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ABSTRACT With the deepening of the ‘‘source-load-storage’’ interaction and the development of demand
response technology, the emergence of prosumers has led to new vitality and potential for the optimal
operation of microgrids. By implementing a demand response mechanism for prosumers, peak shaving
and valley filling are realized, and load fluctuations are balanced. However, the high costs of investing and
operating energy storage system (ESS) restrict their ability to participate in the scheduling of microgrids.
In this paper, for the objectives of obtaining the lowest comprehensive costs and the smallest load fluc-
tuations, an INSGA-II (Improved Fast Nondominated Sorting Genetic Algorithm) algorithm is proposed
for the multiobjective configuration optimization model of a prosumer’s ESS. To ensure the diversity of the
population and improve the search ability of the algorithm in space, based on the original NSGA-II algorithm,
the proportion factor set in the selection strategy is improved. The normal distribution crossover operator
is introduced in the crossover process, and the local chaotic search strategy is added after the formation
of the next generation of the population. An example of a science and technology park with five users is
simulated and analyzed. Upon comparison with various typical intelligent algorithms, the results show that
the performance of the improved NSGA-II algorithm is the best. At the same time, multiple calculation
results show that the improved NSGA-II algorithm has strong algorithmic stability.

INDEX TERMS Prosumer, multiobjective optimization, INSGA-II, energy storage system configuration,
comprehensive cost.

I. INTRODUCTION
At present, with the diversification of energy usage patterns
and the pursuit of users’ electricity experiences, prosumers
with bidirectional power regulation characteristics are con-
stantly emerging [1], and these has brought new vitality to
modern microgrid optimization scheduling [2], [3]. Demand
response technology is a powerful tool for the optimal dis-
patching of microgrids [4]–[7]. Ref. [4] presented a novel
control algorithm for joint demand response management in
microgrids to integrate renewable sources and reduce energy
costs. Ref. [5] achieved a balance of energy deficiencies
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through a multi-microgrid alliance. Ref. [6] used game the-
ory to study the interaction between an active distribution
network and a microgrid containing prosumers. Ref. [7]
realized the demand management of grid-connected micro-
grids through distributed control and human-in-the-loop
optimization.

As prosumers have rich scheduling resources, such as
photovoltaic storage, electric vehicles, and other forms of
distributed energy storage devices, through the coordination
of scheduling resources via demand response, the operational
efficiency of prosumers can be greatly improved when partic-
ipating in microgrid scheduling [8]. However, due to the high
investment and operational costs of energy storage equip-
ment in prosumers, the activities of prosumers participating
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in demand response are restricted, so these problems, such
as the reasonable configuration of ESS and the orderly
charging-discharging scheduling of prosumers, are gradually
highlighted [9].

The ESS configuration for a prosumer in a microgrid is
a mixed nonlinear programming and multiobjective opti-
mization problem. At present, the common algorithms for
multiobjective optimization are the strength Pareto evolution-
ary algorithm [10]–[12], multiobjective differential evolution
algorithm [13], [14], and multiobjective particle swarm opti-
mization algorithm [15], [16]. Among them, the principle of
particle swarm optimization is simple and easy to implement.
Ref. [17] used the particle swarm optimization algorithm to
solve the problem of configuring the energy storage capacity
in a microgrid. However, the particle swarm optimization
algorithm has the problems of low search accuracy and eas-
ily falling into local optima. Ref. [18] used the enhanced
Pareto evolutionary algorithm to solve the energy distribution
problem of a microgrid, but the local search ability of the
algorithm is poor. Ref. [19] improved the mutation strategy
in the multiobjective differential evolution algorithm, which
was used to solve the power generation capacity configura-
tion problem of a wind-solar hybrid system. The optimization
speed of the algorithmwas improved. In short, the above algo-
rithms generally have the problems of low search accuracy
and slow convergence speed.

The NSGA-II algorithm was proposed by K. Deb et al.
in 2002 based on the elite strategy of the fast nondominated
sorting genetic algorithm [20]. By introducing the crowding
distance method and elite strategy, NSGA-II can effectively
ensure population diversity and improved global optimization
ability. Compared with the ordinary genetic algorithm [21],
its computational complexity is greatly reduced, thereby
accelerating the Pareto front convergence process. At the
same time, the independence of each optimization objective
is maintained to the greatest extent possible. In view of the
above advantages, the NSGA-II algorithm is very suitable
for solving the mixed nonlinear multiobjective optimization
problem in this paper. NSGA-II has been successfully applied
to many power optimization problems, such as multiobjective
reactive power optimization in power systems [22], the multi-
objective optimization of integrated energy systems [23], and
the multiobjective optimization of microgrids [24]–[26], and
it has achieved good results.

Although the NSGA-II algorithm, as a classic multiob-
jective genetic algorithm, has been widely used, it still has
room for improvement. For example, in the early stages of
evolution, the dominant individual of the external elite popu-
lation lacks elites, and the local search ability is weak. In this
paper, a multiobjective optimization configuration model for
a prosumer’s ESS is established. Then, the original NSGA-II
algorithm is improved from three aspects with regard to solv-
ing the model: the proportion factor in the selection strategy,
the crossover operator and the local chaotic search strategy.
Finally, we take a science and technology park with three
typical users as a simulation example. According to the rigid

load level and PV output in the park, the improved NSGA-II
algorithm is used to complete the ESS configuration for
the prosumer. Simulation results show that the improved
NSGA-II algorithm can obtain a better Pareto solution set and
better algorithmic stability than other algorithms (SPEA2,
NSGA-II, NSGA-III).

II. THE PROSUMER ARCHITECTURE AND ITS
SCHEDULING MECHANISM
A. TYPICAL STRUCTURE OF A PROSUMER
The typical structure of a prosumer is shown in
Figure 1, including a load, a photovoltaic cell array, a photo-
voltaic DC/AC inverter, an ESS, and its bidirectional AC/DC
converter. The demand response resources in microgrids
with prosumers are mainly divided into four categories:
photovoltaic, energy storage, load, and electricity price
resources. During the operation of a microgrid, the four
types of resources are closely combined. Thus, for prosumers,
the capacity configuration of an ESS is not only influenced
by the scheduling strategies of the microgrid but also related
to the prosumer’s demand response and price resources. The
ESS of a prosumer can be used as a source or load for
bidirectional energy exchange with the microgrid.

FIGURE 1. A microgrid system with a prosumer.

B. SCHEDULING MECHANISM OF A PROSUMER’S ESS
The configuration strategy for an ESS is shown in Figure 2.

According to the load level and the electricity price issued
by the microgrid, by comprehensively considering the invest-
ment cost and operational cost of energy storage in the pro-
sumer, the objective function of these costs and the load
fluctuation is established to optimize power capacity and
energy capacity and obtain the charging-discharging strategy
for energy storage. It should be noted that, compared with
a rigid load, a flexible load has a strong demand response
ability, so it can respond to changes in the electricity price
by adjusting its own load. Therefore, the configuration of
ESS proposed in this paper mainly aims at the rigid loads of
prosumers.

By comprehensively analyzing the photovoltaic output
characteristics, load characteristics, ESS characteristics and
time-of-use electricity prices of the system, the typical charg-
ing and discharging strategies for ESS of prosumers can be
summarized as follows:
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FIGURE 2. Multiobjective optimization model of energy storage for
prosumers.

(1) During the mid-level electricity price periods in the
early hours of the morning, the ESS battery discharges for
the load, and the remaining load shortage is compensated by
purchasing electricity from the microgrid.

(2) In the morning, if the PV output is more than the load,
after meeting the load demand, the residual PV output is used
to charge the ESS batteries; otherwise, after consuming all PV
energies, the remaining load shortage is met by the microgrid.
In this period, the ESS remains in the charging state until full.

(3) During the mid-level price periods in the afternoon,
without any charging or discharging by the ESS, the load
demand is supplied by the PV output, and the remaining
load shortage is balanced by purchasing electricity from the
microgrid.

(4) During the peak price periods at other times, as the PV
output decreases to zero, the ESS batteries discharge power
for the load until the SOC value drops to the minimum,
and then the remaining load shortage is compensated by
purchasing power from the microgrid.

III. ESS CONFIGURATION MODEL FOR A PROSUMER
Energy storage is a powerful tool to assist with the demand
response of a prosumer, as it can enhance the active interac-
tion between the prosumer and microgrid by optimizing their
own electricity consumption behaviors and reduce electricity
costs. In the current market, ESS are mainly made of lithium
batteries. Due to the high prices of materials and complex
manufacturing technology, it is difficult for a single user to
bear the installation cost of a large-capacity ESS. Thus, when
preparing to configure ESS for prosumers, it is necessary to
design an effective capacity configuration model that consid-
ers the electricity price, investment cost and influence of load
forecasting according to different application scenarios and
prosumer demands.

As it is affected by many factors, the configuration of an
ESS for a prosumer is a multiobjective optimization problem.
The time sequence of the renewable energy generation and
load adjustment in the microgrid lead to an increase of load
fluctuation, which can be eliminated by the ESS to some

extent. At the same time, the relatively high costs of instal-
lation and operation must be considered when optimizing
the configuration of an ESS. In summary, this paper selects
the comprehensive cost and the load fluctuation as the opti-
mization objectives of the ESS configuration process for
prosumers.

A. OBJECTIVE FUNCTION 1
The economic goal of the model considers the installation
cost and operational cost of energy storage [27]. Therefore,
the composite cost of energy storage system in a prosumer is
defined as:

min f 1 = IDESinv + O
DES
Operator

=
r

1− (1+ r)−Y

(
cDESE PDESCap + c

DES
E EDESCap

)
+

∑
t∈T

[
λt

(
PCt − P

D
t + dt − Pv,t

)+
+ θt

(
PCt − P

D
t + dt − Pv,t

)−]
1t (1)

In Equation (1), λt represents the purchase price at time t ,
θt represents the repurchase price at time t , dt represents
the rigid load demand of the prosumer at time t , Pv,t rep-
resents the photovoltaic output at time t , PCt represents the
charging power of the prosumer at time t , PDt represents the
discharging power of the prosumer at time t , PCap represents
the maximum power capacity, ECap represents the maximum
energy capacity, ICESinv represents the energy storage invest-
ment cost,ODES

Operator represents the energy storage operational
cost, Y represents the service life of the ESS, γ represents the
discount rate, cDESP represents the investment cost per unit of
power capacity, and cDESE represents the investment cost per
unit of energy capacity.

B. OBJECTIVE FUNCTION 2
Due to the large-scale integration of wind power, photo-
voltaics and other renewable energy sources, the intermit-
tence of their outputs exacerbates load fluctuations, that may
impact the stability of microgrid operation. Since the ESS has
the ability of damping load fluctuations, which are used as
the second optimization objective for the model, the corre-
sponding function is expressed as follows:

f2 =
24∑
t=1

(PCt − P
D
t + dt − Pv − Pavg)

2 (2)

Pavg =

24∑
t=1

(PCt − P
D
t + dt − Pv)

24
(3)

In the formula, Pavg is the average equivalent load power.

C. CONSTRAINT CONDITIONS
The configuration of the ESS for prosumers needs to meet
the SOC capacity constraints, the upper and lower limits of
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the capacity constraints and other conditions [27], which are
as follows:

PCapmin ≤ PCap ≤ PCapmax (4)

ECap
min ≤ ECap

≤ ECap
max (5)

0 ≤ PCt ≤ P
Cap (6)

0 ≤ PDt ≤ P
Cap (7)

E0 = SOC0 · ECap (8)

SOCmin
· ECap

≤ Et ≤ ECap (9)

Et = Et−1 +1t
(
ηcPCt −

PDt
ηd

)
(10)

In these equations, Et represents the remaining energy
capacity at time t , SOCmin represents the lowest value of
state-of-charge, ηc and ηd represent charging and discharging
efficiency of all batteries, respectively.

The optimal power capacity and energy capacity of the ESS
for prosumers are optimized based on the load of prosumer
and the electricity prices. The optimal capacity model also
optimizes the charging-discharging scheduling at each time
interval:

[PCap,ECap,PCt ,P
D
t ] = min(f1, f2) s.t. Eq.(4) ∼ Eq.(10)

(11)

IV. THE NSGA-II ALGORITHM AND ITS IMPROVEMENT
STRATEGY
A. PARETO OPTIMAL SET
There are great differences between multiobjective optimiza-
tion and single-objective optimization. For the former, it is
difficult to find a solution to optimize all the objective func-
tions at the same time due to the conflicts between objectives.
Therefore, there is usually a solution set, and its solutions can-
not be compared with each other for all objective functions;
these are called nondominated solutions or Pareto optimal
solutions. In power systems, due to their complex operating
environments, complex objective functions usually must be
addressed. Because of the special mathematical form of the
above model, it is difficult to obtain the analytical solution
by using a numerical method, so an intelligent algorithm is
introduced for complex models.

B. BASIC IDEAS OF THE NSGA-II ALGORITHM
The general process of the NSGA-II algorithm is as fol-
lows [20]: first, a population with N individuals, called the
parent population, is randomly generated; then, nondomi-
nated sorting is used for the individuals in the population.
Second, the crowding degree of the individuals is calculated,
and this is used to classify their ranks. The appropriate indi-
viduals are selected by the selection operator and put into
the mating pool, and the crossover and mutation operations
are used to generate the new next-generation population.
Finally, the superior individuals, as a new parent population,
are obtained by the elite strategy operation; the above process
is repeated until the termination condition is reached. The
basic idea is as follows:

(1) Initialize a number of individuals, calculate the objec-
tive fitness of each initial individual according to the objective
function under the condition of satisfying the constraints, and
then perform nondominated sorting.

(2) Perform the process of the fast nondominated sort-
ing algorithm. It needs to set two parameters when sorting.
ni represents the number of dominant individuals i among all
individuals, and Si represents the set of individuals dominated
by individual i in the population. The steps of nondominated
sorting are as follows:
Step 1: sort the nondominated individuals in the population

according to the condition (ni = 0) and put them into set F ;
Step 2: for each individual j in the solution set F , determine

its domination set Sj. Then, for individual k in the solution
set Sj, execute the statement nk = nk − 1, which means that
the number of solution individuals dominating individual k is
subtracted by 1 (because individual j dominating individual
k has been stored in the current set F). If nk − 1 = 0,
then put individual k into another set H . The purpose of
this step is to remove the influences of the individuals in the
selected frontier and to facilitate the sorting of the remaining
individuals;
Step 3: define the set F as the first nondominated set

and mark the same nondominated sequence irank for each
individual in set F ;
Step 4: for the individuals in set H , repeat the above steps

until all individuals are stratified.
(3) According to those objective functions, calculate the

crowding distance of each individual in the nondominated
layer according to Equation (12), and sort the internal individ-
uals of each nondominated layer. To prevent the emergence
of a local optimal solution, the lower the crowding degree is,
the higher the nondomination degree is.

L(xi) =
N∑
d=1

(fd (xi+1)− fd (xi−1))/(f max
d − f min

d ) (12)

In the formula, fd (xi+1) and fd (xi−1) are the d th objective
function values of individuals (i+ 1) and individuals (i− 1),
respectively, f max

d and f min
d are the maximum and minimum

values of the d th objective function for all individuals in the
population, respectively.

(4) Use the elite strategy to remove substandard individuals
according to the proportion set so that the superior individuals
are carried into the next generation of optimization and obtain
the final Pareto optimal solution through multiple iterations.

C. CALCULATION OF THE COMPROMISE SOLUTION
The optimized Pareto solution set can be obtained by the
NSGA-II algorithm. To select the best compromise solution
from the optimal solution set, fuzzy set theory is introduced.
The steps are as follows:
Step 1: record the maximum value Fmax

i and the minimum
value Fmin

i of the ith objective function in the Pareto optimal
solution set.
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Step 2: calculate the value ui of the ith objective function
corresponding to each Pareto solution by using Equation (13).

ui =


1 if Fi ≤ Fmin

i
Fmax
i − Fi

Fmax
i − Fmin

i

if Fmin
i ≤ Fi ≤ Fmax

i

0 if Fi ≥ Fmax
i

(13)

Step 3: based on Equation (14), calculate the normalized
values of the membership functions for each nondominated
solution in the Pareto optimal set.

uk =

N∑
i=1

uki

M∑
k=1

N∑
i=1

uki

(14)

where N is the number of objective functions, and M is the
number of nondominated solutions in the Pareto optimal set.

When the value uk of each nondominated solution is cal-
culated through the above steps in the Pareto optimal set,
the best compromise solution of the multiobjective problem
can be identified as the nondominated solution with the max-
imum value of uk.

D. IMPROVEMENT STRATEGY FOR THE NSGA-II
ALGORITHM
1) IMPROVEMENT OF THE PROPORTIONAL FACTOR IN THE
SELECTION STRATEGY
The selection mechanism of the NSGA-II algorithm gen-
erally adopts the league selection method. In this selection
rule, the two indexes for judging the quality of an individual
are nondominated rank and crowding degree. In the same
nondominated layer, the crowding degree of individual n
is determined only by the difference between the objective
function values of the two adjacent individuals; this makes the
population diversity worse and further affects the optimiza-
tion results. To reduce the number of repeat individuals and
increase the diversity of the population, this paper improves
the proportional factor set in the selection strategy. The rules
are as follows:

Cm = Nm∗λm, m = 1, 2, . . . ,Dmax

λm = zm +
k

kmax(xm − zm)
(15)

In (15), Cm is the number of individuals obtained from the
mth nondominated layer of the selected population; Nm is the
number of individuals in the mth nondominated layer; λm is
the proportional factor; zm and xm are the variable parameters
whose value range is [0.5,1] with zm < xm; k is the number of
iterations; and kmax is themaximum number of iterations. The
proportional factor λm is continuously adjusted according to
the rankm of the nondominated layer. In this paper, zm and xm
are only related tom, and their initial values are set as follows:
zm = 0.5 and xm = 1. As m increase, zm and xm decrease at a
rate of 0.01.

It should be noted that the proportional factor λm is a
dynamic variable jointly determined by m and k . From the
stratified sorting of the nondominated layer, the lower the
rank in the nondominated layer is, the fewer the number
of good individuals; furthermore, λm is decreasing with the
increase of the rank m, and this can effectively reduce the
number of disadvantaged individuals.

2) IMPROVEMENT OF THE CROSSOVER OPERATOR
The traditional NSGA-II algorithm generally uses a sim-
ulated binary crossover operator (SBX) to generate off-
spring; this limits the search range in some cases and may
lead to instability in the evolution process. In this paper,
to improve the convergence speed and reduce computational
costs, the normal distribution crossover operator (NDX) is
introduced into the crossover process, as it can effectively
enhance the spatial search ability of the algorithm. Assum-
ing that the parent generation contains P1 and P2 and their
offspring generation contains Q1 and Q2, for the ith variable,
the crossover process is as follows:
It generates a random number r ∈ (0, 1] when r < 0.5:
Q1,i =

P1,i + P2,i
2

+
1.481(P1,i − P2,i) |N (0, 1)|

2
Q2,i =

P1,i + P2,i
2

−
1.481(P1,i − P2,i) |N (0, 1)|

2

(16)

When r > 0.5:
Q1,i =

P1,i + P2,i
2

−
1.481(P1,i − P2,i) |N (0, 1)|

2
Q2,i =

P1,i + P2,i
2

+
1.481(P1,i − P2,i) |N (0, 1)|

2

(17)

whereN (0,1) is a random variable with a normal distribution.

3) LOCAL CHAOTIC SEARCH STRATEGY
As the number of iterations increases, the NSGA-II algo-
rithm is likely to fall into a local optimum due to the lack
of diversity. To strengthen the local search ability of the
NSGA-II algorithm, the local chaotic search strategy, which
is used to explore higher-performance solutions around the
individuals, is added into the improved NSGA-II algorithm
after the offspring population is generated. There are two
types of solutions for improved performance: (1) the new
individual dominates the original one; (2) the new individual
and the original individual do not dominate each other, but the
fitness of the new individual is better than that of the original
one. Thus, for an individual x, searching for a new individual
x ′ in the neighborhood is the first step; then, if x ′ dominates
x or its corresponding fitness value is better than that of the
latter, the latter will be replaced; otherwise, continue the local
chaotic search.

In the improved NSGA-II algorithm, for some elite indi-
viduals, using a local chaotic search strategy can make
them tend to the Pareto frontier faster. For each individual,
the following formula can be used to generate local search
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individuals.

x ′ = x +
1
k
(xmax

− xmin)(2Lk − 1)

Lk = µLk−1(1− Lk−1), Lk ∈ [0, 1] (18)

Among them, xmax and xmin are the upper and lower limits
of the optimization variable x, k is the number of iterations,
Lkis the chaotic sequence generated by logistic mapping,
µ represents the mapping coefficient, and Lk is the initial
value (set to 4 in general) with a small difference (∈[0,1]).
The adjacent search space will decrease with the increase of
iterations.

V. APPLICATION OF INSGA-II TO THE MULTIOBJECTIVE
OPTIMIZATION PROBLEM
A. CONSTRAINT CONDITION PROCESSING
When there is no constraint condition, it is assumed that
x1 and x2 are two potential solutions of the multiobjective
optimization problem. When at least one objective fitness
value of x1 is better than that of x2, x1 dominates x2, and this
is denoted as x1 ≺ x2.
After adding constraints to the model, an unconstrained

multiobjective evolutionary algorithm is infeasible. To solve
this kind of constrained multiobjective optimization problem,
constrained dominance is added to the Pareto dominance
relationship [28].

Specifically, if a solution x satisfies the constraint condi-
tion it is called a feasible solution; otherwise, it is called an
infeasible solution. For the infeasible solutions, a constraint
violation value is used to describe the degree of violation of
the constraints. For a solution x, the value can be expressed
as follows:

CV (xi) =
m∑
j=1

〈
gj(xi)

〉
+

l∑
k=1

|hk (xi)| (19)

In the formula, 〈α〉 represents that if α ≤ 0, then 〈α〉 = 0;
otherwise, 〈α〉 = |α|. Obviously, the smaller the CV value
is, the better the solution. At the same time, for a feasible
solution, the CV value is 0. In summary, the dominance
relationshipwith constraints is defined as follows: for any two
solutions x1 and x2, x1 dominating x2 needs to satisfy any of
the following conditions:

CV(x1) = 0 ∩ CV(x2) > 0 (20)

CV(x1) > 0 ∩ CV(x2) > 0 ∩ CV(x1) < CV(x2) (21)

CV(x1) = 0 ∩ CV(x2) = 0 ∩ x1 ≺ x2 (22)

B. ALGORITHMIC PERFORMANCE METRICS
To compare the performances of different algorithms,
the spacing metric is introduced to evaluate the distribution of
an algorithm’s Pareto optimal solution set. The mathematical
formula of the spacing metric is expressed as follows [29]:

S =

N−1∑
i=1
|dmean − di|

(N − 1) · dmean
(23)

where di represents the Euclidean distance between two
adjacent individuals in the Pareto optimal solution set and
dmean represents the average distance among all Euclidean
distances. N is the number of solutions in the Pareto optimal
set. The smaller the value of the spacing metric is, the more
evenly the Pareto optimal set is distributed.

FIGURE 3. Flow chart of the model solution based on INSGA-II.

C. SPECIFIC SOLVING PROCESS OF INSGA-II
The steps of using the improved NSGA-II algorithm to solve
the optimization model in this paper are as follows, and these
steps are shown in Figure 3:
(1) Set the initial parameters of the algorithm and energy

storage data.
(2) Randomly generate the initial population P0 and set the

number of iterations k = 1.
(3) Calculate the objective function value and constraint

violation value of each individual in the current pop-
ulation.

(4) Perform fast nondominated sorting.
(5) Calculate the crowding degrees of the individuals in

each nondominated layer according to the nondomi-
nated sorting results.

(6) Calculate the proportional factor and select the dom-
inant individuals from the current population as the
parent population Pn.

(7) Perform the crossover and mutation operations to gen-
erate the offspring population Qn.
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(8) Implement the elite strategy to generate new popula-
tions: Nn = Pn ∪ Qn.

(9) Calculate the fitness and constraint violation values of
each individual in the current population.

(10) Perform fast nondominated sorting.
(11) Calculate the crowding degrees of the individuals in

each nondominated layer according to the nondomi-
nated sorting results.

(12) Calculate the proportional factor and select the dom-
inant individuals from the current population as the
parent population Pn.

(13) Update Pn by using the local chaotic search strategy.
(14) Judge the termination conditions: if the number of

iterations k reaches themaximum evolutionary algebra,
then enter the next step; otherwise, return to step (7).

(15) Choose the optimal solution based on Equations (13)
and (14).

According to Steps (1)- (15), the corresponding program
is written in MATLAB to obtain the optimal configuration
scheme for an ESS belonging to a prosumer.

VI. SIMULATION ANALYSIS
A. SIMULATION PARAMETERS
The simulation example of a prosumer is a cluster that con-
sists of five users in a real science and technology park,
and the basic data are shown in Table 1. All users installed
photovoltaic roof systems with rated capacities from 10 kW
to 30 kW. The operational data of the prosumer are selected
on a typical day during the summer for simulation purposes.
The initial value of the time-of-use price is shown in Table 4,
and the energy storage parameters are shown in Table 5. The
photovoltaic power generation curve of each user is shown
in Figure 4, the original load curves are shown in Figure 5,
and the total photovoltaic output and total load curves of the
microgrid are shown in Figure 6. MATLAB 2016a is used to
write the program for the algorithm in theWindows 10 system
environment. The hardware system contains a CPU (Intel (R)
Core (TM) i7-6500U) and RAM (8 GB).

TABLE 1. Basic data of all users.

B. OPTIMIZATION RESULTS AND ANALYSIS
The improved NSGA-II algorithm is used to solve the opti-
mization model. The population size is set to 100, the max-
imum number of iterations is 100000, the crossover rate is
0.9, and the mutation rate is 0.1. To verify the superiority of
INSGA-II, this paper compares its performance with those of
other algorithms, such as SPEA2, NSGA-II and NSGA-III.

TABLE 2. Time-of-use prices.

TABLE 3. Simulation parameters of the ESS batteries.

FIGURE 4. Photovoltaic output curves of all users.

FIGURE 5. Original load curves of all users.

The Pareto frontiers of the different algorithms are calculated,
as shown in Figure 7.

The Pareto distribution curves of the algorithms are similar.
Compared with those of other algorithms, it is clear that the
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FIGURE 6. Total load and total photovoltaic output curves of all users.

FIGURE 7. Comparison of Pareto fronts obtained by different algorithms.

corresponding Pareto optimal set of INSGA-II is significantly
improved, and the quality of the solution is superior. Under
the same comprehensive cost or load fluctuation, the solution
obtained by INSGA-II is better than those of other algorithms.

1) COMPROMISE SOLUTIONS OF ALL ALGORITHMS
Table 4 shows the corresponding compromise solutions of
the Pareto optimal solutions obtained by all compared algo-
rithms. After configuring the ESS, the load fluctuations
are greatly reduced. Comparing the results of these algo-
rithms, the compromise solution of the proposed algorithm
dominates the other solutions obtained by the other three
algorithms. Furthermore, from the view of the calculation
runtime, because the normal distribution crossover operator
is introduced for the improved NSGA-II algorithm, the con-
vergence speed is improved compared with that of NSGA-II.
In summary, it is shown that the improvement strategies of
NSGA-II are very successful.

2) ESS CONFIGURATION CORRESPONDING TO THE
COMPROMISE SOLUTION
According to the compromise solution, the optimal capacity
of the energy storage configuration is obtained. Capacity

TABLE 4. Comparison of the compromise solutions obtained by each
algorithm.

TABLE 5. Energy storage capacity allocation corresponding to the Pareto
compromise solution in each algorithm.

configuration results, energy storage investment costs and
operating costs obtained by different algorithms are shown
in Table 5, and the charging-discharging scheduling curves
under all algorithms are shown in Figure 8.

From the results in Table 4 and Table 5, considering the
life cycle of the energy storage device, the average daily
total cost required after the configuration of the ESS is lower
than that required without configuration. Theoretically, under
the stimulation of electricity prices, the ESS of a prosumer
reduces the electricity cost and load fluctuation to improve the
operational stability of the microgrid through demand-side
response.

From the scheduling curves obtained by each algorithm
in Figure 8, when the ESS is not configured, the peak-to-
valley difference reaches 159.01 kW; this is caused by the
randomness of renewable energy output and load power.
At the same time, renewable energy is only consumed by
the actual load of the prosumer, and the consumption rate is
87.5%. After configuring the ESS for the prosumer, the new
amount of energy can be consumed not only by the load but
also by the ESS, and the photovoltaic consumption rates of
the four algorithms reach 100%. Second, the orderly charging
and discharging of the energy storage device is guided by the
electricity price, and the peak-to-valley difference is greatly
reduced compared with the original load curve; this improves
the demand response and the comprehensive benefits of the
prosumer. The peak-valley differences of the four algorithms
are reduced to 93.6617 kW, 86.2423 kW, 111.4651 kW,
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FIGURE 8. ESS scheduling curve of the prosumer corresponding to the Pareto compromise solution obtained by each
algorithm.

67.57 kW, and the lowest peak-valley difference is obtained
by the improved NSGA-II algorithm.

Table 6 shows each algorithm’s spacing metric value for
the test system. It can be seen that INSGA-II has the min-
imum spacing metric value among the algorithms, and this
indicates that the Pareto optimal solution set of INSGA-II
is the most uniform distribution; furthermore, this illustrates
that the effect of INSGA-II is the best among those of all
algorithms.

TABLE 6. Spacing metric values of different algorithms.

To test the calculation stability of the INSGA-II algorithm
in solving the multiobjective optimal model of the ESS con-
figuration for a prosumer, this paper conducts multiple inde-
pendent calculations on the INSGA-II algorithm and obtains
the compromise solution corresponding to the Pareto optimal
solutions in each calculation. In Figure 9, the histogram
shows the compromise solution of two objective functions
after running the algorithm ten times. The maximum values
of the two objective functions for the compromise solution
in ten trials are: composite cost = 1468.1576 RMB, load

FIGURE 9. The cylindrical figures of two objectives corresponding to the
compromise solution of INSGA-II after running it ten times.

fluctuation = 6697.4218; the minimum values of the two
objective functions are: composite cost = 1460.5469 RMB,
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load fluctuation = 6679.6557; the average values of the two
objective functions are: composite cost = 1463.6646 RMB,
load fluctuation = 6687.5165; the standard deviations of
these two objective functions are 2.3337 and 5.4149, respec-
tively. From these data, it can be concluded that INSGA-II has
strong calculation stability when solving the abovementioned
model.

VII. CONCLUSION
In this paper, a multiobjective optimization model for ESS
configuration is established by analyzing the scheduling
mechanism of a prosumer. Considering the comprehensive
cost and load fluctuation as the optimization objectives,
the ESS capacity and charging-discharging scheduling are
optimized according to the time-of-use price and load curves,
and the problem is solved by the INSGA-II algorithm. Based
on the traditional NSGA-II algorithm, the new algorithm
improves the proportional factor in the selection strategy,
and this can reduce the number of repeated individuals and
increase the diversity of the population. At the same time,
the crossover operator is improved, and the traditional binary
crossover operator is replaced by the normal distribution
crossover operator. Finally, a local chaotic search strategy
is added to the algorithm. To test the effectiveness and
superiority of the improved method, the original NSGA-II,
SPEA2 and NSGA-III algorithms are used to compare the
simulation results. By comparing the Pareto fronts obtained
with various algorithms, the improved NSGA-II algorithm
can find the best solution set, and the compromise solution
is also better than the results obtained by other algorithms.To
further verify the superiority of INSGA-II, the spacing metric
is used to evaluate each algorithm’s Pareto optimal set. The
analysis shows that the corresponding Pareto optimal set of
INSGA-II has a more even distribution than those output
by other algorithms. Finally, this paper conducts ten inde-
pendent calculations based on the INSGA-II algorithm. The
performance results show that INSGA-II has strong robust-
ness, and it is a very excellent method for solving the mul-
tiobjective optimization configuration problem of ESS for
prosumers.

REFERENCES
[1] Y. Liu, X. Chen, Y. Wu, K. Yang, J. Zhu, and B. Li, ‘‘Enabling the smart

and flexible management of energy prosumers via the energy router with
parallel operation mode,’’ IEEE Access, vol. 8, pp. 35038–35047, 2020.

[2] L. Park, Y. Yoon, S. Cho, and S. Choi, ‘‘Prosumer energy management
considering contract with consumers under progressive pricing policy,’’
IEEE Access, vol. 8, pp. 115789–115799, 2020.

[3] M. F. Zia, M. Benbouzid, E. Elbouchikhi, S. M. Muyeen, K. Techato,
and J. M. Guerrero, ‘‘Microgrid transactive energy: Review, architectures,
distributed ledger technologies, and market analysis,’’ IEEE Access, vol. 8,
pp. 19410–19432, 2020.

[4] C. D. Korkas, S. Baldi, I. Michailidis, and E. B. Kosmatopoulos,
‘‘Occupancy-based demand response and thermal comfort optimization
in microgrids with renewable energy sources and energy storage,’’ Appl.
Energy, vol. 163, pp. 93–104, Feb. 2016.

[5] M. Marzband, F. Azarinejadian, M. Savaghebi, E. Pouresmaeil,
J. M. Guerrero, and G. Lightbody, ‘‘Smart transactive energy framework
in grid-connected multiple home microgrids under independent and
coalition operations,’’ Renew. Energy, vol. 126, pp. 95–106, Oct. 2018.

[6] M. Marzband, M. Javadi, S. A. Pourmousavi, and G. Lightbody,
‘‘An advanced retail electricity market for active distribution systems and
home microgrid interoperability based on game theory,’’ Electr. Power
Syst. Res., vol. 157, pp. 187–199, Apr. 2018.

[7] D. C. Korkas, S. Baldi, and B. E. Kosmatopoulos, ‘‘9 grid-connected
microgrids demand management via distributed control and human-in-
the-loop optimization,’’ Adv. Renew. Energies Power Technol., vol. 2,
pp. 315–344, Mar. 2018.

[8] M. M. Iqbal, M. F. Zia, K. Beddiar, and M. Benbouzid, ‘‘Optimal schedul-
ing of grid transactive home demand responsive appliances using polar bear
optimization algorithm,’’ IEEE Access, vol. 8, pp. 222285–222296, 2020.

[9] M. Ruiz-Cortes, E. Gonzalez-Romera, R. Amaral-Lopes,
E. Romero-Cadaval, J. Martins, M. I. Milanes-Montero, and
F. Barrero-Gonzalez, ‘‘Optimal charge/discharge scheduling of batteries
in microgrids of prosumers,’’ IEEE Trans. Energy Convers., vol. 34, no. 1,
pp. 468–477, Mar. 2019.

[10] C. H. Antunes, D. F. Pires, C. Barrico, Á. Gomes, and A. G. Martins,
‘‘A multi-objective evolutionary algorithm for reactive power com-
pensation in distribution networks,’’ Appl. Energy, vol. 86, nos. 7–8,
pp. 977–984, Jul. 2009.

[11] X. Yuan, B. Zhang, P. Wang, J. Liang, Y. Yuan, Y. Huang, and X. Lei,
‘‘Multi-objective optimal power flow based on improved strength Pareto
evolutionary algorithm,’’ Energy, vol. 122, pp. 70–82, Mar. 2017.

[12] E. Zitzler, M. Laumanns, and L. Thiele, ‘‘SPEA2: Improving the perfor-
mance of the strength Pareto evolutionary algorithm,’’ Parallel Problem
Solving Nature-PPSN VIII, vol. 3242, no. 4, pp. 742–751, Sep. 2004.

[13] Q. Zhang and H. Li, ‘‘MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,’’ IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 712–731, Dec. 2007.

[14] Y. Wang and Z. Cai, ‘‘Combining multiobjective optimization with differ-
ential evolution to solve constrained optimization problems,’’ IEEE Trans.
Evol. Comput., vol. 16, no. 1, pp. 117–134, Feb. 2012.

[15] C. A. C. Coello and M. Reyes-Sierra, ‘‘Multi-objective particle swarm
optimizers: A survey of the state-of-the-art,’’ Int. J. Comput. Intell. Res.,
vol. 2, no. 3, pp. 287–308, 2006.

[16] T. Q. Yang, ‘‘A multi-objective PSO algorithm for energy-efficient
scheduling,’’ Adv. Mater. Res., vols. 143–144, pp. 663–667, Oct. 2010.

[17] Y. Guohua, Z. Xiangfen, M. Yujuan, H. Shijun, and W. Jinmei, ‘‘Capacity
optimization of hybrid energy storage based on improved PSO algorithm,’’
(in Chinese), Electr. Meas. Instrum., vol. 52, no. 23, pp. 1–5, Dec. 2015.

[18] X. Wu, W. Cao, D. Wang, and M. Ding, ‘‘Multi objective optimization
based on SPEA for the microgrid energy dispatch,’’ in Proc. 37th Chin.
Control Conf. (CCC), Wuhan, China, Jul. 2018, pp. 7543–7548.

[19] T. Hao, G. Yang, P. Wang, L. Rui, L. Zhang, and J. Wang, ‘‘Capacity
optimization of wind/solar hybrid power generation system based on
improved differential evolution algorithm,’’ (in Chinese), J. Electr. Power
Sci. Technol., vol. 32, no. 3, pp. 22–28, Mar. 2017.

[20] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ‘‘A fast and elitist
multiobjective genetic algorithm: NSGA-II,’’ IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[21] N. Srinivas and K. Deb, ‘‘Muilti-objective optimization using non-
dominated sorting in genetic algorithms,’’ Evol. Comput., vol. 2, no. 3,
pp. 221–248, Mar. 1994.

[22] B. Y. Wang, H. Yin, and S. M. Zhang, ‘‘Research on algorithm of
distributed reactive power optimization based on cloud computing and
improved NSGA-II,’’ Appl. Mech. Mater., vols. 644–650, pp. 1927–1930,
Sep. 2014.

[23] F. Ruiming, ‘‘Multi-objective optimized operation of integrated energy
system with hydrogen storage,’’ Int. J. Hydrogen Energy, vol. 44, no. 56,
pp. 29409–29417, Nov. 2019.

[24] R. Sathishkumar, V. Malathi, and V. Premka, ‘‘Optimization and design of
PV-wind hybrid system for DC micro grid using NSGA II,’’ Circuits Syst.,
vol. 7, no. 7, pp. 1106–1112, Jul. 2016.

[25] B. Ye, X. Shi, X. Wang, and H. Wu, ‘‘Optimisation configuration of
hybrid AC/DC microgrid containing electric vehicles based on the NSGA-
II algorithm,’’ J. Eng., vol. 2019, no. 10, pp. 7229–7236, Oct. 2019.

[26] A. G. Azar, H. Nazaripouya, B. Khaki, C.-C. Chu, R. Gadh, and
R. H. Jacobsen, ‘‘A non-cooperative framework for coordinating a neigh-
borhood of distributed prosumers,’’ IEEE Trans. Ind. Informat., vol. 15,
no. 5, pp. 2523–2534, May 2019.

[27] S. A. El-Batawy and W. G. Morsi, ‘‘Optimal design of community battery
energy storage systems with prosumers owning electric vehicles,’’ IEEE
Trans. Ind. Informat., vol. 14, no. 5, pp. 1920–1931, May 2018.

27024 VOLUME 9, 2021



F. Li et al.: Multiobjective Optimization Configuration of a Prosumer’s ESS

[28] B. Ji, X. Yuan, and Y. Yuan, ‘‘Modified NSGA-II for solving continuous
berth allocation problem: Using multiobjective constraint-handling strat-
egy,’’ IEEE Trans. Cybern., vol. 47, no. 9, pp. 2885–2895, Sep. 2017.

[29] R. Tavakkoli-Moghaddam, M. Azarkish, and
A. Sadeghnejad-Barkousaraie, ‘‘A new hybrid multi-objective Pareto
archive PSO algorithm for a bi-objective job shop scheduling problem,’’
Expert Syst. Appl., vol. 38, no. 9, pp. 10812–10821, Sep. 2011.

FEI LI was born inYichang, Hubei, China, in 1986.
He received the M.S. degree in electrical engineer-
ing from China Three Gorges University, in 2011,
where he is currently pursuing the Ph.D. degree.
From 2011 to 2013, he worked as a Design Engi-
neer with Guiyang Engineering Corporation Ltd.
From 2013 to 2019, he was a Research Assistant
with theHubei Provincial Key Laboratory of Oper-
ation and Control of Cascade Hydropower Station.
His research interests include power system oper-

ation and control, hydropower station simulation operation, and microgrid
optimization scheduling.

XIANSHAN LI received the Ph.D. degree in elec-
tronics and systems from Blaise Pascal Univer-
sity, France, in 2004. He is currently a Professor
with China Three Gorges University. His research
interests include power system operation and
control, hydropower station simulation operation,
and microgrid optimization scheduling.

BINQIAO ZHANG received the Ph.D. degree in
electrical engineering from the Huazhong Univer-
sity of Science and Technology, Wuhan, China,
in 2017. He is currently an Associate Professor
with China Three Gorges University. His research
interests include the optimal operation of energy
Internet and operation simulation of hydropower
station.

ZHENXING LI received the Ph.D. degree in
electrical engineering from the Huazhong Univer-
sity of Science and Technology, Wuhan, China,
in 2013. He is currently an Associate Professor
with China Three Gorges University. His research
interests include protective relaying and power
system stability control.

MINGFANG LU is currently pursuing the Ph.D.
degree with China Three Gorges University,
Yichang, China. Her research interests include
power system operation and control, hydropower
station simulation operation, and microgrid opti-
mization scheduling.

VOLUME 9, 2021 27025


