark the types and real-time locations
of targets within the perception range. We add the distance,
direction angle and target type of all targets relative to USV to
a matrixM . According to formula (36), a USV environmental
perception map (UEPM) matrix N can be calculated.

M ∗ DU =


(θ1,L1,C1)

(θ2,L2,C2)
...

(θn,Ln,Cn)

 [(Ju,Wu)]

= N =


(J1,W1,C1)

(J2,W2,C2)
...

(Jn,Wn,Cn)

 (35)

After we have obtained the latitude and longitude coordi-
nates and types of all targets above, we set different safety
collision radii (3m for the sphere, 5m for the buoy, 6m for
the kayak, etc.) according to the type, and finally, we use the
A∗ algorithm to plan the path for collision avoidance.

IV. EXPERIMENT
To test our algorithm, we conducted tests in Songhua River,
China and Hawaii, USA. After completing the algorithm
verification and the establishment of the USV platform,
‘‘WAM-V-USV’’ conducted an 80-day field test on the
Songhua River in China and a 20-day Unmanned Surface
Vehicles Challenge in the Hawaiian waters of the United
States. We have produced 16 surface targets. The specific
model is shown in Figure 24(a) below. According to the
experimental arrangement, the target detection and tracking,
intelligent navigation test and autonomous obstacle avoid-
ance test were carried out.

We set up the following tasks to test the target detec-
tion and obstacle avoidance performance of USV: USV rec-
ognizes the door and passes it automatically; USV passes
through the obstacle area; USV surrounds different types
of goal posts. The schematic diagram of the three tasks are
shown blow:

The first task is the task of passing the door, as shown in the
figure (a) above, the first task is the task of passing the door,
as shown in the figure (a) above, specifically, it is to identify
and locate the first red and green post, after USV enters the

FIGURE 22. FUSV marine test.(a) Model on Songhua River;(b) Hawaii
competition venues;(c) USV is on an obstacle avoidance mission.

FIGURE 23. Schematic diagram of two tasks. (a).USV recognizes the door
and passes it; (b).USV automatically passes through the obstacle area.

FIGURE 24. In the task of passing the door, the position of the USV,
the door and the target point are divided into alternate models, and the
red and green signs and blue points are marked.

FIGURE 25. Through the obstacle area task, spherical obstacles are
marked with black dots, and USV is marked with models.

first gate, then identify and locate the second goalpost, and go
through, after successfully stepping out of the second door,
the test is considered successful. Our strategy is to detect
the red and green pillars of the first door, obtain the latitude
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FIGURE 26. The main page of the shore control box. Mainly include USV
position information, posture information, task information, movement
parameters and environmental perception information, etc.

FIGURE 27. Our USV perform tasks in Unmanned Surface Vehicles
Challenge in Hawaii. (a). USV detects and locates the post to complete the
task; (b). USV autonomously passes through obstacle areas.

TABLE 5. Frame detection accuracy based on information fusion.

and longitude coordinates A (JA,WA) and B (JB,WB) and of
the two pillars according to UEPM, and set the first target
point of USV as the midpoint E (JE ,WE ) between A and B,
after reaching the first target point E , continue to move
forward. Then after detecting the red goalpost and the green
goalpost of the second goalpost, the latitude and longitude
coordinates of the two are C (JC ,WC ) and D (JD,WD), set
the second target point of USV as the midpoint F (JF ,WF )

between C and D.
In the experiment, we set the latitude and longitude posi-

tion of the dock as the origin o, The picture above shows
our shore console interface, we marked the location of the
identification and location on the map, and carried out the
door test according to the above strategy. The red and green
in the picture are the goal posts, the blue point is the target
point, and the real-time position of the USV is marked by the
model.

The second task is through the obstacle area. We identify
and mark all the detected and located obstacles, mark them in
our UEPM, and use the A∗ algorithm for path planning.

Tested in various environments, including rainy weather,
cloudy weather and other bad weather, randomly selected
500 test pictures, the test results are as follows:

V. CONCLUSION
Aiming at the technical problems of USV environment per-
ception, this paper builds a complete USV perception sys-
tem from the perspective of multi-sensor information fusion.
Because the water surface image is different from the nat-
ural image, we have verified through experiments that the
PSNR and SSIM quality evaluation parameters are suitable
for the water surface image. In addition, according to the
multi-channel characteristics of the water surface image,
we define an image quality evaluation parameter E , and then
calculate it according to the value of E determine whether
to use BM3D noise reduction operation. We also studied
the method based on morphology to deal with the reflection
of the object on the water surface, and studied the sea and
sky detection based on SVM, and the experiment proved
that it is better than the traditional method. And it assists
the detection of surface targets. According to the charac-
teristics of the surface targets, we eliminate false positive
targets and improve the performance of target detection.
Through the joint calibration of the camera and the lidar,
we fused the processed point cloud and image information,
and proposed a multi-modal data fusion method. Based on
this, the environment perception map was constructed to
assist the USV to complete Obstacle avoidance task. After
testing in Songhua River, China and participating in the U.S.
Unmanned Boat Challenge in Hawaii, it is proved that the
information fusion algorithm based on this paper has good
detection effect and obstacle avoidance function, and can
meet the real-time and practicality and stability in the actual
environment.
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