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ABSTRACT Prostate cancer (PCa) is a severe type of cancer and causes major deaths among men due
to its poor diagnostic system. The images obtained from patients with carcinoma consist of complex
and necessary features that cannot be extracted readily by traditional diagnostic techniques. This research
employed deep learning long short-term memory (LSTM ) and Residual Net (ResNet − 101), independent
of hand-crafted features, and is fine-tuned. The results were compared with hand-crafted features such
as texture, morphology, and gray level co-occurrence matrix (GLCM ) using non-deep learning classifiers
such as support vector machine (SVM ) Gaussian Kernel, k-nearest neighbor-Cosine (KNN − Cosine),
kernel naive Bayes, decision tree (DT ) and RUSBoost tree. This study reduces the features of carcinoma
images, employed machine learning and deep learning approaches. For validation of training and testing
data, a jack-knife ten-fold cross-validation method was used. The performance was measured using a
confusion matrix such as sensitivity, specificity, positive predictive value (PPV ), negative predictive value
(NPV ), accuracy (AC), Mathews Correlation Coefficient (MCC), and area under the curve (AUC). The
most remarkable performance was obtained using non-deep learning methods with GLCM features using
KNN-Cosine with sensitivity (98.00%), specificity (99.25%), PPV (98.99%), NPV (99.11%), accuracy
(99.07%), and AUC (0.998). The LSTMdeep learningmethod yields performance with sensitivity (98.33%),
specificity (100%), PPV (100%), NPV (99.26%), accuracy (99.48%), MCC (0.9879) and AUC (0.9999),
where using Deep learning method ResNet − 101, we obtained (100%) Accuracy and AUC (1) for Kernel
Naive Bayes, SVM Gaussian and RUSBoost Tree. The results show that ResNet − 101 deep learning
outperformed than non-deep learning methods and LSTM . Thus, the deep learning method ResNet − 101
could be used as a better predictor for the detection of prostate cancer.

INDEX TERMS Deep learning, feature extraction, healthcare, LSTM , machine learning, morphological,
prostate cancer, texture.

I. INTRODUCTION
The prostate is a walnut-sized male reproductive gland that
produces and secretes fluid of an alkaline nature. The gland
is located in the pelvis where the rectum is on the poste-
rior side, and the bladder is on the upper side, the gland is
surrounded by parts of the urethra [1]. The skeletal muscles
inside extend from the diaphragm to the apex. It has different
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regions, the region near the bladder is named the base, and
the part of the gland closest to the ureteral sphincter is called
the apex [2]. Anatomically four lobs of the prostate are the
peripheral zone (PZ ), the transition zone (TZ ), the central
zone (CZ ), and the anterior fibromuscular trauma, among the
first three consists of 70%, 5%, and 25% tissue respectively.
The latter consists of no glandular tissue [3]. Research shows
that the higher the glandular tissue count, the higher the risk of
prostate cancer [4]. The proliferation of cells causes prostate
cancer.
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Cancer is a global health problem where patients suffer
from clinical and management issues of cancer. Older people
with less physical activity have a high risk of cancer. In the
United States, 1, 806, 590 (nearly 1.8 million) new cancer
cases and 606, 520 (0.6 million) deaths have been recorded
in the current years, as reported by cancer statistics 2020 [5].
Statistics show that the death rate in four primary cancers
(prostate, breast, lung, and colorectal) increased until 1990
and a gradual decrease until 2017. Prostate cancer is the most
common type and the second leading death figure in the
United States among men [6]. New cases of prostate cancer
in the United States in 2019 were 191, 930 out of which 21%
are men. Out of 893, 660 cases, the leading cancer type was
prostate cancer [7]. The estimated deaths in 2020 due to can-
cer in the United States were 321, 160, of which 33, 310 were
due to prostate cancer. Prostate cancer depends on age, family
history, and lifestyle. Moreover, Asians are less vulnerable
than Europeans and blacks. Active and reliable treatments
such as radical prostatectomy, radiotherapy, and hormone
therapy have reduced the mortality rate. As active radiation is
an effective treatment procedure, it can cause psychological
and emotional side effects [8].

There are several ways to diagnose prostate cancer; using
screening tests for urinary symptoms, most men complain of
chronic inflammation about these tests. However, many men
go their entire lives without being diagnosed with prostate
cancer [9]. The digital rectal exam (DRE) was used in the
early 1990s to screen prostate cancer. A remarkable reduction
has been reported due to its implication. This screening test
is also used to distinguish between benign and malignant
cells [10]. The DRE is useful for diagnosing tumors in the
posterior area and cannot diagnose tumors in other parts or
regions of the prostate [11]. Prostate-specific antigen (PSA)
is used as a screening test. It was introduced in the early
1990 and can help reduce the mortality rate and other com-
plications. Now it is proving to be very controversial. PSA
screening often generates false-positive results and certain
health complications, such as pain and infection [12]. PSA
can be useful for asymptomatic men, where its consequences
may go unrecognized for life. The systematic randomized
method under transrectal ultrasound (TRUS) helps detect
small and low-grade cancers used in clinical diagnosis. Still,
its low sensitivity makes it difficult to screen a large pop-
ulation [13]. There are several methods to diagnose the
prostate using computer-aided design (CAD). Their accu-
racy lies between 0.80 and 0.89, the authors obtained the
AUC value of 0.95 to 0.96 in [9]. However, their system
was based on the manual selection of candidates and data-
dependent. The Ultra Sono-Grapy (USG) imaging modality
is an imaging technology used in the initial detection based on
real-time images. Still, this method cannot generate optimal
results due to the limitation of the contrast between cancerous
and benign tissue [14]. Multiparametric magnetic resonance
imaging (mpMRI) is more robust than ultrasound because of
its excellent tissue contrast, but due to the lack of real-time
imagining, it requires advanced training [15].

Brachytherapy is a type of radiation therapy used to treat
neck, skin, breast, and prostate cancer. In this approach,
the radioactive beam is directly imposed on the affected
tissue. Brachytherapy has two modes, permanent placement
(also called seed placement) and removable radioactive mate-
rial. Brachytherapy or the implementation of seeds is more
effective in prostate cancer, replacing the radial prostatec-
tomy. During operating the prostate, using Brachytherapy,
pallets(small seeds) are placed on the prostate cell. These
pallets are very tiny but radioactive. This highly radioactive
material kills prostate cancer cells. As a side effect, it may
also harm or even kill the healthy cells near the prostate.

Researchers have recently used deep and non-deep learn-
ing methods to detect anomalies in medical images. For
non-deep learning, extracting hand-crafted features is the
most critical step. To study the underlying system, different
features have been extracted from a biological, physiological,
and neurophysiological system in the past.

The non-deep learning methods are fine-tuned and inde-
pendent of the hand-crafted features. We used LSTM and
ResNet-101 from deep learning methods. Recently, LSTM
blocks as a feature of RNNs are used for speech recogni-
tion, speech and language modeling, and cognitive perfor-
mance classification by Greff et al. [16]. Magnetic resonance
imaging (mMRI) for prediction and detection purposes using
machine learning and deep learning. Moreover, Hussain et al.
in [17] employed a novel method for the detection of prostate
carcinoma, different scale-invariant feature transform (SIFT),
morphological, elliptic Fourier descriptors (EFDs), texture,
and entropy were computed from MRI images, using SVM,
DT, and Bayes Classification.

The researchers of [18], [19] extracted hybrid features
based on geometry, morphology, texture properties, noise-
robust, elliptical shapes, and complex dynamics. They used
robust machine learning techniques to predict different cancer
types, such as colon cancer, lung cancer, prostate cancer,
breast cancer, and brain tumor. A pipeline based on the con-
volutional neural network (CNN) has been proposed by [20]
to detect prostate cancer; they achieved an AUC of 0.87. The
authors of [21] also presented a deep learning-based archi-
tecture (x masNet) to classify prostate cancer. The results
show that the deep learning approach has great potential
for detecting prostate cancer from medical images. Authors
in [22] use ResNet − 101 for segmentation of coronavirus
(COVID − 19) effected regions of medical images. They
obtain 0.85 F1 score. Authors in [23] classify brain tumer
using ResNet − 101 deep method. Moreover, the authors
of [24] found that machine learning techniques are more
optimal and robust for detecting prostate cancer than the
antigen density and velocity. Likewise, [25] has proposed
a deep learning model to detect prostate lesions in mag-
netic resource images (MRI) by achieving an AUC of 0.955,
which may improve the cancer diagnosis. Machine learning
methods are based on handed features, where deep learning
methods automatically learn features. Traditional machine
learning approaches cannot provide high-level features. They
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FIGURE 1. Proposed research framework.

need domain expertise where a deep method solves these
problems

This study is based on feature extraction, and feature reduc-
tion strategy using deep learning and non-deep or machine
learning approaches for feature extraction such as morpho-
logical features, GLCM, and LSTM, where we have also
performed a feature reduction procedure obtained optimal
features using autoencoder. We used recent classification
techniques that include SVM Gaussian, KNN-Cosine, DT,
RUSBoost tree, and Naïve Bayes to classify and detect
prostate cancer from Brachytherapy. The aim of this study
was to employ and optimize the deep learning methods and
comparing the results with non-deep learning methods with
the traditional feature extraction approach. We first extracted
the texture, morphological and GLCM features from prostate
cancer images and then applied machine learning techniques.
Among these features, the GLCM features yielded the better
detection performance. Then, we optimized and employed
the deep learning methods including LSTM and ResNet-
101. The LSTM is designed and motivated to control the
issues related to the disappearing gradient in the recurrent
neural network (RNN ) architecture. The learning capability
of the LSTM structure is quite high, which is supported by
the dropout layers against memorization. LSTM framework
adds the input barrier, forgetting gate and output gateway

towards the neurons in regressive neural network architecture.
We then optimized and employed the CNN ResNet-101 with
transfer learning approach, which is pre-trained on ImageNet
consisted of inception layer, convolution layer and fully con-
nected layer. LSTM yielded higher detection performance
than traditional machine learning approaches, while Deep
learning ResNet-101 gives the highest detection than LSTM
based on its non-linear optimization function, i.e., Recti-
fied Linear Unit (ReLU ) and back-propagation with gradient
descent approach.

Figure 1 presents the overall framework of the proposed
study.

II. MATERIAL AND METHODS
A. DATASET
This study uses publicly available data-sets.1 This dataset
contains 230 for MRI scans of patients with different cat-
egories and descriptions. This study includes two groups
of MRI, the first is the case of the prostate, and the sec-
ond is Brachytherapy. Also, the last series consists of MRI
images of patients used for classification. This dataset was
recorded by theHealth Insurance Portability and Liability Act
1996 (HIPPA) regulations. An internal review committee also

1https://prostatemrimagedatabase.com/
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approved it. As part of grant U41RR019703, the dataset was
funded by theNational Institute of Health. The last series con-
tains T1 weighted, so all images were diffusion-weighted and
dynamic enhanced sequence. This dataset was also reviewed
by radiologists unaware of other images, but they examined
the prostatectomy. Three pulse sequences were encountered
and evaluated by radiologists. The first sequence contains
a peripheral zone (PZ ), which shows low intensity on T1
images and shows the early enhancement. After this lesion,
the transitional zone (TZ ) is recorded, which also show low
intensity for T1 images [26], [27]. The current study contains
20 patients with 647MRI of PCa and 200MRI of Brachyther-
apy and 447 MRI from the prostate. For validation of train-
ing/test data, 30% of images were selected for validation and
testing, and 70% for training.

The Jack-knife 10-fold cross-validation (CV ) technique
was applied for training/testing data formulation and param-
eter optimization. The 10-fold CV is the most used method
to validate the accuracy of the classifier. Using 10-fold CV,
the portioning of the data is made into ten folds; in training,
the nine folds participate, and classes of remaining folds are
predicted based on the training performed on nine folds. For
the trained models, the test samples in the test fold are purely
unseen. The entire process is repeated ten times, and each
class sample is predicted accordingly. Finally, the unseen
samples predicted labels are used to determine the classifi-
cation accuracy. The process was revised for each param-
eter; also, classification was reported for samples. K-fold
Cross-validation is an effective preventative measure against
overfitting. It is a good idea to split the dataset into multiple
train-test bins for model tuning. In standard k-fold cross-
validation, the data is divided into k-folds using k-fold CV.
Iteratively, k-1 folds are involved in the model prepara-
tion/training, and the remaining folds are used as the test
set. K-fold helps us fine-tune the hyperparameters with the
given original training dataset, which helps us determine how
an ML model’s outcomes could be generalized. The k-fold
cross-validation procedure is reflected in Figure 3.
We converted 3DMRI to 2D greyscale images as we prefer

greyscale images instead of RGB because a grey image can
give us faster processing than images with multiple channels.
Yet 3D images are rich in information than 2D; however, it is
time-consuming and slow, where 2D images fast, generate
more accurate results [28]. 2D images have excellent sensi-
tivity and short image time, best for slow flow. Figure 2 shows
a transverse T2-weighted fast spin-echo image, obtained
15 months after high-dose-rate brachytherapy for prostate
cancer.

B. FEATURE EXTRACTION
Feature extraction is used to capture visual and hidden
attributes of images for further processing. These are dimen-
sionality reduction and extracting information from rich
data containing medical images, e.g., radiography, MRI, and
Computerized Tomography (CT). These modalities contain

FIGURE 2. Prostate and brachytherapy sample images.

FIGURE 3. The k-fold cross-validation procedure.

different information types, but a feature extraction strategy
is used to extract the relevant and desired information.

This study aims to employ and optimize the deep and
non-deep learning techniques to improve prostate cancer
detection performance. We first extracted texture, morpho-
logical and GLCM features and applied non-deep learning
techniques; we used some pre-processing steps on texture
features to handle the black regions. We then employed deep
learning techniques such as LSTM and ResNet − 101. For
LSTM, we optimized the parameters to improve the detec-
tion performance. For ResNet − 101 deep learning method,
we first extracted features from ResNet − 101 from the
softmax layer and then applied the feature reduction using
autoencoder to use only the most relevant features to enhance
the prediction performance. After optimizing and apply-
ing the feature reduction methods on ResNet-101, we used
robust machine learning techniques to improve the detection
performance.

1) TEXTURE BASED FEATURES
A statistically-based feature extraction strategy analyzes how
gray image values are spatially distributed. This method is
divided into a one-pixel (first-order) and a pixel pair (higher-
order). In the one-pixel method, the mean and the variance
are used as estimation properties. Mean, median, and mod
are also basic statistical methods used in image processing.
Higher-order statics estimate properties present at specific
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TABLE 1. Mathematical detail of texture features.

locations. In GLCM, several distinct gray levels are equal to
the number of rows and columns. It is a matrix that relates
the frequency from one gray level to another to specific linear
investigating regions of the image. The authors in [29] present
GLCM and its distinct features that are the most significant
second-order statics. GLCM connects two neighboring pixels
in an offset; the gray value is transformed using kernel masks
in the co-occurrence matrix. GLCM is a famous second-order
feature that describes the relationship between pixels of
gray levels. Pre-processing consist of the following two
steps

1) calculation of co-occurrences matrix
2) calculation of texture feature using co-occurrences

matrix.

GLCM is a square matrix of order M × N, which contains
pixels of intensity ‘‘x’’, which is the frequency of event with
intensity ‘‘y’’. ‘‘x’’ and ‘‘y’’ are gray-scale calculates how
pixels with intensity ‘‘x’’ occurs with pixel ‘‘j’’ at certain
distance ‘‘d’’ and and angle θ . GLCM features are used to
characterize the pictorial data; its classification can be done
based on crop resolution, where the task is to extract meaning-
ful data.While transforming the image to thematrix, different
directions are used, such as 0◦ horizontal, 45◦ along positive
diagonal, 90◦ vertical, and 135◦ along negative diagonal.
Table 1 contains texture features used in this study.

2) MORPHOLOGICAL FEATURES
Functional details, physiological information, and descrip-
tion (shape and size) of a cell can be obtained using morpho-
logical features. Shape and size can be obtained using radius,
perimeter, roundness, and compactness. Morphological fea-
tures have recently been used to localize prostate cancer, can-
cer cell detection, and colon cancer detection. Here, we have
extracted fifteen morphological features listed in Table 2 to
extract prostate cancer from MRI images.

FIGURE 4. GLCM matrix structure at four angle directions.

Figure 4 present the GLCM matrix obtained by trans-
forming an image. This transformation of the image into a
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TABLE 2. Mathematical detail of morphological features.

normalized matrix can be computed as.

(a, b, d, 0◦) = #((c, d), (e, f )ε(Lj,Li)× (Lj,Li)

|c− e = 0|, |d − f = d |)

imj(c, imj) = a, imj(e, f ) = b (1)

(a, b, d, 45◦) = #((c, d), (e, f )ε(Lj,Li)× (Lj,Li)

|c− e = d |, |d − f = d |)

imj(c, imj) = a, imj(e, f ) = b (2)

(a, b, d, 90◦) = #((c, d), (e, f )ε(Lj,Li)× (Lj,Li)

|c− e = d |, |d − f = 0|)

imj(c, imj) = a, imj(e, f ) = b (3)

(a, b, d, 135◦) = #((c, d), (e, f )ε(Lj,Li)× (Lj,Li)

|c− e = −d |, |d − f = −d |)

imj(c, imj) = a, imj(e, f ) = b (4)

3) FEATURE REDUCTION
When there are many features in the assessment model,
feature reduction is a core concept. it reduces size, reduces
processing time, and results in the generalization model [30].
Two major approaches to features reduction are feature
extraction and feature selection. The feature selection method
selects a few features from the original carpus. But these
methods, which use filtering, wrapping, and embedding
approaches, may discard or neglect some vital informa-
tion [31]. On the other hand, shallow feature extraction meth-
ods fail to discover relevant detail when the size of data
increases.

Feature reduction is a pre-processing step; many algo-
rithms and methods are used for feature reduction; how-
ever, some algorithms ignore original information and cannot
recover original data. In this study, we have employed an
autoencoder (AE) through which we reduce features and
reconstruct original data Deep learning has achieved the state

of the art performance in image analysis. Autoencoder is a
type of advanced neural network. It has many applications
one of them is feature reduction. [32] use autoencoder for
dimensionality reduction. AE is composed of two parts. The
first part is an encoder, while the second part is a decoder.
If we have data D with S samples having features f , then
output O of an encoder is tunned in such a way that its
original dataset D can be obtained from O by minimizing the
difference betweenD andD. Simply it is a function that maps
D to O.

O = f (D) = af (MD + bD) (5)

Here af is the activation function for encoding. If this linear
function is identity, then af will perform linear projection, this
process is done by encoder function now decoder function g
maps hidden outputs to D.

D = f (O) = ag(D+bO) (6)

ag is activation function for decoding. Parameter findings are
done by training the auto-encoder θ = (M , bD, bO) which
minimize loss objection function.

φ = minθk(D,D) = minθk(D, g(a(D))) (7)

Linear loss construction Llθ .

Llθ =
n∑
j=1

‖ dj − (dj) ‖2=
n∑
j=1

‖ dj − g(a((dj)) ‖2 (8)

Similarly, for nonlinear loss reconstruction Lnθ

Lnθ =
n∑
j=1

dj log(oj)+ (1− dj) log(1− oj) (9)

Here dj ∈ D(dj) ∈ D and oj ∈ O
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C. MACHINE LEARNING METHODS
This study is based on different non-deep learning or machine
learning algorithms to diagnose prostate and brachytherapy
cancer from MRI medical images.

1) SUPPORT VECTOR MACHINE
SVM is constructed over discriminant features to predict
labels. The discriminant approach is used in multidimen-
sional feature space and posterior probabilities. The authors
in [33] proposed SVM. SVM was compared to different
algorithms, and the results generated by SVMwere more sig-
nificant than the other artificial intelligence (AI) techniques.
SVM classification has also been used for the training and
classification of prostate images.

A classifier that generates maximum separation is termed
as firm margin or SVM with linear Kernel. When the data is
nonlinear instead of a firm margin, SVM correctly classifies
the data by widening its margin or behaving according to
the data, this procedure is called a soft margin. Using soft
margin, SVM transforms data into high dimensional space.
Hyperplane can be defined as:

g(x) = W × X + b = 0 (10)

HereW is normal to plan. The equation for linearly separable
data can be written as for k = 1, 2 . . . . . .N .

(Xk ,Yk ) where XkεRld and Ykε {−1, 1}

two binary classes (11)

W × Xk + b ≥ 1 forYk = +1 (12)

W × C + b ≤ 1 forYk = −1 (13)

After combination, both can be written as

Yk (W + b× Xk ) ≥ 1 (14)

Sign function can be written as

g(x) = (W × X + b) (15)

FIGURE 5. Representation of SVM classifier for linear data.

Figure 5 shows linear classification, here β is hyperplane
normal vector, and b is offset. In Figure 6, red lines represent
decision boundaries by W × X + b = 0, left and right
sides represent separate classes. Kernel-based algorithms also

FIGURE 6. Representation of SVM classifier for nonlinear data with
decision boundaries.

perform better clustering. Different parameters for SVM, e.g.,
tolerance (type = float , where default value is 1e − 3),
verbose (type bool default value False), max-iteration (type
int default value is−1), break-ties (type bool default value is
False) and random-state (default value none) were used. This
study has also used the multi-scale kernel, city block distance
matrix and box constraint level. SVM polynomial kernel is
represented by

P(xj, yj) = (xj, yj+1)n (16)

Here p is polynomial Kernel, where n is a tuneable perime-
ter tomanage discriminant function. Similarly, Gaussian RBF
kernel is denoted as:

P(xj, yj) = exp

(
−1/2

(xj − y2j )

δ2

)
(17)

Here δ is smoothing parameter control width of curve. SVM
fine Gaussian RBF kernel is defined as

P(xj, yj) = exp

(
−1/2

xj − y′j‖xj − yj‖

δ2

)
(18)

2) KNN-COSINE
KNN-Cosine proposed in [34] this is best method used for
different problem of classification are used.

Cos(ak , al) = 1−
dk
rk,l
= 1−

dk
√
dk + dl

(19)

Cos(al, aK ) = 1−
dk
rk,l
= 1−

dl
√
dl + dk

(20)

here d is distance of training to test data.Cos(ak , al) and
Cos(al, aK ) represent cosine weight of nearest neighbour.

Sum(D,C) =
n∑

k=1

cos(ak , al)|Ck = Cr (21)

here D is dataset and C is class. For KNN, different distance
matrics, Neighbours, inverse square distance weights and
neighbors weights were computed.
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3) ENSEMBLE RUSBOOST TREE
A decision tree can be constructed using three methods:
boosting, bootstrap aggregation, and random forests [35].
Boosting is a popular model-guided selection that is a generic
model for the weak learner as a DT. To achieve better accu-
racy, vulnerable learners combine all classifiers into a single
robust composite classifier. Freund, Schapire, and Hill intro-
duced adaptive Boosting or AdaBoost in [36]. The ensemble
idea has its origins in supervised machine learning at the
late 17th century [37]. The Ensemble method can be used
to improve the quality of unsupervised tasks. The ensemble
method includes the following blocks

1) Training set: Ensemble training uses a labeled dataset;
the input contains a set of attributes.

2) Base inducer consists of an induction algorithm that
takes input from a training set and develops a classifier,
showing the relationships between input and output
attributes.

3) Diversity generation: Used to generate a diverse classi-
fier

4) Combiner: It combines different classifiers and differ-
entiates dependent and independent framework.

In this study, Learning rates and ensemble methods were
evaluated for ensemble classifiers.

4) DECISION TREE
A rooted tree is used to classify the basics of recursive par-
tition. It can be combined with other classifiers to improve
quantitative examination and predictions [38]. We have tuned
Decision tree parameters based on split and maximum split
criteria. DT can be constructed using the following equations.

y = {y1, y2, y3 . . . ..ym}T (22)

yk = {y1, y2, y3 . . . ..ykl . . . ykn} (23)

p = {p, p2, p3 . . . ..pk . . . pm} (24)

5) KERNEL NAIVE BAYES
The Naive Bayes classifier is robust for many linear clas-
sifications. Recently Al-khurayji and Sameh in [39] use its
latest Kernel function to classify Arabic text, which shows
very efficient results. It has been used to classify interface and
non-interface base surfaces. Naïve Bayes is one of the top 10
machine learning algorithms [40]. It is considered because of
its attributes, independence, nature, and computational over-
head due to attributes selection. Let Y be the measurement
vector belonging to the class j.

y = (y1, y2, y3 . . . . . . yN ) (25)

so probability is:

P(j1, j, j3 . . . . . . , y) = p(S)
n∏

k=1

p(jk/y) (26)

p
(
jk
yk

)
=

1
Mk

M∑
v=1

kernal(yk , yvk ),

kernal(c, d) =
1
√
2π

e
(c−d)2

2n2 (27)

D. DEEP LEARNING METHODS
Artificial intelligence (AI) works the same way as the human
brain. Deep learning is part of artificial intelligence. Like a
human brain, Artificial Neural Networks (ANNs) take infor-
mation and process that information using a group of neurons
to form layers. These neurons transfer information to other
neurons where certain information is fed back to the previous
layer. Finally, the processed information is sent to the output
layer in the form of classification or regression. Deep learning
methods automatically extract features from data to improve
the prediction of complex problems [41].

1) LONG SHORT-TERM MEMORY (LSTM)
Hochreiter and Schmidhuber proposed the LSTM algorithm
in 1997 [42]. Alex Graves improves LSTM, which solves
the gradient disappearance problem. LSTM improves gait
recognition in degenerate neural disease compared to older
methods. In the machine learning approach, gradient learning
remains a problem. LSTM solves this problem because it is
based on an appropriate gradient-based learning algorithm
that solves the error backflow problem. LSTM generates
optimal results even with noise and incompressible input
sequence without losing short time lag capabilities.

The authors in [42] proposed a deep LSTM-RNN; this
method uses an end-to-end learning procedure that combines
different LSTM-RNN to solve a vanishing gradient problem.
The hidden layer in LSTM is linear, but self-loop memory
blocks allow the gradient to flow through large sequences.
LSTM consist of recurring blocks called memory blocks. The
memory chip consists of blocks of different versions. Each
block contains recurring memory cells and three multiplica-
tive units input, output, and forget gates [43]. These cells
allow memory blocks to store and access information for a
long time to solve the vanishing gradient problem [42].

LSTM rollback is an optimized combination of back prop-
agation, throughput, and real-time recurrent learning. The
output unit gate and forget gate use the error-free version of
real-time recurrent learning (RTRL).

FIGURE 7. LSTM model based on recurrent neural network.

Figure 7 shows the LSTM model based on the recurrent
neural network, which is composed of the input gate that
controls information flow, the forget gate that determines
the amount of information erased from memory, the out-
put gate that is responsible for controlling the output with
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four operations (three sigmoids and one tanh) Before intake,
LSTM standardizes the dataset using the following equations.

µ =
1
k

k−1∑
i=0

x0[i] (28)

v =
1

k − 1

k−1∑
i=0

(x0[i]− µ)(x0[i]− µ)M (29)

So, data is standardized for training using these equations.
After input LSTM forward to next cell.

ks[i] = Wasx[i]+Wsss[i− 1]+Wysy[i− 1]+ Ls (30)

ko[i] = Waox[i]+Wsos[i− 1]+Wyoy[i− 1]+ Lo (31)

We create an LSTM model with one LSTM layer of
64 neurons and ‘‘ RELU’’ as an activation function. After that
we added four dense layers, where first three layers contains
32, 16 and 8 neurons respectively with (RELU ) activation
function. The final layer which also acts as the output layer,
contains 1 neuron. Finally, we compiled our model using
optimizer= (ADAM ) and train it for 100 epochs with a batch
size of 24.

2) RESIDUAL NETWORK (ResNet-101)
In recent years supremacy of deep Networks has been
reported in several works [44]. Residual Network
(ResNet-101) was designed by authors in [45], which is
the inspiration of [46] that is the deepest architecture of
ImageNet. ResNet-101 uses the same number of layers and
filters for the same output features. ResNet-101 uses residual
connection after application of the chain rule of integration.
Residual networks are composed of many selected units,
where each unit can be represented as

yi = h(ai)+ F(ai,Wi) (32)

and

ai+1 = F(yi) (33)

here ai is input F(ai,wi) is the residual function a(i+1)
depends on yi so a(i+1) is output. The Residual map can
be formulated as F = Wiδ(Wia) here δ denote Relu [47].
if dimensions of ai and yi are not equal or if we change input
and output channels the linear projectionWm is performed to
match dimensions.

yi = F(ai,Wi)+Wma (34)

square matrix ofWm can also be used in Equation 30 butWm
is only used in matching dimensions. Equation 30 is similar
to the linear function yi = Wi a + a but residual function
F(ai,Wi) Represents multiple convolution layers. ResNet-
101 can be written in iterative form.

xI = xi +
i∑

n=i

−1 F(ai,Wi) (35)

E. PERFORMANCE MEASURES
1) CONFUSION MATRIX
True positive rate (TPR)
True Positive Rate is also called sensitivity, this shows pos-
itively tested subjects under examination. Mathematically,
it can be represented as:
TPR = sum of true positive/sum of positive condition

TPR =
TP

TP+ FN
(36)

True negative rate (TNR)
TNR also called specificity shows negative tested identified
correctly. Mathematically, it can be represented as:
TNR = sum of true negative/sum of negative condition)

TNR =
TN

FP+ TN
(37)

Positive predictive value (PPV)
PPV = sum of true positive/sum of predicted positive

PPV =
TP

TP+ FP
(38)

Negative predictive value (NPV)
NPV = sum of true Negative/predicted Negative Condation

NPV =
TN

TN + FN
(39)

Accuracy (AC)

AC =
TP+ TN

TP+ FP+ FN + TN
(40)

2) RECEIVER OPERATING CURVE (ROC)
ROC is a standard method used in the evaluation of classi-
fiers [48]. A portion of a square unit is considered to be the
area under the curve. AUC is part of a square areawhose value
is between 0 and 1. Any realistic classifier’s value should be
greater than 0.5, where 0.9 to 1.0 means a value of 90% to
100%. ROC is a great test and plotted according to specificity
and sensitivity. We take a true positive rate of prostate cancer
along the y-axis, where the false positive rate along the x-axis.
This study achieved a maximum AUC of 1 using a deep
classifier ResNet-101 and 0.9999 using for LSTM features,
followed by 0.9984 by KNN-Cosine for GLCM and 0.9974
by SVM Gaussian for GLCM features, Gaussian followed
by KNN-Cosine. The maximum separation (AUC) for SVM
Gaussian was also 95%.

3) MATHEWS CORRELATION COEFFICIENT (MCC)
Matthews developed the MCC in 1975 for the analysis of
chemical structure [49]. It was proposed again by the authors
in [50] for machine learning. When the dataset is imbalanced,
or one class is more extensive than others, accuracy measures
cannot be considered reliable. The practical solution to this
problem is MCC. In this study, we employed MCC accuracy
along with ROC. The results show that the LSTM has an
MCC value of 98.95%,where deep method ResNet-101 has
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an MCC value of 1 using Kernel Naive Bayes, SVM Gaus-
sian and RUSBoost Tree classifiers, which outperforms other
classifiers.

4) 10 FOLD CROSS VALIDATION
In prediction, estimation is necessary to evaluate the perfor-
mance of the prediction model [51]. Cross-validation (CV)
is a common method of model selection and error prediction
that splits data multiple times for risk estimation. CV selects
the lowest risk error after dividing the data into training and
testing. In this study, we used k-fold cross validation where
k = 1, 2,3,4,5, and 10 for each k iteration, the remaining
K-1 folds are used for learning. We found that when k = 10,
it generates a better classification. The results computed in
this study depicted 10-fold cross-validation.

III. RESULTS AND DISCUSSION
Deep and non-deep classifiers like SVM radial function,
Naive Bayes, RUSBoost tree, and decision tree were used
to evaluate the results for different features (morphological,
texture, GLCM, and LSTM).

FIGURE 8. ROC using texture features.

Using the machine learning method on image scanning
for automatic PCa grading. They obtain 82% ROC accu-
racy using logistic regression combining with morphologi-
cal and quantitative information of glands and stroma. The
receiver operating curve graph is a methodology used for
performance measurement. A single value, AUC, evaluates
performance using ROC. We achieved 99.84% ROC using
KNN-Cosine, which is higher among all non-deep classi-
fiers using GLCM-based features. Figure 8 compares differ-
ent classifiers. We can conclude that using texture features,
the Gaussian SVMClassifier produces optimal results, where
all other non-deep learning methods also had better results.

Figure 9 compares different classifiers using pre-
processing texture features. Results depicts that with
pre-processing texture features, the Gaussian SVMClassifier
and KNN-Cosine produce optimal results, where all other
non-deep learning methods also had better results except
Kernel Naive Bayes. Results also reveal that Using texture

FIGURE 9. ROC using texture features with pre-processing.

FIGURE 10. ROC using GLCM features.

features only SVM Gaussian produces better results; on
the other hand, all classifiers produce better results using
pre-processed texture features.

Similarly, Figure 10 also shows that all the classifiers cor-
rectly separate the positive and negative cases using GLCM
matrix features. The lowest precision was demonstrated by
the kernel-based naive Bayes, which is 95.21%. It is implied
that all the classifiers achieved a higher classification than the
one with the lowest performance. KNN-Cosine produces a
better classification than SVM Gaussian. Non-deep learning
classifiers were used on the morphological features extracted
fromMRI images to diagnose prostate cancer. Different mea-
sures of assessment of the confusion matrix were also applied
to these classifiers to evaluate the results.

The results in Table 3 shows that using different machine
learning classifiers on texture features, the highest sensi-
tivity was obtained by Kernel Naïve Bayes (89.00%), fol-
lowed by SVMGaussian (85.50%). Similarly, SVMGaussian
achieved maximum specificity (94.18%), maximum accu-
racy (91.50%), and maximum separation as AUC (0.9533).
Moreover, the highest NPV was obtained by Kernel Naïve
Bayes (94.39%) followed by the RUSBoost tree and then
SVM Gaussian, where the highest PPV was obtained by
SVM. We computed texture features using pre-processing
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TABLE 3. Summary of texture based features.

TABLE 4. Summary of texture based features with pre-processing.

TABLE 5. Summary of GLCM based features.

steps in Table 4, results depicts that highest sensitiv-
ity (86.00%) was achieved by KNN − Cosine followed
by SVMGaussian (85.60%), where maximum specificity
(94.63%) was obtained using KNN − Cosine, by the proce-
dure of pre-processing we achieve accuracy of (91.96%) and
AUC value as (0.9674).

Table 5 shows that by extracting GLCM features and
employing different machine learning classifiers, the highest
accuracy was obtained by KNN−Cosine (99.07%), followed
by SVM Gaussian and RUSBoost tree (98.15%). Maximum
separation or larger AUC (0.998) was obtained using the
KNN-Cosine classifier, followed by SVM Gaussian Kernel
Naïve Bayes (99.45%). Similarly, SVM Gaussian has the
highest MCC (0.7540) for texture features. With GLCM
features, the highest sensitivity (99.50%) was achieved by
RUSBoost Tree, while the highest specificity (99.55%) was
achieved using the KNN-Cosine classifier. In the case of pos-
itive predictive value, KNN-Cosine obtains PPV (98.99%),
and SVM Gaussian obtain PPV (97.98%), followed by the
RUSBoost tree having PPV (94.76%) and the tree decision
obtained PPV (94.6%) respectively. We have reached a sen-
sitivity (99.50%). The results show that the machine learning
classifiers KNN-Cosine, SVM Gaussian, RUSBoost Tree,
Decision Tree, and Kernel Naïve Bayes perform better for
GLCM features, compared to traditional texture features.

Table 6 describes the results obtained using these artificial
intelligence-based approaches (deep learning and non-deep
learning). The non-deep learning method was used on mor-
phological features, where deep learning methods were used
to classify LSTM features extracted from the same images.
The results show that KNN-Cosine achieved better accuracy
of 989.95%) compared to Gaussian SVM (89.64%). Simi-
larly, the sensitivity and specificity obtained by KNN-Cosine
were (83%) and (93%), where SVMGaussian reached (80%)
and (93.9%), respectively. Moreover, the maximum separa-
tion obtained by KNN-Cosine is 0.966, where SVM Gaus-
sian has an AUC value equal to (0.945). Similarly, for
imbalance data, the MCC is a better evaluation matrix.
KNN-Cosine obtained (0.7638) MCC values where SVM
Gaussian obtained (0.7540) MCC values. It can be seen that
by using decision tree and ensemble tree classifiers, the accu-
racy of (87.94%) was achieved by the RUSBoost tree, where
DT reaches the accuracy (86.24%) to classify the prostate and
Brachytherapy using morphological features of MRI images.
RUSBoost has a higher sensitivity, PPV, NPV, and FPR than
DT, where DT has a higher specificity value (91.9%).

Using deep learning classifiers on MRI-extracted LSTM
features to detect prostate cancer, it is evident that we have
achieved (100%) specificity and positive predictive value,
where the accuracy (99.48%) was obtained using the same
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TABLE 6. Comparison of morphological and LSTM feature.

TABLE 7. ResNet-101 based features.

technique. The deep learning classifiers ResNet-101 achieved
the highest AUC value of (1) and MCC (1). The results
also show that the LSTM classifier and ResNet-101 has a
false positive rate of (0%), which is the lowest among all
classifiers.

Overall results reveal that GLCM features provide better
results for non-deep classifiers. KNN-Cosine (99%) accu-
racy, MCC (0.9782) And AUC (0.998) among texture fea-
tures. Similarly, LSTM features extracted from the prostate
are more robust, and using deep learning, we have produced
optimal results as (99.48%) with (100%) specificity and
(100%) positive predicted value (0.9879) MCC values and
(0.9999) AUC values,where ResNet-101 produced 100%)
specificity and (100%) positive predicted value (1) MCC
values and (1) AUC values using Kernel Naive Bayes,SVM
Gaussian and RUSBoost Tree which are best among all
classifiers.

Similarly, using ResNet-101, we have obtained all opti-
mal results than other machine and deep learning classi-
fiers table Table 7 depicts the result of all classifiers using
ResNet-101 approach only DT produce (0.995%) sensitive,
(0.9978%) NPV and (0.9985%) AC. AUC value is (0.9975)
where other classifiers generate (100%) AC and AUC value
as (1), which is better than all machine-based classifiers and
LSTM.

The Figure 11 shows the accuracy and loss curve graph
using LSTM. The training accuracy represents the classifica-
tion accuracy on each mini-batch. The light blue line repre-
sents the training accuracy. The smooth training accuracy is
denoted by the blue color obtained by applying the smoothing
algorithm to the training accuracy. The smoothed training
accuracy is less noisy than the unsmooth accuracy making it
easier to spot trends. After 10th epoch, the highest accuracy of
99.48%was obtained. The next figure shows the loss function
against each iteration. The light red color denotes the loss, and

FIGURE 11. Accuracy and Loss function Curves.

the red color indicates the smoothed loss. The smallest loss
value was obtained at 10th epoch.

Figure 12 shows the results obtained through morphologi-
cal features using a machine learning approach. KNN-Cosine
performs better than other classifiers. Similarly, Figure 13
indicates that the LSTM deep learning approach outperforms
different machine learning classifiers. Figure 14 depicts that
mostly AUC is similar, so AUC line colors with equal values
are mixed. AUC value is maximum for all classifiers, as all
classifiers achieve an AUC value of 1 except DT, which has
0.9975. The red color in the figure indicates DT where all
other classifiers have a maximum AUC of 1 so, only the last
occurred color, green, can be seen in the figure.

Table 8 presents the comparison of different machine learn-
ing and deep learning methods with the proposed study.
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TABLE 8. Comparison of proposed study with previous studies.

FIGURE 12. ROC using morphological features.

FIGURE 13. ROC using LSTM features.

Linear SVM with ANN was used by [52] to detect prostate
cancer and obtained an accuracy of (79%). The author
in [53] use ANN to detect PCa and achieve an accuracy
of (94.44%). Similarly, authors in [54] use segmentation
and ANN procedure to detect prostate cancer; they achieve

FIGURE 14. ROC using ResNet-101 features.

accuracy of (94.90%). The results show that using a machine
learning approach, the prediction of tumors in the prostate
using gene expression data was achieved with (99.0%) accu-
racy. Additionally, deep learning also classifies normal and
PCa subjects with (99.1%) accuracy. In this study, we used
machine learning and deep learning techniques. The results
reveal that our proposed methods produced optimal results.

IV. CONCLUSION
This paper presented an approach to extract features from
prostate images using a 10-fold cross-validation test on these
hand-crafted and non-hand-crafted features. Features reduc-
tion using autoencoder is also done to optimize the fea-
tures. We did pre-processing on texture features, and The
performance was evaluated using confusion matrix, true pos-
itive rate (sensitivity), true negative rate (specificity), pos-
itive predictive value, negative predictive value, and AUC.
We achieved better performance accuracy (99.07%) and
AUC (0.9984) with KNN-Cosine for GLCM features using
machine learning classifiers. Optimal results were obtained
using ResNet-101 and Deep Learning LSTM, i.e., accu-
racy (99.84%), AUC (0.9999), MCC (0.98.79), and (100%)
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specificity. Results depict that the pre-processing process
generates better results. The results also conclude that
non-handed LSTM fine-tuned tools are more robust than the
handed feature extraction strategy.

5) LIMITATIONS OF STUDY AND FUTURE
RECOMMENDATIONS
LSTM behaves like feed-forward, and bit parity can be
an issue with LSTM. In the future, we will apply LSTM
and other deep learning methods with transfer learning
approaches, feature selection, and ranking methods to clas-
sify prostatic and non-prostatic subjects. We will also obtain
the clinical profiles of the patients and compare the results
with the larger dataset. In this study, we did pre-processing
with texture features; however, we will apply these steps to
other feature extraction methods for future findings.
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