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ABSTRACT Infrared small target detection is still a challenge in the field of object detection. At present,
although there are many related research achievements, it surely needs further improvement. This paper
introduced a new application of severely occluded vehicle detection in the complex wild background of
weak infrared camera aerial images, in which more than 50% area of the vehicles are occluded. We used
YOLOv4 as the detection model. By applying secondary transfer learning from visible dataset to infrared
dataset, themodel could gain a good average precision (AP). Firstly, we trained themodel in the UCAS_AOD
visible dataset, then, we transferred it to the VIVID visible dataset, finally we transferred the model to the
VIVID infrared dataset for a second training. Meanwhile, added the hard negative example mining block
to the YOLOv4 model, which could depress the disturbance of complex background thus further decrease
the false detecting rate. Through experiments the average precision improved from90.34% to 91.92%,
the F1 score improved from 87.5% to 87.98%, which demonstrated that the proposed algorithm generated
satisfactory and competitive vehicle detection results.

INDEX TERMS Infrared aerial image, occlusion, vehicle detection, hard negative example mining,
YOLOv4.

I. INTRODUCTION
Object detection technology has been very mature, and it
has been widely used in many aspects, among which it has
reached the peak in the detection of traditional images. How-
ever, when considering some specific application scenarios,
such as the dim, weak and severely occluded vehicle detec-
tion in the infrared images under a complex background,
the object detection technology still needs to be improved.
The current researches focus much more on the detection of
small infrared objects but ignore the impacts of the complex
backgrounds, which is also a challenge for detector, thus this
paper studies on detection of the infrared objects occluded
and impacted by the complex backgrounds.

Firstly, there are some inherent defects in infrared cam-
era images, for instance, infrared imaging is subject to
imaging distance, angle of view and the change of the
light, moreover it is easily disturbed by the atmospheric
radiation and occlusion of objects in transit of light, thus,
the imaging effect is not stable enough [11]. Much noise, low
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contrast and indistinct boundary between target and back-
ground also make the detection of infrared images much
harder than that of the normal datasets such as ImageNet and
MS COCO.

Secondly, for infrared long-range aerial image, the image
size of the target is smaller and the resolution is much smaller
than the normal image usually with an average pixels of
30 × 30 [12]. Small scale object detection is a hot and
challenging task in the field of object detection. For small
scale object, the main methods are feature fusing [14] and
multi scale fusing [15].

In particular, the object detection in the complex back-
grounds studied in this paper, under the interference of small
scales and noise, coupled with the occlusion of trees in the
backgrounds and other issues, constitutes a great disturbance
to the detection of the models. The non-object features in the
background may confuse the detector and mislead it to make
a false decision, resulting in a high false detection rate (a low
precision). However, it is of great practical significance to
study how to improve the detection accuracy of the detector so
that it can still have a good performance on severely occluded
targets in complex environments. Especially in military target
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detection, it can liberate human labor force from massive
images to be recognized.

Thirdly, it is a common problem that infrared remote sens-
ing datasets with labels are insufficient. There are a huge
dataset of visible images while the infrared image datasets
are relatively small, which causes a trouble for the training
procedure of infrared object detection.

To solve these problems, firstly, this paper proposed the
strategy of ‘‘secondary transfer learning’’. Considering the
visible remote sensing images and infrared camera images
have largely consistency in the content, we first get the
pre-trained YOLOv4 weights–yolov4.weights on MSCOCO
dataset and put it on UCAS_AOD dataset [8] for the initial
training, thus we gain the weights trained for the first time.
Then we transfer the weights to VIVID [9] visible aerial
image dataset for the first transfer learning to get the first fine-
tuning of weights. Next we put the weights onVIVID infrared
aerial image dataset for the second transfer learning to get a
second fine-tuning weight after training. After two stages of
transfer learning, the weight parameters can be adjusted step
by step to achieve the desired requirements, so as to make up
for the lack of infrared image dataset.

In view of the high false detection rate caused by the
complex background, we proposed to add hard negative
example mining block to the YOLOv4 model. Meanwhile,
in order to balance the positive samples and negative samples,
the positive samples and the negative samples were added at
a ratio of approximately 1:3 for secondary training. Finally,
the detection accuracy of YOLOv4model was improved from
88.71% to 91.59%, indicating that the improved network
model could meet the expected requirements.

The main contributions of our work are as following:
• The method of ‘‘secondary transfer learning’’ is
proposed to solve the problem of insufficient dataset

• The more challenging scene of heavily occluded objects
detection with complex background is studied

• Hard negative example mining block is added to the
YOLOv4model to improve the detection accuracy of the
model

The content of the article is arranged as follows:
• The second section gives a literature review of relevant
researches and introduces the general research status of
relevant fields.

• The third section discusses in detail how to improve the
YOLOv4 model and the operation flow of data process-
ing.

• The fourth section presents the experimental steps and
results

• The fifth section summarizes and forecasts the full
researches

II. LITERATURE REVIEW
A. INFRARED OBJECT DETECTION
For infrared object detection, the common infrared targets are
infrared pedestrian detection [1], [20]–[22], infrared vehicle
and aircraft detection [3], [4], [5], [23]. The main problem

to be overcome is the lack of infrared data, followed by the
problem of unclear infrared image features.

Transfer learning [24] is an effective method to solve the
problem of insufficient infrared image datasets. Its possibility
lies in the great similarity in shape between targets in infrared
images and visible images, so we can firstly put model in
a large number of visible image datasets for training, and
then transfer it to a small amount of infrared datasets for
fine-tuning. The use of transfer learning should meet two
conditions: firstly, the target difference between the images
of the datasets in the two training stages should not be too
large, and there should be similarity; secondly, the number of
images of the datasets in the first pre-training stage should
be much larger than that of the datasets in the second training
stage; otherwise, the purpose of transfer learning cannot meet
the expected requirements. In our experiments, the objects in
infrared images and the visible images have the similarities
in features. They are all the remote sensing images, with
the characteristics of remote sensing images, that is to say,
small pixels, indistinct boundaries between the objects and
environment and complex backgrounds.

Zhang and Zhu [3] compensates for the lack of infrared
data set through transfer learning. They first train the model
on the VIVID visible light dataset, and then fine-tune their
parameters on the VIVID infrared dataset. Hu et al. [1]
detect the pedestrian in the infrared images, use visible light
images in the CVC dataset for pre-training, and then transfer
to the CVC infrared dataset for fine-tuning. Moreover data
augmentation technique can be used for the expansion of
infrared datasets, on the basis of the original data by rotating,
flipping, adding noise [3] to double the number of datasets,
GAN [1] can also be applied to generate the infrared datasets
of different style, or convert visible image to infrared image.

B. AERIAL IMAGE DETECTION
Aerial images are characterized by small resolution, small
scale, indistinct features and background interference.
Wang et al. [2] proposed a special feature extraction net-
work, MNET, for the detection of aircraft with minimal
resolution (2 × 2 pixels) under the background of sea and
sky. This network uses feature fusion, which fuses different
feature extraction layers to retain small-scale information,
and introduces attention mechanism into feature maps to
highlight small-scale features. For vehicle detection, Zhang
and Zhu [3], [4] improved the YOLOv3 model by reducing
the numbers of network layers of feature extraction as well
as transfer learning, and calculated the appropriate sizes of
anchor boxes through k clustering algorithm, so as to detect
low-resolution vehicles in infrared aerial images and then
track them.

Zheng et al. [5] used YOLOv3 to detect low-resolution
infrared vehicles in land battlefield, but its target were not
aerial images. Kassim et al. [6] used the MASK-RCNN
network and added the Data Association and Filtering (DAF)
module to the network post-processing module. The principle
is to distinguish real targets and background interference by
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TABLE 1. Comparisons of previous works.

comparing the differences of targets in several consecutive
frames of images before and after, so as to count birds in the
continuous images shot by infrared camera. In literature [16],
Density Map method was proposed to guide the detector to
detect the vehicles in the aerial images. The basic idea is
to firstly use the Density Map to calculate the density of
the vehicles in the images, then, the image was segmented
into several small pieces of different sizes according to the
density map of the vehicles, and each piece of the image was
detected separately with different anchors and intensity. This
method can make the detector to detect different areas in the
image specifically, and improve the detection efficiency and
accuracy.

C. OCCLUSION DETECTION
At present, most researches on the recognition of occluded
images mainly focus on large scale traditional objects of
visible images, such as pedestrian detection [17], faces recog-
nition [18], cars [19] and other occluded objects detection.
In [17], a model based on Deformable Part Network (DPN)
was proposed, which has the ability of reasoning and can pre-
dict the occluded parts. Guo et al. [18] proposed the Adaboost
Cascade Classifier algorithm based on the Haar-like feature
is applied. Firstly, the cascade classifier is applied to identify
the eyes andmouth of a human face; then, the physical feature
relationship between the eyes and mouth of a person and the
face is used to identify and detect the entire masked face.
In the context of urban autonomous driving system, vehicles
are blocked due to buildings, dynamic changes and limited
perspective. In [19], Faster-RCNN network and the Part-
Aware Region Proposal Network were used to perceive the
partial or global visual information of a vehicle. By extracting
and encoding matching the global and local information of a
vehicle, the two feature frames were integrated, so that the
model could reduce the influence caused by occlusion.

At present, the most solutions to the occlusion detection
problem is aimed at the images with high resolutions, large
the scales, and a distinct boundary between the backgrounds
and the objects. However, there is still room for further
research on the detection of weak infrared small targets
under severe occlusion and complex background. Mean-
while, the application scenario is more in line with the actual
requirements. Therefore, this paper proposes a research

point of detecting the severely occluded vehicle target in
infrared camera aerial image. The YOLOv4 [7], [13] model
was used as the basic detection model, and corresponding
improvements were made on the basis of it.

The comparisons of previous works and our proposed
methods are shown in TABLE 1.

III. METHODOLOGY
A. SECONDARY TRANSFER LEARNING
Considering the small amount of infrared dataset available in
this experiment, transfer learning is adopted to make up for
it. Different from the method mentioned above, we added the
transfer learning for twice. First, the model was trained on
the visible remote sensing dataset, and then it was trained on
a small amount of infrared dataset. The transfer learning aims
to learn to extract the features of the object due to the large
amount of visible image datasets.

As for visible image datasets, we used UCAS_AOD visible
dataset, which includes two objects, automobile and aircraft.
We extracted the dataset of automobile detection, a total
of 510 images, rotating, flipping and adding Gaussian noise
on the basis, thus expanding the datasets to 3060 pieces.

Secondly, 320 aerial images from VIVID dataset were
selected, manually annotated with labelImg, and then
expanded to 960 images by rotating and flipping for transfer
learning. Finally, 310 infrared aerial images from VIVID
dataset were selected, manually annotated with labelImg
for secondary migration and learning. As shown in fig-
ure 2, the first row shows the process of augmentation of
UCAS_AOD dataset, one original image is expanded to
six pieces through horizontal flipping, vertical flipping and
adding Gaussian noise. The second row demonstrates the
three different datasets. As can be seen from the figures,
the vehicle targets in the three images are relatively small,
and all are aerial images taken by remote sensing. Therefore,
this provides a prerequisite for transfer learning. Figure (d) is
the infrared vehicle image with severe occlusion. It is difficult
to find the occluded target only through rough observation of
human eyes.

The whole procedure is shown is figure 3.
First, get the official weights of YOLOv4 model –

yolov4.weights which was trained in MS COCO dataset.
MS COCO contains more than 200,000 images and

VOLUME 9, 2021 25673



S. Du et al.: Weak and occluded vehicle detection in complex infrared environment based on improved YOLOv4

FIGURE 1. The whole procedure of the YOLOv4 model with HNEM optimizer.

FIGURE 2. The left row shows augmentation process of UCAS_AOD visible remote sensing dataset through flipping and adding noise.
The right row shows images of three datasets, which are (a) UCAS_AOD dataset, (b) UCAS_AOD dataset with noise added, (c) VIVID
visible remote sensing dataset, and (d) VIVID infrared remote sensing dataset.

FIGURE 3. The secondary transfer learning takes place firstly from UCVS_AOD to VIVID visible dataset and again from
VIVID visible dataset to infrared dataset.

80 classes. Put it on the UCAS_AOD dataset as the initial
weights for pre-training. Then evaluate the models, chose the

model weight with the high AP as the initial weight for the
next transfer learning. The weights pre-trained are transferred
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to the VIVID visible aerial dataset for the first transfer train-
ing, and in the same way, place the selected model weight
on the infrared aerial dataset for the second transfer training.
After two stages of transfer training, the model can get better
optimization and approach the optimal solution step by step.

B. HARD NEGATIVE EXAMPLE MINING
In the infrared image, as shown in figure 2, the vehicle in
the image is heavily occluded by trees, and the boundaries
between the background and the target is not obvious, result-
ing in many confusing backgrounds. Considering that the
complex backgrounds will interfere with the performance of
the detector and increase the rate of false detection, a hard
negative example mining module was added at the end of the
YOLOv4 model.

The basic idea is to first calculate the class confidence of
each bounding boxes C1 predicted by the classifier, and the
IOU values C2 between the bounding boxes and the ground
truth labels. Generally speaking, the bounding boxes of which
the IOU value C2 < 0.4 means a false positive sample
(FP), i.e. predicted as an object whereas it is the background
information. For these bounding boxes, the higher the class
confidence C1 is, the harder the classifier could identify
them correctly. And these are what regarded as hard negative
examples in this experiment. We sorted these samples in
descending order by the confidence value C1, thus got the
sample dataset D:

D =
{
C i
1 |C

i
2 < 0.4,C i

1 > C j
1, 1 ≤ i, j ≤ N

}
(1)

D′ =
{
C i
1 |C

i
2 > 0.4,C i

1 < C j
1, 1 ≤ i, j ≤ n

}
(2)

As shown in figure 4. The YOLOv4 model have three
YOLO Heads of different numbers. Each of the heads are
fed with a layer of different scales. Suppose the input scale
is 608 × 608 × 3, the three layer before the heads are 19 ×
19× 1024, 38× 38× 512 and 76× 76× 256 respectively.

When we got the false positive examples (FP), they could
be mapped into the layers (as shown in the red areas), then
we transferred them into the feature map generated by the
backbone. Then we did the forward propagation again, just
calculate the loss values of the hard negative examples com-
pared with the ground truths and do the optimization.

At the beginning of the training, the training set was put
into the model for training. After trained for M epochs, select
the top N samples in dataset D, then put them into feature
extraction layers of the model for another epoch of training,
which could make the model for further identification of the
misleading background and find the differences between the
vehicles and the complex environment so as to reduce the
false detection rate.

Meanwhile, the balance of the amounts of negative exam-
ples and positive examples should be taken into considera-
tion. Otherwise, if the amount of negative examples is much
larger than that of the positive examples, the parameters of the
model may not converge to a better solution [10]. In this way,
while adding the hard negative examples, we got the hard

FIGURE 4. Add hard negative example mining module to YOLOv4.

TABLE 2. Comparison of different versions of YOLO.

positive examples dataset D′ in equitation (2), of which the
IOU value C2 > 0.4, were put into the model at the same time
with a ratio of positive and negative examples n/N = 1 : 3.

The hard negative and positive examples were put into
the training set for the second training. For a better result
of the second training with the hard examples, we froze
the CSPDarknet-53 layers, the backbone, just fine-tune the
parameters of the neck network and head network during
the second training.

After several repeated iterations until reaching the pre-set
training epochs, the experiment verified the validation of the
hard negative example mining module, which the average
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TABLE 3. Comparisons of different models.

precision of the model was improved by 1.58% from 90.34%
to 91.92%.

C. MODEL STRUCTURE
The whole optimizing of the improved model is shown
in figure 1. We adopted the YOLOv4 as our basic model,
because it has many better properties compared with the
previous versions of YOLO [25]–[27]. For backbone part,
it has a deeper structure than before with Darknet-53 which
is much more powerful than Darknet-19 in YOLOv2 but still
more efficient than ResNet-101 or ResNet-152 [27]. What’s
more, in YOLOv4 structure, it adds the cross-stage-partial
to Darknet-53 compared with YOLOv3, which can gain a
higher accuracy as well as a high speed [13]. The cross-stage
connection and the residual part could maintain the small
scale features, thus we did not need to change the connection
relationship of the original YOLOv4 structure.

Here we listed a table comparing the versions from YOLO
to YOLOv4, as shown in TABLE 2. We compared the back-
bone structures, the loss functions, the mAP and FPS on
Pascal VOC 2007 or on MS COCO. YOLOv4 is better in
detection accuracy and detection speed. In the publish liter-
atures, YOLOv4 models all gain a much better performance
than YOLO and YOLOv2, this is why we chose YOLOv4
model, and we didn’t do any comparison experiments on
YOLO and YOLOv2.

Before training, we used K-means cluster method to define
the sizes of the anchor boxes. We set k = 9, after experiment,
the result showed 9 different size of anchor boxes, they were
(10, 25), (12, 44), (12, 38), (14, 23), (16, 32), (18, 55),
(19, 22), (24, 26), (44, 35), while the pixel size of the image
was fixed to 416× 416.

IV. EXPERIMENT
A. EXPERIMENT ENVIRONMENT
The infrared training dataset of this experiment contains 310
images, which were selected from three subsets, pktest01,
pkest02 and pkest03 of the VIVID dataset, and were man-
ually marked into YOLO format. The testing dataset contains
101 infrared images from the three VIVID subsets selected
out manually that have severe occlusion, and the occlusion
rate of the vehicle is more than 40%. There are 256 data
tags. The GPU used in the experiment was RTX 2080Ti,

the Python version was 3.8, and it was carried out in Pytorch
1.7 environment.

B. EXPERIMENT STEPS
The whole experiment was carried out in three stages, and
the training adjustment was carried out on three datasets
respectively.

1) COMPARISON EXPERIMENTS
In the first stage, the comparison models were first used
for training and testing. To proof our model’s advanced per-
formance, we selected SSD-VGG16, YOLOv3, and Faster
RCNN-Resnet model as the baseline model. These models
are the typical models of one-stage and two-stage detection
models. The training epoch of the model was 120, the initial
learning rate was 10e-3, and the learning rate decayed to
0.95 time per epoch.

2) ORIGINAL MODEL EXPERIMENTS
In the second stage, the YOLOv4 original model was used for
training and to testing.

To validate the effect of our secondary transfer learn-
ing. We also set comparison experiments. Based on the
YOLOv4 model, we used no transfer learning and just
one transfer learning as comparisons. As for no transfer
learning, we put the official weights on the infrared image
dataset directly for training. As for the one transfer learning,
we firstly put official weights on the UCAS_AOD dataset for
training, then transfer the pre-trained weights on the infrared
image dataset for training. The initial parameters of the train-
ing stage were set as follows: the training epoch was 120.
The batch size was 8, using Cosine Annealing Algorithm;
the initial learning rate of the first 60 individual epochs was
10e-3, and the initial learning rate of the last 60 epochs was
10e-4; the weight decay was 10e-4. Due to the multi-scale
fusion network of the YOLOv4 model itself, its average
precision was greatly improved compared with the baseline
model.

3) IMPROVED MODEL EXPERIMENTS
In the third stage, hard negative examples mining module was
added on the basis of YOLOv4 model. All training parame-
ters remained unchanged, and M = 9 and N = 120 were
set in Section 3. The average precision of the model reached
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FIGURE 5. P-R curves of different models.

to 91.92% after the inclusion of hard examples, which
improved by 1.58%, and the F1 score improves by 0.48%,
indicating that the inclusion of hard negative examples min-
ing module did promote the detection performance of the
model.

C. RESULTS AND ANALYSIS
The precision rate, recall rate, average precision (AP), F1
score, and FPS of different models are shown in TABLE 3.
Average Precision is a normal evaluation metric for object
detection, but in binary classification, to mitigate the influ-
ence of imbalance of positive and negative examples, we also
combined the F1 score as a comprehensive evaluation metric,
as shown in equitation (3−5). YOLOv4 original model for
the testing set has a higher average precision and F1 score
compared with the other models, this is due to the superiority
of YOLOv4 model structure itself, and the cosine anneal-
ing algorithm was used in the process of training enabling
the parameter in the process of training to achieve a more
optimal solution. When added the hard negative example

FIGURE 7. The part of the detection results of the testing set on YOLOv4
+ HNEM.

mining module, the average precision of the model improved
by about 1.58%, and the F1 score improved by 0.48%,
explaining that the HNEM module does have certain effect
to the improvement of model, but in the case of IOU = 0.5,
the precision rate significantly improves while the recall rate
slightly goes down instead of rising, which illustrates that
the model’s ability to distinguish the hard negative examples
increased but detection of hard positive examples does not
change apparently. This reason is caused by comprehensive
factors, and is likely to be caused by the imbalance of posi-
tive and negative samples in the dataset. Next, it is planned
to change the loss function in the YOLOv4 model [11] to
balance positive and negative samples and achieve the effect
of HNEM.

Figure 5 is the precision-recall curves of all the models,
fromwhich the difference in detection accuracy of the models
can be intuitively distinguished.

Figure 7 shows the part of the detection results of the
testing set on YOLOv4 + HNEM. The blue box represents

FIGURE 6. The train loss and validation loss of YOLOv4 models without transfer learning (a), with one transfer learning (b) and two transfer
learnings (c).
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FIGURE 8. The detection result diagram of three representative models is selected. It can be seen from the diagram that the improved model has a
good identification accuracy for complex background.

the ground truth label (GT), the green box represents the
positive sample true detected by the model (TP), and the red
box represents the positive sample falsely detected by the
model (FP). The relationships among them are listed as the
below quotations:

Precision =
TP

TP+ FP
(3)

Recall =
TP

TP+ FN
=

TP
GT

(4)

F1score2 =
Precision ∗ Recall
Precision+ Recall

(5)

As can be seen from the above equations, the more the red
boxes are, the lower themodel’s precision is, and the fewer the
green boxes are, the lower the model’s recall rate is. When the
target is heavily occluded, it is difficult for the model to detect
it, or some of the deceptive features from the backgrounds are
still identified as the target with high confidence, as shown in
the third column in Figure 7.

Figure 6 is maps of the training and validation losses of
YOLOv4 models with different training strategies, including
secondary transfer learning, one transfer learning and with-
out transfer learning. We aim to verify the promoting effect
of transfer learning in our model. From the three figures,
we can find that without transfer learning, the parameters
of the model could not converge to a very small value, and

the converging speed is much slower due to the lack of
sufficient dataset, and the final testing results also proved
this conclusion. As for secondary transfer learning and one
transfer learning, the training losses did not vary much, but
the converging speed of secondary transfer learning is faster,
and the validation loss seems to match with the training loss
better than that of one transfer learning.

Figure 8 shows part of the detection results of the three
models on some occluded vehicle images. Some misclas-
sified objects from the non-improved models can be well
identified by the improved model. It means that the HNEM
module can depress the impact of the deceptive backgrounds
information such as the trees and the change of light in the
complex real environment.

V. CONCLUSION
In this paper, the YOLOv4 model was introduced into the
scenario of weak severely occluded vehicle detection in the
infrared aerial images under complicated background, and on
this basis, used the secondary transfer learning to overcome
the problem of insufficient datasets, the hard negative exam-
ple mining method at the same time to reduce the high false
detection rate of the original model because of the complex
background and occlusion influences. Through experimental
verification, this method has certain feasibility and improve-
ments. At the same time, it can be seen from the experiment
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that there is still possibility for further improvement of the
object detection in this scene, and the next step is to further
improve the detection accuracy of the detection model in this
scene by changing the structure of the model and the loss
function.
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