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ABSTRACT In this paper, the definition of three-dimensional generalized discrete fuzzy number (3-
GDFN) is introduced based on the representation theorem of one-dimensional discrete fuzzy number and the
similarity measure definition of two 3-GDFNs is given. Then the concept abovementioned is applied to color
image representation and color mathematical morphology (CMM) in RGB space. The basic morphology
operators, erosion and dilation, are extended to the CMM by defining the total preorder relation based on
similarity measure between two 3-GDFNs instead of general vector sorting methods. The corresponding
structuring elements in CMM are variable. Finally, the effectiveness and potential of the theoretical results
are verified by comparative experiments. The proposed CMM operators are efficiently used in color image
processing.

INDEX TERMS Color mathematical morphology, generalized discrete fuzzy numbers, RGB color space,
similarity degree, three-dimensional fuzzy numbers.

I. INTRODUCTION
The concept of fuzzy numbers can be traced back to 1972,
Chang and Zadeh [1] called a fuzzy set with special properties
on the real number field R a fuzzy number. Then Voxman
[2] proposed the concept of discrete fuzzy numbers which
can be used to represent the pixel value in the center point
of a window in 2001. In 2004, Wang, Wu, and Zhao gave
a representation theorem of discrete fuzzy numbers using
r-level sets in [3].

A. APPLICATIONS OF DISCRETE FUZZY NUMBERS
There are many applications of discrete fuzzy numbers in
our daily lives, such as image processing, subjective evalua-
tion, decision making, risk analysis, etc. In 2011, Casasnovas
and Riera [4] studied the extension of discrete t-norm and
t-conorms to discrete fuzzy numbers, they proposed an appli-
cation to get a group consensus opinion based on discrete
fuzzy weighted normed operators. In 2012, Riera and Torrens
[5] introduced the aggregation of subjective evaluations based
on discrete fuzzy numbers whose support was a subset of
consecutive natural numbers belonging to a finite chain L.
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Then Riera and Torrens [6] presented a linguistic decision-
making method based on a couple of discrete aggregation
functions which defined on the discrete fuzzy numbers whose
support is a set of consecutive natural numbers in 2014. In
[7], a new linguistic computational method based on discrete
fuzzy numbers was proposed by Massanet et al., ensuring
the accuracy and consistency of the application of a multi-
expert decision-making problem. Riera et al. [8] proposed
a fuzzy decision-making model and introduced some inter-
esting properties of the fuzzy linguistic model based on dis-
crete fuzzy numbers. In this linguistic computational model,
the experts can use different language levels to evaluate the
alternativesmore flexibly. In 2015, Riera and Torrens [9] used
discrete fuzzy numbers to model complete and incomplete
qualitative information and proposed somemethods to aggre-
gate such information. The proposed methods were used in a
multi-expert decisionmaking problem. In 2015, the definition
of generalized discrete fuzzy numbers and the corresponding
representation theorem were introduced in [10]. Some weak
orders on the one-dimensional generalized discrete fuzzy
number space were introduced based on the definition of new
addition and multiplication operation. Then Wang et al. [11]
presented the definition of two-dimensional discrete fuzzy
numbers. They set up the weak orders in the two-dimensional

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 25405

https://orcid.org/0000-0001-5878-1506
https://orcid.org/0000-0002-9511-3280
https://orcid.org/0000-0002-3647-7797
https://orcid.org/0000-0002-7973-6357


Z. Gong et al.: 3-GDFNand Applications in CMM

discrete fuzzy number space based on the concepts of mass
center and ambiguity degree of fuzzy numbers. Then these
weak orders were applied to the evaluation of urban natural
environment. Zhao et al. [12] introduced a novel ranking
method based on shape similarity, whichwas applied to group
decision-making problems. This method used symbolic rep-
resentation to describe each expert’s subjective linguistic
preference evaluation based on discrete fuzzy numbers.

The above research has made great contributions to the
application of discrete fuzzy numbers. However, they still
have the following problems from a broader perspective:

1) Most of the current research focuses on the normal dis-
crete fuzzy numbers, which must include the elements
with a membership function value of 1. But in applica-
tions, the non-normal discrete fuzzy numbers are often
used [10].

2) In addition, the one-dimensional discrete fuzzy number
can be only represented and processed single channel
digital signal, but it is not suitable for vague multichan-
nel digital information processing. For example, one-
dimensional discrete fuzzy numbers cannot be used for
color images because the pixel values in RGB color
space can be composed of three basic colors: red, green
and blue. In this case, the pixel values of a color image
can only be represented by means of three-dimensional
discrete fuzzy numbers.

3) There are few researches on the application of discrete
fuzzy numbers to the representation and processing of
color images.

4) Fuzzy numbers need to be sorted in many application
problems, but there is no universally accepted standard
for the definition of the order relation between discrete
fuzzy numbers.

Therefore, we extend the discrete fuzzy numbers to three-
dimensional generalized discrete fuzzy numbers(3-GDFN).
On one hand, the non-normal discrete fuzzy number has a
wider range of application, and the normal discrete fuzzy
number is a special case of the generalized discrete fuzzy
number (Remark 2). On the other hand, the three-dimensional
discrete fuzzy number can be used to deal with multi-channel
digital information and multi-criteria evaluation problem
(Example 5.1 and Example 5.2 in [11]). In this paper, we fur-
ther define the order relationship based on fuzzy similarity
in 3-GDFN space and explore its application in color image
processing.

B. COLOR MATHEMATICAL MORPHOLOGY
Mathematical morphology is widely used in image process-
ing and analysis, which includes the image filtering, image
denoising, edge detection, texture analysis, shape analy-
sis or image segmentation. It is a simple and efficient non-
linear processing technology, which consists of basic dilation
operator and erosion operator. Mathematical morphology is
first introduced in binary images processing byMatheron and
Serra [13]–[15]. Due to its strict mathematical foundation

and ability to deal with the spatial relationship of image
pixels, it is extended to gray-scale images processing [16].
The research object of gray-scale morphology is the digital
image function. Since the gray image is a scalar function,
the maximum and minimum operations are used instead of
the set operations of binary morphology to define gray-scale
morphological operators [16].

Fuzzy set theory can also be used to extend binary mor-
phology to gray-scale morphology, since ambiguity is an
intrinsic property of digital images. The idea of De Baets [17]
was to fuzzify the basic logical operations, the intersection
and inclusion in binary morphology are replaced by fuzzy
conjunction and fuzzy implication. Bloch and Maître [18]
used a similar method to De Baets. The difference is that
they use a t-norm to define fuzzy dilation instead of con-
junction, and then use the associated residual implication to
define fuzzy erosion. M. Nachtegael and E.E. Kerre [19] pre-
sented a general logical framework for fuzzy mathematical
morphology and researched the connections between binary,
gray-scale and fuzzy mathematical morphologies in [20].
Furthermore, Mélange et.al. [21] constructed the interval-
valued fuzzy morphological operators. Sussner et.al. [22]
researched the interval-valued and intuitionistic fuzzy math-
ematical morphologies.

The color mathematical morphology (CMM) is the theory
of extending the binary or gray-scale mathematical morphol-
ogy to color image space. However, there are many chal-
lenges because of the vector nature of color pixels. In many
literatures, the definition of different color sorting methods
is the basis of CMM operation [23]. Barnett [24] proposed
four types of vector sorting methods: marginal (M), condi-
tional (C), partial (P) and reduced (R) sorting approaches.
These sorting approaches have certain drawbacks when they
are used for CMM according to different application envi-
ronments. For instance, the M-ordering [25] is the point-
wise ordering method of the color components, which will
produce false colors in original image. The C-ordering, also
known as lexicographic ordering [26], will generate visual
nonlinear effects from the perspective of human visual per-
ception. Because some component has priority over others
when vectors are sorted. The P-ordering [27] and R-ordering
[28] rely on manually specified pre-sorting operations, which
lack antisymmetry property and also have the problem of
visual perceptual nonlinearities [29], [30].

In order to solve the above problems, many sorting-
based CMM algorithms are proposed. A novel vector sorting
method for color image morphological processing based on
fuzzy sets, umbra and threshold techniques was proposed
in [31]. The color vectors were sorted by their distance to
the black and white pixels respectively. Bouchet et al. [32]
used a fuzzy order based on fuzzy preference relation to
create a total order complete lattice in RGB color space. The
three fuzzy preference relations were then aggregated with
the arithmetic mean. Experimental results showed that the
proposed color morphological operators can be efficiently
used for color image processing. A conditionally invariant
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mathematical morphological framework for color images was
presented in [33], and a vector ordering method based on
linear transformations from RGB to other color spaces and
principal component analysis (PCA) were developed. Valle
and Valente [34] proposed a quantal-based approach to color
mathematical morphology based on the CIEL*a*b* color
space in spherical coordinates. The definition of morpho-
logical operators used a distance-based ordering scheme and
non-flat structuring elements. These operators achieved good
results in color image edge extraction experiments. Pedro
Bibiloni et.al. [35] generalized fuzzy mathematical morphol-
ogy to process multivariate images in the CIEL*a*b* color
space and introduced soft color erosion and soft color dila-
tion operators. Several visual examples were presented to
provide insights into this approach. These visual examples
included different morphological operators applied to natu-
ral and artificial images. A fuzzy mathematical morphology
based on Intuitionistic fuzzy sets to leukocytes segmentation
was presented in [36]. The main idea was to model color
images as an Intuitionistic fuzzy set based on hue com-
ponents in the HSV color space. Then, a pixel labeled as
leukocyte was selected and compared to the entire image
through a similarity measure. Experimental results showed
that the classification accuracy and precision were higher. Al-
Otum [37] presented a new set of color image morphological
operators based on an improved vector distance measure. The
color pixels were divided into different categories in the HSV
color model, then the color distance metric was calculated
according to the category of each input color pixel, and finally
the color morphological operator was obtained using the
combination technique. The designed operators were applied
to edge detection, skeletonisation, noise suppression, texture
and shape analysis.

Based on the inspiration of the above literature,
we explored the application of three-dimensional generalized
discrete fuzzy number theory in the color mathematical mor-
phology. In our method, the three-dimensional generalized
discrete fuzzy number is used to express the pixel value
of color image in the RGB space. It is because the three
components of the RGB model have the same properties.
Next, the fuzzy similarity measure between 3-GDFNs is
introduced and used to define the total preorder relationship
in 3-GDFNs. Finally, we use the order relation based on
fuzzy similarity measure to define the basic operators of color
mathematical morphology. These basic operators are of great
significance to the analysis and processing of color images.

C. GOAL OF THIS WORK
The goal of this paper is to study the basic theory of 3-GDFN
and its application in color mathematical morphology. The
structuring elements and basic operators of CMM are defined
based on the fuzzy similarity measure, and the processing and
analysis of color images are achieved through the combina-
tion of these operators.

The novelty of this paper can be shown as follows:

1) The definition of 3-GDFN is given based on the rep-
resentation theorem of one-dimensional discrete fuzzy
number and the 3-GDFNs are used to represent the pixel
values of color images in RGB space.

2) The color morphological operators (erosion and dila-
tion) are constructed by the order relation based on 3-
GDFNs similarity measure.

The remainder of this paper is organized as follows: In
section 2, we briefly review the basic definitions and results
about fuzzy numbers and generalized discrete fuzzy num-
bers. In section 3, we give the concept and theorem about
3-GDFNs, and define the fuzzy similarity measure of two
3-GDFNs. In section 4, we construct the three-dimension
generalized discrete fuzzy representation of a color image,
and establish the basic mathematical morphology operators
by the fuzzy similarity. Lots of comparable experiments are
presented in section 5. Finally, the conclusions are described
in section 6.

II. PRELIMINARIES
In this section, we will introduce basic concepts about gen-
eralized discrete fuzzy numbers(GDFN) and their represen-
tation theorem.

Let Rn be the n-dimensional Euclidean space. A fuzzy set
of Rn is a mapping u : Rn

→ [0, 1]. For each fuzzy set u
of Rn, let [u]r = {x ∈ Rn

: u(x) ≥ r} for any r ∈ (0, 1]
be its r-level set. By supp(u) we denote the support of u,
i.e., supp(u)={x ∈ Rn

: u(x) > 0}. In addition, we denote the
closure of supp(u) by [u]0, i.e., [u]0 = {x ∈ Rn : u(x) > 0}.
Definition 1 [10]: Let ω ∈ (0, 1]. A fuzzy set u : R →

[0, ω] is called a generalized discrete fuzzy number if its
support is finite, i.e., there exist x1, x2, . . . , xn ∈ R with
x1 < x2 < . . . < xn such that [u]0 = {x1, x2, . . . , xn}, and
there exist natural numbers s,t with 1 ≤ s ≤ t ≤ n such that
(1) u(xi) = ω for any natural number i with s ≤ i ≤ t;
(2) u(xi) ≤ u(xj) for any natural numbers i,j with 1 ≤ i ≤

j ≤ s;
(3) u(xi) ≥ u(xj) for any natural numbers i,j with t ≤ i ≤ j ≤

n.
We denote the collection of all generalized discrete fuzzy

numbers by GDFN.
Remark 2: : In Definition 1, when ω = 1, u is a discrete

fuzzy number.
Theorem 3 [10]: Let ω ∈ (0, 1] and u ∈ GDFN with the

maximum membership degree ω. Then
(1) [u]r is a nonempty finite subset of R for any r ∈ [0, ω];
(2) [u]r2 ⊆ [u]r1 for any r1,r2 ∈ [0, ω] with r1 ≤ r2;
(3) {x ∈ [u]0 : min[u]r ≤ x ≤ max[u]r } ⊂ [u]r for any

r ∈ [0, ω];
(4) For any r0 ∈ (0, ω], there exist real number r ′0 with 0 <

r ′0 < r0 such that [u]r
′

0 = [u]r0 (i.e., [u]r = [u]r0 for any
r ∈ [r ′0, r0]).

Conversely, if for any r ∈ [0, ω] with ω ∈ (0, 1], there exists
Ar ⊂ R satisfying
(i) Ar is nonempty and finite for any r ∈ [0, ω];

VOLUME 9, 2021 25407



Z. Gong et al.: 3-GDFNand Applications in CMM

(ii) Ar2 ⊆ Ar1 for any r1,r2 ∈ [0, ω] with r1 ≤ r2;
(iii) {x ∈ A0 : minAr ≤ x ≤ maxAr } ⊂ Ar for any r ∈

[0, ω];
(iv) For any r0 ∈ (0, ω], there exist a real number r ′0 with

0 < r ′0 < r0 such that Ar ′0 = Ar0 (i.e., Ar = Ar0 for any
r ∈ [r ′0, r0]),

then there exists a unique u ∈ GDFN with the maximum
membership degree ω such that [u]r = Ar for any r ∈ [0, ω].

III. THREE-DIMENSIONAL GENERALIZED DISCRETE
FUZZY NUMBER
Let X = (x1, x2, x3), Y = (y1, y2, y3) ∈ R3, define X ≤≤≤
Y or Y ≥≥≥ X , if and only if xi ≤ yi, i = 1, 2, 3.
Let us consider the set A = {X1,X2, . . . ,Xm} with Xj =
(xj1, xj2, xj3) ∈ R3, j = 1, 2, . . . ,m, we define

minA = ∧mj=1Xj
= ( min

1≤j≤m
{xj1}, min

1≤j≤m
{xj2}, min

1≤j≤m
{xj3}) (1)

maxA = ∨mj=1Xj
= ( max

1≤j≤m
{xj1}, max

1≤j≤m
{xj2}, max

1≤j≤m
{xj3}) (2)

It is obvious that minA and maxA do not necessarily
belong to the set of A. Now, we will define three-dimensional
generalized discrete fuzzy number using the representation
theorem 3.

A. DEFINITION
Definition 4: Letω ∈ (0, 1], a fuzzy set u : R3

→ [0, ω] is
called three-dimensional generalized discrete fuzzy number
if it satisfies the following four conditions:
(1) [u]r is a nonempty finite subset of R3 for any r ∈ [0, ω];
(2) [u]r2 ⊆ [u]r1 for any r1,r2 ∈ [0, ω] with 0 ≤ r1 ≤ r2 ≤

ω;
(3) For any r ∈ [0, ω], {X ∈ [u]0 : min[u]r ≤≤≤ X ≤≤≤

max[u]r } ⊂ [u]r ;
(4) For any r0 ∈ (0, ω], there exist some real numbers r ′0 with

0 < r ′0 < r0 such that [u]r
′

0 = [u]r0 (i.e., [u]r = [u]r0 for
any r ∈ [r ′0, r0]).

We denote the collection of all three-dimensional general-
ized discrete fuzzy numbers by 3-GDFN.
Example 5: Let ω = 0.95, u : R3

→ [0, ω] be defined as
follows:

u(X ) =



0.95, X = X6
0.72, X = X5
0.65, X = X4,X7
0.28, X = X3,X8
0.13, X = X1,X2,X9
0, otherwise.

where, X1 = (1, 1, 1),X2 = (1, 8, 1),X3 = (2, 3, 2),X4 =
(3, 5, 3),X5 = (4, 6, 4),X6 = (5, 5, 5),X7 = (6, 6, 3),X8 =
(8, 3, 2),X9 = (8, 7, 1). Then u is a three-dimensional gener-
alized discrete fuzzy number with [u]0 = {X1,X2, . . . ,X9}.

Theorem 6: Let ω ∈ (0, 1], u1, u2, u3 ∈ GDFN,
if u : R3

→ [0, ω] is defined by u(x, y, z) =
min(u1(x), u2(y), u3(z)) for any (x, y, z) ∈ R3, then u ∈ 3-
GDFN.

Proof: We need to proof that u meets the above four
conditions of the Definition 4.

(1) Let u1, u2, u3 ∈ GDFN, and u(x, y, z) =
min(u1(x), u2(y), u3(z)) for (x, y, z) ∈ R3, clearly, for any
r ∈ [0, ω], the support of u is nonempty and finite.

(2) Let ∀r1, r2 ∈ [0, ω] with 0 ≤ r1 ≤ r2 ≤ ω, clearly,
if r1 = r2 then u defined above is [u]r2 = [u]r1 . Let ∀x ∈
[u1]r2 , ∀y ∈ [u2]r2 ,∀z ∈ [u3]r2 , we know that u(x, y, z) =
min(u1(x), u2(y), u3(z)), so (x, y, z) ∈ [u]r2 . And because
u1, u2, u3 ∈ GDFN, it is obvious that [u1]r2 ⊆ [u1]r1 ,
[u2]r2 ⊆ [u2]r1 , [u3]r2 ⊆ [u3]r1 , so x ∈ [u1]r1 , y ∈
[u2]r1 ,z ∈ [u3]r1 , i.e., (x, y, z) ∈ [u]r1 . So,[u]r2 ⊂ [u]r1 .
Thus,[u]r2 ⊆ [u]r1 with 0 ≤ r1 ≤ r2 ≤ ω. The condition
(2) holds.

(3) Let A , {X ∈ [u]0 : min[u]r ≤≤≤ X ≤≤≤

max[u]r } for any r ∈ [0, ω]. Suppose that the number
of three-dimensional vectors Xj is m in [u]r , where Xj =
(xj1, xj2, xj3), j = 1, 2, . . . ,m, so we know
min[u]r = ∧mj=1Xj =
{min1≤j≤m{xj1},min1≤j≤m{xj2},min1≤j≤m{xj3}},
max[u]r = ∨mj=1Xj =
{max1≤j≤m{xj1},max1≤j≤m{xj2},max1≤j≤m{xj3}}.
Let ∀(a, b, c) ∈ A, so we know (a, b, c) ∈ [u]0

and fulfill min1≤j≤m{xj1} ≤ a ≤ max1≤j≤m{xj1},
min1≤j≤m{xj2} ≤ b ≤ max1≤j≤m{xj2}, min1≤j≤m{xj3} ≤
c ≤ max1≤j≤m{xj3}. Because u(a, b, c) = min(u1(a),
u2(b), u3(c)), so u1(a) > r, u2(b) > r, u3(c) > r ,
this means u(a, b, c) > r i.e., (a, b, c) ∈ [u]r for any
r ∈ [0, ω], thus A ⊂ [u]r . The condition (3) holds.

(4) Suppose that r0 ∈ (0, ω], if r0 ≤ r ′1, there exist some
real number r ′0, such that 0 < r ′0 < r0 ≤ r ′1. So for
∀r ∈ [r ′0, r0]), [u]

r
= [u]r0 = [u]0. If r0 > r ′1, there exist

a natural number i0 fulfill 1 < i0 ≤ n0, such that ri0 <
r0 ≤ ri0+1. So there must exist a real number r ′0, such
that ri0 < r ′0 < r0 ≤ ri0+1, so we know, for ∀r ∈ [r ′0, r0],
[u]r = [u]r0 = [u]ri0+1 . Above that for ∀r ∈ [r ′0, r0],
[u]r = [u]r0 .

Therefore, the proof is complete.
Because the Theorem 6 allows us to define a type of three-

dimensional generalized discrete fuzzy number from a triplet
of GDFN. In this way, we propose the following Definition 7.
Definition 7: Let ω ∈ (0, 1], u1, u2, u3 ∈ GDFN

with [u1]0 = {x1, x2, . . . , xm}, [u2]0 = {y1, y2, . . . , ym},
[u3]0 = {z1, z2, . . . , zm}. We call the three dimensional
generalized discrete fuzzy number u : R3

→ [0, ω]
defined by u(x, y, z) = min(u1(x), u2(y), u3(z)), x ∈

{x1, x2, . . . , xm}, y ∈ {y1, y2, . . . , ym}, z ∈ {z1, z2, . . . , zm},
(x, y, z) ∈ R3 is three dimensional unite generalized discrete
fuzzy number of u1, u2 and u3. And we denote the collec-
tion of all three dimensional unite generalized discrete fuzzy
number by

⋃
(3-GDFN).
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Next, we define the mean value of three-dimensional gen-
eralized discrete fuzzy number.
Definition 8: Let u ∈ 3-GDFN, [u]0 = {X1,X2, . . . ,Xn},

Xi = (xi1, xi2, xi3), i = 1, 2, . . . , n.
The mean value of u is defined as follows:

M (u) = (x1, x2, x3) =

∑n
i=1 u(Xi)Xi∑n
i=1 u(Xi)

(3)

B. SIMILARITY BETWEEN 3-GDFNs
We need a similarity measure to compare the closeness of
two fuzzy sets. It is generally required that the measures used
for comparison must fulfill the following natural attributes:
the similarity should be non-negative and symmetric, and the
similarity of two identical fuzzy sets should be 1. Therefore,
a reasonable definition of similarity must satisfy at least the
following conditions.
Definition 9 [38]: For the uniform U , the collection of

fuzzy sets on U is F(U ), let A,B ∈ F(U ), the mapping σ :
F(U ) × F(U ) → [0, 1] is called a similarity measure if it
satisfies the following properties:

(1) σ (A,A) = 1;
(2) σ (∅,U ) = 0;
(3) σ (A,B) = σ (B,A);
(4) For all A,B,C ∈ F(U ),A ⊆ B ⊆ C ⇒ σ (A,C) ≤

min(σ (A,B), σ (B,C)).

So, σ (A,B) is the similarity degree between A and B.
This is the axiomatic definition of similarity. Now we

need the similarity measures between 3-GDFNs. There are
three main types of fuzzy similarity measures [38] methods
proposed in many literatures. (1) distance-based measures,
(2) set-theoretic based measures and (3) implication-based
measures [39]. In this paper, the similarity measures between
3-GDFNs are designed using fuzzy logic operators.

The definition of the similarity measures between two
3-GDFNs is as follows:
Definition 10: Let u, v ∈ 3-GDFN, [u]0 = {X1,X2, . . . ,

Xn},Xi = (xi1, xi2, xi3) and [v]0 = {Y1,Y2, . . . ,Yn},Yi =
(yi1, yi2, yi3), i = 1, 2, . . . , n. The similarity between u and v
is defined σ (u, v) as following:

σ (u, v) ,

∑n
i=1min(u(xi1, xi2, xi3), v(yi1, yi2, yi3))∑n
i=1max(u(xi1, xi2, xi3), v(yi1, yi2, yi3))

(4)

Based on the above definition, we will introduce the appli-
cation of 3-GDFN in color image mathematical morphology
in the next section.

IV. APPLICATION OF 3-GDFN ON COLOR MATHEMATICS
MORPHOLOGY
The color image is modeled as functions f : Df ⊂ R2

→ τ ⊂

R3, where Df is the domain of image, τ is the corresponding
color space. In this section, we apply the above definition
of 3-GDFN in section III to CMM, and formally introduce
its structuring elements and basic operators.

A. COLOR IMAGE IN RGB SPACE
There are many different representations of color space [40].
In the processing and analysis of color images, the selection
of an appropriate color space representation is still a difficult
task [41]. In this paper, a three-dimensional generalized dis-
crete fuzzy number is constructed for each pixel of a color
image based on the RGB color model. The RGB model is the
most direct representation of color images and is widely used
in computer software and hardware systems. It is established
in a Cartesian coordinate system. An image in this model is
composed by three images, each of them corresponding with
a primary color: red(R), green(G) and blue(B), and the three
components have the same properties. One possible way to
process color images is to process these three components
individually. For the above reasons, we will interpret color
images in RGB space as 3-GDFN in the next subsection.

B. INTERPRETATION OF COLOR IMAGE AS 3-GDFN
To express a color image with three-dimensional generalized
discrete fuzzy numbers, the following steps are required.

• We take a color image I in RGB space for example,
the size of I is M × N × 3. Let I (x, y) represents a
three dimensional pixel value of point (x, y) in I , where
x ∈ {1, 2, . . . ,M}, y ∈ {1, 2, . . . ,N }. We denote
I (x, y) = (I1(x, y), I2(x, y), I3(x, y)), where Ik (x, y) ∈
{0, 1, 2, . . . , 255}, k = 1, 2, 3.

• We take a point (x0, y0), x0 ∈ {2, 3, . . . ,M − 1}, y0 ∈
{2, 3, . . . ,N − 1} in I as the center and use the eight
neighboring pixels around it to form a cube, denoted as
W . The size of W is 3 × 3 × 3. The point in W can be
expressed as (x0 + i, y0 + j), i, j = {−1, 0, 1} and the
corresponding pixel value can be expressed as Ik (x0 +
i, y0 + j), i, j = {−1, 0, 1}, k = 1, 2, 3.

• In order to represent color pixel values by 3-GDFN,
we calculate the mean value W = (W 1,W 2,W 3) and
standard deviation S = (S1, S2, S3) of W .

W k =

∑1
i=−1

∑1
j=−1 Ik (x0 + i, y0 + j)

3× 3
(5)

where k = 1, 2, 3.

Sk =

√∑1
i=−1

∑1
j=−1(Ik (x0 + i, y0 + j)−W k )2

3× 3− 1
(6)

where k = 1, 2, 3.
• We construct generalized Gaussian discrete fuzzy num-
bers for Ik (x0, y0), k = {1, 2, 3}. Let ω ∈ (0, 1],
we define uk : R→ [0, ω] is

uk (Ik (x, y) =

exp(− (Ik (x,y)−W k )2

2S
2
k

), if (x, y) ∈ W

0, otherwise.

(7)

where k = {1, 2, 3}, then u1, u2, u3 ∈ GDFN with
[uk ]0 = {Ik (x0 + i, y0 + j)|i, j = {−1, 0, 1}}.
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FIGURE 1. Using 3-GDFN to represent pixel value of color images.

• According to Definition 7, we define u : R3
→

[0, ω], ω ∈ (0, 1] is that

u(I (x, y)) = min(u1(I1(x, y)), u2(I2(x, y)), u3(I3(x, y))).

(8)

then u is a three-dimensional generalized discrete fuzzy
number that satisfies [u]0 = {I (x0 + i, y0 + j)|i, j =
{−1, 0, 1}}.

Example 11: Let I be a color image in RGB space. We use
the point (x0, y0) as a center and take its eight neighboring
pixels to form a cube W . Fig.1 shows the different objects I ,
I (x0, y0) and the decomposition ofW in the three components
of RGB space. As an example, we give some values of W
in each component. When I (x0, y0) = (125, 100, 58), its
3-GDFN representation is shown in Fig.1.

We interpret each pixel value of the color image in RGB
space as 3-GDFN. The above method can also be applied to
other color spaces. Next, we will define the structuring ele-
ments and basic operators of the CMM based on the 3-GDFN
space. Therefore, the morphological approach in this paper is
also applicable to other color spaces.

C. STRUCTURING ELEMENTS
In Mathematical Morphology, the structuring element (SE) is
a set used to examine the geometrical structures of an image.
The size and shape of the SE are chosen according to the
different application environments. In order to compare each
element of the SE with the image, the SE is moved in the
image so that it covers the entire image pixel by pixel. The SE
plays an important role in the definition of CMM. In general,
the SE indicates the neighborhood over which the pixels of

the image are compared. The general definition of SE is as
follows:
Definition 12 [32]: Let f : Df ⊂ R2

→ R3 be a color
image, let c ∈ Df be a pixel point, and let (Df , d) be a metric
space. A structuring element (SE) for the color pixel point c
is a neighborhood:

B(c, r) = {c̃ ∈ Df : d(c, c̃) ≤ r} (9)

where r denotes any positive real number, which is called
diameter.
In classical Mathematical Morphology, the fixed-size

structuring elements are used without considering the local
features of the image. When an image contains multiple
objects with large differences, the corresponding morpho-
logical operator can hardly achieve better processing results.
Therefore, the adaptive structuring elements that adjust the
size and shape according to the local characteristics of the
image have become the research direction.
According to the 3-GDFN representation of color pixel

value and the definition of fuzzy similarity measure, we con-
struct the structuring elements with variable shape as follow-
ing steps:
• Let I be a color image in RGB space, and I (x, y) is the
pixels value of I . Taking the point (x̃, ỹ) as the center,
and the connected pixels around it form an area G with
the size of n×n, where n ≥ 3 and n is odd. When n = 3,
G3×3 is expressed as follows:

G3×3

=

I (x̃ − 1, ỹ− 1) I (x̃, ỹ− 1) I (x̃ + 1, ỹ− 1)
I (x̃ − 1, ỹ) I (x̃, ỹ) I (x̃ + 1, ỹ)

I (x̃ − 1, ỹ+ 1) I (x̃, ỹ+ 1) I (x̃ + 1, ỹ+ 1)


• We construct the 3-GDFN representation for each pixel
value in G according to (7) and (8) and denote them as
u1, u2, . . . , un×n in G′. When n = 3, G′3×3 is expressed
as follows:

G′3×3 =

u1 u2 u3

u4 u5 u6

u7 u8 u9


• According to (4), we calculate the fuzzy similarity
between the center 3-GDFN(e.g. u5 in G′3×3) and the
surrounding 3-GDFNs of the area G′ respectively.

• Let λ ∈ [0, 1], the structuring element for the point (x̃, ỹ)
is a neighborhood:

B((x̃, ỹ), λ) = {(x, y) ∈ G : σ (u(I (x, y)), u(I (x̃, ỹ))) ≥ λ}

(10)

It is obvious that if the value of λ is 0, the SE is the
area G itself. The shape of SE changes according to λ, and
can be flexibly adjusted according to different application
requirements.
Example 13: When n = 3, we assume that the fuzzy

similarity is calculated as follows:

u1 u2 u3 u4 u5 u6 u7 u8 u9

u5 0.4 0.6 1 0.3 1 0.5 0.2 1 1
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If λ = 0.3, the shape of SE is shown as follows:• • •

• • •

◦ • •


If λ = 1, the shape of SE is shown as follows:◦ ◦ •

◦ • ◦

◦ • •


where, symbols • and ◦ represent that the corresponding pixel
point belongs to or does not belong to the structuring element
respectively.

According to the steps shown above, we can take the
parameter λ = 0 and choose G of other shapes and sizes.
Therefore, the method in this paper is compatible with the
shape and structure analysis function of classical morpholog-
ical methods.

D. MORPHOLOGICAL OPERATORS FOR COLOR IMAGES
The operators of color mathematical morphology based
on 3-GDFN are introduced in this subsection. As men-
tioned earlier, the definition of basic erosion and dila-
tion operators requires a complete lattice structure in
the color image space. This complete lattice depends
on the order relationship between the elements in color
images.
Definition 14 [15]: Let ≤τ be an order on τ ⊂ R3. The

space of functions from Df to τ with the order ≤ defined as

f ≤ g⇔ f (x) ≤τ g(x),∀x ∈ Df (11)

for any f , g : Df ⊆ R2
→ τ ⊆ R3 has a lattice structure.

Definition 15 [32]: Let τ ⊂ R3 be a color space with
complete lattice structure by a total order ≤τ . Let B be the
structuring element, the basic operators erosion ε and dilation
δ of the color image f are defined as follows:

ε(f ) = inf
x∈B
{f ◦ Tx} (12)

δ(f ) = sup
x∈B
{f ◦ T−x} (13)

where Tx : R2
→ R2 is the translation function by the

element x ∈ R2, that is Tx(s) = s+ x.
According to the previous definition, in order to perform

the erosion or dilation of an input image f by the structuring
element B, we translate B spatially. Then the neighborhood
pixels are sorted to determine the infimum and supremum
respectively. In next subsection, the method presented to sort
the pixels is explained.

Through the combination of erosion and dilation oper-
ators, other operations can be defined. Firstly, we define
the difference operator of color pixel value in RGB
space.
Definition 16: Let f1, f2 be color images in RGB space.

If f1(x) = (r1(x), g1(x), b1(x)), f2(x) = (r2(x), g2(x),

b2(x)), x ∈ R2, the difference operator between f1 and f2 is
defined as follows:

f1(x)− f2(x)

= (|r1(x)− r2(x)|, |g1(x)− g2(x)|, |b1(x)− b2(x)|) (14)

Definition 17: [32] Let f be a color image in RGB space
and B be the structuring element, the following CMM opera-
tors are defined as:
• Opening

γ (f ) = δ(ε(f )) (15)

• Closing

φ(f ) = ε(δ(f )) (16)

• Morphological gradient

Grad(f ) = δ(f )− ε(f ) (17)

• Gradient by dilation

Gradδ(f ) = δ(f )− f (18)

• Gradient by erosion

Gradε(f ) = f − ε(f ) (19)

E. ORDER ON 3-GDFN SPACE
To define the morphological operators, it is necessary to
sort the pixels of the structuring element to determine the
minimum or maximum respectively. The core of color pixels
sorting problem is to find the optimal pixel points according
to certain criteria. This problem can be thought of as a multi-
attribute decision problem with n alternatives (the number of
pixels is n) and three attributes (three components of color
image in the RGB space). The goal of the multi-attribute
decision problem is to find the most acceptable alternative
[42]. The goal here is to apply the decision strategy to select
the appropriate pixels of the structuring element. The fol-
lowing definitions are proposed before introducing the total
preorders in 3-GDFN space.
Let B be the structuring element, we define the ordering

relation for the 3-GDFNs corresponding to the pixels in B.
Definition 18: Let u, v ∈ 3-GDFN, p = (p1, p2, p3) ∈ R3

with p1, p2, p3 ≥ 0 and p1 + p2 + p3 = 1. Let M (u) =
(x1, x2, x3) andM (v) = (y1, y2, y3) be themean values of u, v,
respectively. We define a binary relation in 3-GDFN space,
that is a subset ‘‘≺p’’ of 3-GDFN × 3-GDFN as follows:

≺
p
= {(u, v) ∈ 3-GDFN × 3-GDFN :

3∑
i=1

pi(yi − xi) ≥ 0}.(20)

If (u, v) ∈≺p, then we say u to be smaller than v about ≺p,
and denote it as u ≺p v.
Theorem 19: Let p = (p1, p2, p3) ∈ R3, p1, p2, p3 ≥ 0

and p1 + p2 + p3 = 1. Then
1) u ≺p u,∀u ∈ 3-GDFN;
2) u ≺p v, v ≺p w⇒ u ≺p w,∀u, v,w ∈ 3-GDFN;
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3) For any u, v ∈ 3-GDFN, at least one of u ≺p v and v ≺p

u is tenable.
Proof: Let u, v,w ∈ 3-GDFN, M (u) = (x1, x2, x3)),

M (v) = (y1, y2, y3)) andM (w) = (z1, z2, z3).
1) M (u) ≤ M (u) for ∀u ∈ 3-GDFN, then u ≺p u.
2) Let u ≺p v, v ≺p w. Then we have

∑3
i=1 pi(yi − xi) ≥ 0

and
∑3

i=1 pi(zi − yi) ≥ 0. Hence,
∑3

i=1 pi(zi − xi) ≥ 0,
i.e., u ≺p w. So the transitivity of ≺p holds.

3) For any u, v ∈ 3-GDFN, at least one of
∑3

i=1 pi(yi −
xi) ≥ 0 and

∑3
i=1 pi(xi − yi) ≥ 0 is tenable. Then at

least one of u ≺p v and v ≺p u is tenable.

By Theorem 19, we know that ≺p is fulfill the reflexivity,
transitivity and completeness, so it is a total preorder on the
3-GDFN space. The following example shows that ≺p does
not satisfy antisymmetry.
Example 20: Considering the pixels values provided in

Example 11, the following matrixes are obtained:

[u]0 =

(66, 128, 255) (120, 24, 120) (78, 88, 69)
(49, 137, 76) (125, 100, 58) (26, 25, 230)
(200, 46, 188) (96, 58, 200) (255, 203, 19)


[v]0 =

(255, 66, 128) (120, 120, 24) (69, 78, 88)
(76, 49, 137) (58, 125, 100) (230, 26, 25)
(188, 200, 46) (200, 96, 58) (19, 255, 203)


According to (3), we can calculate that M (u) =

(102, 78, 123) and M (v) = (123, 102, 78). When p1 = p2 =
p3 = 1

3 ,

3∑
i=1

pi(yi − xi) =
1
3
((123− 102)+ (102− 78)

+ (78− 123)) = 0
3∑
i=1

pi(xi − yi) =
1
3
((102− 123)+ (78− 102)

+ (123− 78)) = 0

It means that u ≺p v and v ≺p u are both tenable. However,
the u and v are different three generalized discrete fuzzy
numbers.

Due to the ≺p is not antisymmetric, we will introduce
another binary relation based on the 3-GDFN space. For
u, v ∈ 3-GDFN, p = (p1, p2, p3) ∈ R3 with p1, p2, p3 ≥
0 and p1 + p2 + p3 = 1, M (u) = (x1, x2, x3) and
M (v) = (y1, y2, y3) are the mean values of u, v, respectively.
We denote u ≈p v if and only if

∑3
i=1 pi(yi − xi) = 0.

If u ≈p v, we cannot differentiate u and v. Next, we introduce
a new weak order relation based on the similarity definition
10. For this sake, we first give the Definition 21.
Definition 21: Let B be the structuring element, we repre-

sent the pixel value of each point inB as the 3-GDFN, denoted
as B′ = {ui ∈ 3-GDFN |i = 1, 2, . . . , n, n ≥ 2}. Then the
similarity cumulative sum of ui ∈ B′ is given by

σsum(ui) =
n∑
j=1

σ (ui, uj) (21)

where the σ (ui, uj) is the similarity between two 3-GDFNs
by (4).
Definition 22: Let p = (p1, p2, p3) ∈ R3 with p1, p2, p3 ≥

0 and p1 + p2 + p3 = 1, and B′ = {ui ∈ 3-GDFN : i =
1, 2, . . . , n, n ≥ 2}. We define a binary relation in 3-GDFN,
that is a subset ‘‘Cp’’ of 3-GDFN × 3-GDFN as follows:

Cp
=≺

p
6=
∪Cp
≈ (22)

where,
≺
p
6=
= {(u, v) ∈ 3-GDFN×3-GDFN : u ≺p v} \ {(u, v) ∈ 3-

GDFN×3-GDFN : u ≈p v}
Cp
≈ = {(u, v) ∈ 3-GDFN×3-GDFN : u ≈p v and σsum(u) ≤

σsum(v)}
If (u, v) ∈ Cp, we say u to be smaller than v about Cp, and
denote it as uCp v.
Theorem 23: Let p = (p1, p2, p3) ∈ R3 with p1, p2, p3 ≥

0 and p1 + p2 + p3 = 1, and B′ = {ui ∈ 3-GDFN : i =
1, 2, . . . , n, n ≥ 2}. Then
1) The binary relation≺p

6=
is transitive, but it is not reflexive

and complete.
2) The binary relation Cp

≈ is transitive and reflexive, but it
is not antisymmetric and complete.

3) The binary relation Cp is reflexivity, transitivity and
completeness, but it is not antisymmetric. It is a total
preorder on the 3-GDFN space.
Proof: We only prove the transitivity of Cp

≈, and the
transitivity and the completeness of Cp. The others are obvi-
ous. Let u, v,w ∈ 3-GDFN, M (u) = (x1, x2, x3)), M (v) =
(y1, y2, y3)) andM (w) = (z1, z2, z3).
1) Let u, v,w ∈ 3-GDFN, u Cp

≈ v, v C
p
≈ w. Then we have∑3

i=1 pi(yi − xi) = 0,
∑3

i=1 pi(zi − yi) = 0, σsum(u) ≤
σsum(v), σsum(v) ≤ σsum(w). Hence,

∑3
i=1 pi(zi−xi) = 0,

σsum(u) ≤ σsum(w), i.e., uC
p
≈w. So the transitivity ofC

p
≈

holds.
2) Let u, v,w ∈ 3-GDFN, u Cp v, v Cp w. Then by the

definition of Cp, we have that
∑3

i=1 pi(yi − xi) >

0 or
∑3

i=1 pi(yi − xi) = 0, σsum(u) ≤ σsum(v), and∑3
i=1 pi(zi − yi) > 0 or

∑3
i=1 pi(zi − yi) = 0, σsum(v) ≤

σsum(w). If
∑3

i=1 pi(yi − xi) > 0 and
∑3

i=1 pi(zi −
yi) > 0, then

∑3
i=1 pi(zi − xi) > 0, i.e., u Cp w.

If
∑3

i=1 pi(yi − xi) > 0 and
∑3

i=1 pi(zi − yi) = 0,
σsum(v) ≤ σsum(w), then

∑3
i=1 pi(zi − xi) > 0, i.e., uCp

w. If
∑3

i=1 pi(yi − xi) = 0, σsum(u) ≤ σsum(v) and∑3
i=1 pi(zi − yi) > 0, then

∑3
i=1 pi(zi − xi) > 0,

i.e., u Cp w. If
∑3

i=1 pi(yi − xi) = 0, σsum(u) ≤ σsum(v)
and

∑3
i=1 pi(zi − yi) = 0, σsum(v) ≤ σsum(w), then∑3

i=1 pi(zi − xi) = 0, σsum(u) ≤ σsum(w), i.e., u Cp w.
Thus,we have uCp w, the transitivity of Cp holds.

3) Let u, v ∈ 3-GDFN. If
∑3

i=1 pi(yi − xi) 6= 0, then u Cp

v or vCpu holds. If
∑3

i=1 pi(yi−xi) = 0, then σsum(u) ≤
σsum(v) or σsum(v) ≤ σsum(u) holds, i.e., at least one of
uCp v and vCp u is tenable. So the completeness of Cp

holds.
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Let B be the structuring element, we interpret the pixel
value of each point inB as the 3-GDFN, denoted asB′ = {ui ∈
3-GDFN |i = 1, 2, . . . , n, n ≥ 2}. We define the infimum
and supremum operations in B′ by using the binary relation
Cp as described earlier. Because Cp is a total preorder in 3-
GDFN space, there is a situation that ui, uj ∈ B′, i 6= j s.t.
both uiCp uj and ujCp ui are tenable. In this case, we need to
define the minimum and maximum between ui and uj firstly,
so we denote min{ui, uj} and max{ui, uj}, respectively.
Definition 24: Let B′ = {ui ∈ 3-GDFN |i =

1, 2, . . . , n, n ≥ 2}, and ui, uj ∈ B′, i 6= j, the min{ui, uj}
and max{ui, uj} are defined as follows:

min{ui, uj} =


ui, if ui Cp uj
uj, if uj Cp ui
umin{i,j}, if both
ui Cp uj and uj Cp ui are tenable.

(23)

max{ui, uj} =


uj, if ui Cp uj
ui, if uj Cp ui
umax{i,j}, if both
ui Cp uj and uj Cp ui are tenable.

(24)

Definition 25: Let B′ = {ui ∈ 3-GDFN |i =

1, 2, . . . , n, n ≥ 2}, according to (23) and (24), the infimum
and supremum operations in B′ are defined as follows:

infB′ = min{ui|i = 1, 2, . . . , n, n ≥ 2} (25)

supB′ = max{ui|i = 1, 2, . . . , n, n ≥ 2} (26)

According to the definition of infimum and supre-
mum operations on structuring element, the operators of
color mathematical morphology can be constructed. Finally,
the mean value of three-dimensional generalized discrete
fuzzy numbers is calculated according to (3), and the three-
dimensional generalized discrete fuzzy numbers processed
by color mathematical morphology in 3-GDFNs space are
mapped back to RGB space.

F. ANALYSIS
The basic operators properties, compatibility and computa-
tional complexity of the proposed CMM are analyzed in this
subsection.

1) THE OPERATORS PROPERTIES ANALYSIS
Firstly, we analyze the properties of ε erosion operator and
δ dilation operator defined in Definition 15 in the following.
It is worth noting that when we investigate the properties of
these operators, the shape of the structuring elements is fixed,
which means that the value of λ defined in Section IV-C is 0.
Definition 26: The transformation ψ invariant to transla-

tions if it commutes with the translations.
Proposition 27: If ε and δ are erosion and dilation based

on order ≤τ , then
ε is invariant to translations⇔ ε(f ◦Tr ) = ε(f ) ◦Tr , r ∈ R2,
δ is invariant to translations⇔ δ(f ◦ Tr ) = δ(f ) ◦ Tr , r ∈ R2.

Proof: Let f : R2
→ R3 be a color image, y ∈ R2,

ε(f ◦ Tr )(y) = inf
x∈B
{f ◦ Tr ◦ Tx(y)}

= inf
x∈B
{f (y+ x + r)}

= inf
x∈B
{f (y+ r + x)}

= inf
x∈B
{f ◦ Tx(y+ r))}

= ε(f )(y+ r)

= ε(f ) ◦ Tr (y)

Similarly, δ(f ◦ Tr )(y) = δ(f ) ◦ Tr (y).
Definition 28: The transformation ψ is extensive if, for a

color image f , the transformed image is greater than or equal
to the original image. The transformation ψ is anti-extensive
if, for a color image f , the transformed image is less
than or equal to the original image.
Proposition 29: Let ε and δ are erosion and dilation based

on order ≤τ , if the structuring element B contains the origin
(i.e., (0, 0) ∈ B), then
ε is anti-extensive⇔ ε(f ) ≤τ f ,
δ is extensive⇔ f ≤τ δ(f ).

Proof: Let f : R2
→ R3 be a color image, according to

the proposed definition of erosion operator,

ε(f )(y) = inf
x∈B
{f ◦ Tx(y)} = inf

x∈B
{f (y+ x)},

∀y′ ∈ R2, ∃ε(f )(y′) ≤τ f (y′ + x), i.e., ε(f ) ≤τ f .
Similarly, f ≤τ δ(f ).

2) THE COMPATIBILITY ANALYSIS
The pixel value of gray-scale image or binary image is one-
dimensional data, so it can be interpreted by one-dimensional
generalized discrete fuzzy number. Correspondingly, the pro-
posed ordering relationship in Section IV-E is compatible to
the classical gray-scale (or binary) morphology when it is
applied to gray-scale images (or binary). Therefore, the math-
ematical morphology for gray-scale images (or binary) can be
obtained as a particular case of the proposed CMM.

Taking the color image in RGB space for example, the con-
version between RGB and gray-scale is straightforward as
shown in the following definition. Here, we assume that the
value range of gray-scale image and each color component of
RGB image is [0, 255].
Definition 30: The map π , that converts a color (r, g, b) in

RGB space into a gray-scale value, is defined as:

π : RGB → [0, 255]

(r, g, b) 7→ r

The map τ , that converts a gray-scale value a into a color
value in RGB space, is defined as:

τ : [0, 255] → RGB

a 7→ (a, a, a)

That is, simply by reducing the color image in RGB space
into the R channel provides a gray-scale version.
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FIGURE 2. The original images in experiments. (a)Circle. (b)Tulips. (c)Peppers. (d)Lena. (e)Baboon.

The proposed operators constitute a generalization of the
gray-scale morphological operators based on the threshold
approach in [14].
Proposition 31: Let us consider the conversion between

RGB colors and gray-scale value from the Definition 30.
Then, the erosion and dilation operators proposed in Defini-
tion 15, when applied to gray-scale images, coincide with the
corresponding operators from the threshold approach in [14]
using the same structuring element.

Proof: We prove that, when restricted to gray-scale
images, our operators provide the same results.

We consider the erosion operator firstly. Let g′ be a gray-
scale image, B be a structuring element. Then, the RGB
conversion of g′ is τ (g′), where τ (g′)(y) = (g′(y), g′(y), g′(y)),
y ∈ R2.

The erosion of τ (g′) by B is then

ε(τ (g′))(y) = inf
x∈B
{τ (g′) ◦ Tx(y)} = inf

x∈B
{τ (g′)(y+ x)},

∃x0 ∈ B, s.t., the gray-scale projection of such image is:

π (ε(τ (g′))(y)) = π( inf
x∈B
{τ (g′)(y+ x)})

= π(τ (g′)(y+ x0))

= π(g′(y+ x0), g′(y+ x0), g′(y+ x0))

= g′(y+ x0)

= inf
x∈B
{g′(y+ x)}

= inf
x∈B
{g′ ◦ Tx(y)}

= ε(g′)(y)

Which matches the definition of erosion from the gray-scale
morphological operator based on the threshold approach. The
case for dilation is proved in a similar way.

3) THE COMPUTATIONAL COMPLEXITY
And finally, the computational complexity of this approach
associated to each step is also analyzed. Because the struc-
turing element of this paper is variable according to the
similarity of fuzzy numbers and the parameter λ, in order to
calculate the computational cost of this method, the structur-
ing element is specified as a rectangle containing n elements
and λ = 0. First, the 3-GDFN representation of each pixel
point in the structuring element is calculated, as shown in
Section IV-B, this is an O(n) step. Next, the fuzzy order

relation is calculated. The complexity of the binary relation
based on Definition 18 is O(n). In the calculation of the
binary relation based on Definition 22, the similarity of fuzzy
numbers needs to be calculated, so this is an O(n2) step.

V. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, many experiments are conducted to eval-
uate the effect of the proposed erosion operator, dilation
operator and their combination. We discuss the results
of experimentation, which were achieved using MAT-
LAB R2018a, 64-bits installed in a PC with Intel(R)
Core(TM)i5-8250U@1.60GHz CPU, 8.00 GBDual-Channel
DDR4 RAM, and Microsoft Windows 10 Home Edition
(64-bits).

The original images used in these experiments are shown
in Fig.2. These color images are 256× 256× 3 pixels in the
RGB space, and each channel of the images contains value
between 0 and 255. The Fig.2a is a synthetic image made by
Bouchet, et.al [32]. The Fig.2b, Fig.2c, Fig.2d and Fig.2e are
selected from the CVG-UGR image database [43].

A. THE PROPOSED COLOR MATHEMATICAL
MORPHOLOGY
First, the performance of the proposed method with 3-GDFN
total preorder is studied. Fig.2a shows the original image
used to check the effect of proposed operators. Because the
Fig.2a is composed of points, circles, line segments, disks and
other information, it has a clear foreground and background.
The values of the experimental parameters are as follows,
the structuring element is a square with a size of 5×5 pixels,
and the value of parameter λ is 0, the parameters p1 = p2 =
p3 = 1

3 . The experimental results are shown in Fig.3.
Fig.3b and Fig.3c show that the dilation operator has

an enlargement function that expands the objects brighter
than the image background, while the erosion operator has
a shrinkage function, so the small details in the image are
removed, and the color and edges of larger objects become
smoother. Both the opening and closing operators can sup-
press specific image details that are smaller than structuring
elements, while ensuring that no global geometric distortion
is generated. Fig.3d shows that the opening operation first
removes the small bright details with erosion operator, then
increases and restores the image brightness with dilation
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FIGURE 3. Effects of proposed operators with Figure 2a. (a)Original Image. (b)Dilation. (c)Erosion. (d)Opening. (e)Closing.
(f)Morphological gradient. (g) Gradient by dilation. (h)Gradient by erosion.

operator, but does not re-introduce the previously removed
details. The result of the closing operator is opposite to the
opening operator. As shown in Fig.3e, the closing operator
eliminates the small dark details while filling the small gaps
between objects. The morphological gradient calculated by
(17) is shown in Fig.3f. The boundary width calculated by
the morphological gradient operator is two pixels. Because
the dilation operator expands the bright area in the original
color image by one pixel, and the erosion operator shrinks
the bright area by one pixel. Correspondingly, Fig.3g and
Fig.3h represent the single pixel edge in the image back-
ground and the single pixel edge belonging to the target,
respectively.

The creation of new colors, also known as the false color
problem, is sometimes described as a problem that needs to
be overcome in mathematical morphology. However, in many
applications of morphological processing, false colors are not
completely unacceptable. For example, non-flat structuring
elements can introduce false colors in gray-scale or color
images, but can achieve better morphological filtering effects
and smoother morphological gradients [25], [35]. As shown
in Fig.3, there is false color phenomenon in the experimental
results of dilation and erosion operators, which is caused by
the independence of RGB spatial components interpreted by
3-GDFN. Moreover, the original image (Fig.2a) has distinct
foreground and background, which makes the false color
phenomenon more visually obvious. For morphological gra-
dients, as shown in Equations (17), (18) and (19), because
they are generated by vector subtraction, new colors will
appear.

Next experiment is focused on comparing the different
values of parameter λ in structuring elements. In order to
explain the experimental effect more clearly, the original
image as shown in Fig.2b and Fig.2c with rich texture are
used.

We take a square matrix of 9 × 9 size as the initial struc-
turing element in the original image Fig.2b, use the (4) to
calculate the similarity between two pixels in this matrix,
and set the parameter λ by the (10) to obtain the structuring
element whose shape can change. Fig.4 shows the results of
dilation and erosion operations about the flower image under
different λ values. Comparing these experimental results,
we can see that when the parameter value is 0.6, the dila-
tion operator increases the overall brightness of the original
image, while the erosion operator darkens the image as a
whole and loses the image details (such as leaf veins and
soil particles in Fig.4c). When the parameter value is 0.3,
the result of the dilation operation in Fig.4d makes the white
part of the petal edge significantly wider, while the result of
erosion in Fig.4e causes the red part of the petal to be retained.
When the parameter value is 0.1, the structuring element is
closest to a square of 9 × 9 size, and the results of dilation
and corrosion operations are Fig.4f and Fig.4g, respectively.
We can see the more obvious block effect.

In addition, we take a 7 × 7 square in the original image
Fig.2c as the initial structuring element, calculate the simi-
larity using the same method and set the parameter λ. When
the parameter value is 0.5, the results of the dilation operator
and the erosion operator are shown in Fig.5b and Fig.5c,
respectively. When the parameter value is 0.2, the results are
shown in Fig.5d and Fig.5e. It can be seen from the (10) that
the structuring elements are composed of pixels with fuzzy
similarity greater than or equal to λ. Comparing the white
boxes in Fig.5b and Fig.5d, we can see that the expansion
effect is more obvious when the λ is larger, while in Fig.5c
and Fig.5e, the contraction effects is more obvious when the
λ is larger. The main reason is that the contrast of color pixels
in the white box is relatively high, and the construction of
the CMM operator in this paper fully considers the fuzzy
similarity relationship between pixels.
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FIGURE 4. Effects of proposed operators with Figure 2b. (a)Original Image. (b)Dilation with λ = 0.6. (c)Erosion with λ = 0.6.
(d)Dilation with λ = 0.3. (e)Erosion with λ = 0.3. (f)Dilation with λ = 0.1. (g)Erosion with λ = 0.1.

FIGURE 5. Effects of proposed operators with Figure 2c. (a)Original Image. (b)Dilation with λ = 0.5. (c)Erosion with
λ = 0.5. (d)Dilation with λ = 0.2. (e)Erosion with λ = 0.2.

In this paper, on the basis of using 3-GDFN to represent
pixels in the RGB color space, the basic CMM operators
are defined according to the similarity of fuzzy numbers.
In conclusion, we have considered not only the mean value
feature of the pixels in structuring elements, but also the fuzzy
similarity between the central pixel and its neighbors in this
method. By setting different λ parameters, we can obtain
structuring elements of different shapes, which can meet the
requirements of different image processing applications.

B. COMPARISON WITH OTHER CMM
In this subsection, the key point of the experiments is to
compare the proposed approach with other CMM methods
in RGB space. The M-order is the Marginal ordering mor-
phology method [25]. It is a straightforward extension of the

gray-scale MM to color images. The lexicographic ordering
approach [26] is the typical method in condition-ordering.
We choose these two classical ordering methods to compare
with the method in this paper. At the same time, since the
erosion and dilation operators in [31] and [32] are both color
morphologymethods in RGB space, we also choose these two
methods for comparison experiment.

We take Fig.2a and Fig.2e as the experimental object, and
choose the square structuring elements with the size of 5 ×
5 and 3× 3 respectively. The order used by the lexicographic
ordering method is first on red component then on green then
on blue [26]. In [31], the authors order the color vectors in
RGB space with respect to their distance to black pixel value
(0,0,0) and white pixel value (255,255,255), we call this color
morphological method extended from the threshold approach
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FIGURE 6. Comparison with fuzzy order [32], M-order, distance order [31] and proposed method. (a)Erosion with proposed method (Figure 3c).
(b)Dilation with proposed method (Figure 3b). (c)Erosion with fuzzy order. (d)Dilation with fuzzy order. (e)Erosion with M-order. (f)Dilation
with M-order. (g)Erosion with distance order. (h)Dilation with distance order.

as distance order morphological method. The fuzzy order in
[32] is defined based on the fuzzy preference relation. The
experimental results are shown in Fig.6 and Fig.7.

The experimental results in Fig.6 fulfill interpretability,
that is, morphological operations make the bright objects in
the original image (Fig. 2a) expand with dilation and shrink
with erosion. Because the pixel points around the central
pixel are taken into account when constructing 3-GDFN in
this method, the shrinkage effect of erosion operator and
expansion effect of dilation operator in this paper are more
obvious under the condition of using the same structuring
element. It can also be observed in Fig.6 that the proposed
method avoids the notch on the edge of the largest disc caused
by erosion and dilation operation.

As we have observed in Fig.7, there is a false color phe-
nomenon in the proposed method and M-order method, for
example, the part of the nose and its edge. However, the ero-
sion and dilation defined by fuzzy order [32] and distance
order [31] are color preserved. For the image with rich tex-
ture, the effect of fuzzy order [32] method is not better. When
the proposed method is used, the structure and details of the
image are preserved compared with other methods, such as
the effect of the eye area.

Next, we compare the proposed method with other mor-
phological methods in terms of running time. The operating
environment for all methods is the same as the experimental
environment mentioned at the beginning of Section V. The
experimental object is Fig.2b and the structuring elements
are the square with 3 × 3 size. The experimental results
are shown in Fig.8. The horizontal axis represents all the
morphological methods, while the vertical axis represents
the running time and the unit of measurement is seconds.

Among them, the running time of lexicographic order is the
shortest, and the running time of M-order and distance order
methods is slightly longer than that of lexicographic order.
The fuzzy order method runs longer than them because the
fuzzy preference relation of vectors has to be calculated. The
proposed method needs to construct the 3-GDFN representa-
tion of color vectors before vector sorting, so the running time
is the longest. As shown in Fig.8, when λ takes on different
values, the algorithm operates at different speeds because of
the different number of objects in the structuring element
which need to be sorted.

Since there is no obvious quantitative standard, it is dif-
ficult to quantitatively compare mathematical morphology
methods with the results given by basic operators [41]. In next
subsection, we use the noise reduction and texture classifica-
tion in color images to prove the objective advantages of the
method proposed in this paper.

C. COLOR NOISE REDUCTION
Next, the performance of the proposed CMM operators is
tested about color noise reduction quality. In order to compare
with othermorphological algorithms, we add the uncorrelated
zero-mean Gaussian noise (variance σ = 32 and ρ = 0) to
the original images (Fig.2b, Fig.2c, Fig.2d and Fig.2e). In the
real world, noise is often not caused by a single source, but
by many different sources. Assuming that the actual noise is
regarded as the sum of many random variables with different
probability distributions, and each random variable is inde-
pendent, the central limit theorem shows that as the number
of noise sources increases, their normalize sums approach
the Gaussian distribution. Based on this assumption, the
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FIGURE 7. Comparison with fuzzy order [32], M-order, distance order [31] and proposed method. (a)Original Image
(Figure 2e). (b)Erosion with proposed method. (c)Dilation with proposed method. (d)Erosion with fuzzy order. (e)Dilation
with fuzzy order. (f)Erosion with M-order. (g)Dilation with M-order. (h)Erosion with distance order. (i)Dilation with distance
order.

FIGURE 8. Comparison with other methods in terms of running time. The
unit of time is seconds.

Gaussian noise is a simple approximate simulation for the
complex and unknown noise distribution.

We use the open-close close-open(OCCO) filter algorithm
to achieve smooth filtering of noisy images. A square struc-
turing element with a size of 3× 3 pixels is used in the noisy

TABLE 1. NMSE × 100 values of images after noise reduction by the
OCCO filter algorithm.

image, and the OCCO filter is defined as follows:

OCCO(f (i, j)) =
1
2
φ(γ (f (i, j)))+

1
2
γ (φ(f (i, j))) (27)

where φ and γ denote the opening and closeing operators in
(15) and (16), respectively.

Correspondingly, the normalized mean squared error
(NMSE) is used to measure the quality of denoised image.

NMSE =

∑M
i=1

∑M
j=1 ‖f (i, j)− f

′(i, j)‖2∑M
i=1

∑M
j=1 ‖f (i, j)‖2

(28)
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TABLE 2. NMSE × 100 values of images after noise reduction by the traditional median filter algorithm.

FIGURE 9. Images corrupted with uncorrelated zero-mean Gaussian noise (variance σ = 32 and ρ = 0) and color noise reduction by
OCCO filter algorithm. (a)The Tulips image adding noise. (b)The Peppers image adding noise. (c)The Lena image adding noise. (d)The
Baboon image adding noise. (e)The denoised Tulips image. (f)The denoised Peppers image. (g)The denoised Lena image. (h)The
denoised Baboon image.

where f (i, j) and f ′(i, j) denote the vectorial pixels at position
(i, j) for the original and filtered images respectively, while
‖ · ‖ represents the Euclidean norm.

The image after removing the noise using the OCCO algo-
rithm defined by the operators in this paper is shown in Fig.9.
In addition, we selected the M-order morphological method
and lexicographic order morphological method for compar-
ative experiment. The square structuring element of 3 × 3
pixels is also selected and applied to the OCCO smoothing
filter in Fig.9a, Fig.9b, Fig.9c and Fig.9d respectively. TheM-
order (Marginal ordering) corresponds to univariate ordering
implemented at each component of a given vectors. Data is
arranged independently along each of its channels. The order
used by the lexicographic ordering method is first on red
component then on green then on blue.

Table 1 shows the NMSE results of the method for remov-
ing uncorrelated zero-mean Gaussian noise. According to the
obtained values, the superiority of the proposed method and
M-order approach are remarkable, and lexicographic order
method has the worst denoising effect. Although the NMSE
value of proposed method is close to M-order, as mentioned
earlier, the M-ordering is the pointwise ordering method of
the color components, which will produce a more obvious
false colors in original image. Since the correlation between
color components is not considered in the lexicographic order
method, the NMSE value is the largest.

We also compare the OCCO filtering algorithm with the
traditional median filtering method and take the Fig.9a,
Fig.9b, Fig.9c and Fig.9d as examples. We consider the pro-
posed order, M-order and Lexicographic order to sort the
color pixel and select the median value. Similarly, the tem-
plate size of the median filter is the same as the structuring
element size in the OCCO filter method. The experimen-
tal results are shown in Table 2. By comparing the results
in Table 1 and Table 2, it can be seen that the noise reduction
effect of the OCCO filtering algorithm is better than that of
the traditional median filtering method.

D. COLOR TEXTURE CLASSIFICATION
In order to further verify the performance of the CMM oper-
ator proposed in this paper, we use the texture classification
algorithm presented in [25] on the Outex-13 texture database
[44] to verify the accuracy rates of texture classification
of different morphological operators. There are 68 types of
texture images in the Outex-13 database. Each type contains
10 texture images for the training set and the test set. The
same category of texture image is acquired from the same
object during multiple times. There are a specific angle of
view and rotation angle in each image. According to literature
[45], we use normalized morphological covariance as the
color texture descriptor.

k(f ) =
Vol(εp2,ν (f ))

Vol(f )
(29)
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TABLE 3. Classification rates in percent for textures of Outex13, using
erosion based covariance.

where the normalized morphological covariance k of image
f , Vol is the volume of f (i.e. sum of pixel values), eroded by
a pair of points εp2,ν separated by a vector ν.

We selected the M-order, lexicographic order and fuzzy
order [32] for comparative experiment. All results were
obtained using the k-nearest neighbors (K-NN) algorithm and
Euclidean distance on the Outex-13 database. Table 3 shows
the accuracy rates of texture classification by (29) for themor-
phological erosion operators, which were constructed with
different vector ordering methods. The CMM method pro-
posed in this paper has a texture classification accuracy rate
significantly greater than the lexicographic orders method.

Fuzzy order method is defined based on fuzzy preference
relation, it allows giving the same importance to all the com-
ponents of the image. However, we further considered the dis-
tribution of surrounding pixels when constructing 3-GDFN,
so the corresponding texture classification accuracy rate was
higher.

VI. CONCLUSION
In this paper, based on the study of the generalized discrete
fuzzy numbers basic theory, the 3-GDFN has been applied
to the mathematical morphology processing of color images.
By calculating the fuzzy similarity of 3-GDFNs, the total
preorder relations of 3-GDFN space has been defined, and
the color dilation and color erosion operators based on struc-
turing elements have been constructed. Experimental results
have shown that these operators can be used for color image
morphology processing and achieved better results in color
image noise reduction and texture classification. The color
mathematical morphology method in this paper is an exten-
sion of the traditional gray-scale method. The advantage
of the algorithm is that it can process color image and is
compatible with the traditional gray-scale method. The future
work is mainly to combine fuzzy set theory to consider non-
flat structuring elements and design new color morphological
operators.
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