
Received January 30, 2021, accepted February 4, 2021, date of publication February 8, 2021, date of current version February 17, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3057807

A New Approach to Software Effort Estimation
Using Different Artificial Neural Network
Architectures and Taguchi
Orthogonal Arrays
NEVENA RANKOVIC 1, DRAGICA RANKOVIC1, MIRJANA IVANOVIC2, (Member, IEEE),
AND LJUBOMIR LAZIC1
1School of Computing, Union University, 11000 Belgrade, Serbia
2Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia

Corresponding author: Nevena Rankovic (nrankovic@raf.rs)

ABSTRACT In this article, two different architectures of Artificial Neural Networks (ANN) are proposed
as an efficient tool for predicting and estimating software effort. Artificial Neural Networks, as a branch
of machine learning, are used in estimation because they tend towards fast learning and giving better and
more accurate results. The search/optimization embraced here is motivated by the Taguchi method based on
Orthogonal Arrays (an extraordinary set of Latin Squares), which demonstrated to be an effective apparatus
in a robust design. This article aims to minimize the magnitude relative error (MRE) in effort estimation
by using Taguchi’s Orthogonal Arrays, as well as to find the simplest possible architecture of an artificial
Neural Network for optimized learning. A descending gradient (GA) criterion has also been introduced to
know when to stop performing iterations. Given the importance of estimating software projects, our work
aims to cover as many different values of actual efficiency of a wide range of projects as possible by division
into clusters and a certain coding method, in addition to the mentioned tools. In this way, the risk of error
estimation can be reduced, to increase the rate of completed software projects.

INDEX TERMS Software effort estimation, Taguchi method, artificial neural networks design, orthogonal
array-based experiments, clustering, COCOMO81, COCOMO2000, NASAproject dataset, Kemerer dataset.

I. INTRODUCTION
Accurate software development effort estimation is a crucial
factor in software project’s success and reducing risks. At the
same time, each project has a special nature that makes it
much harder to estimate the required effort for completion,
and the task prediction becomes more challenging. Over the
past years, there have been many Machine Learning (ML)
approaches in the literature that have been applied to improve
the software effort estimation. Many researchers [1]–[5], also
proposed different methods for optimizing the parameters
of three COCOMO-based models using some of the most
popular Neural Networks. Neural networks are frequently
used as a tool for software effort prediction because of

The associate editor coordinating the review of this manuscript and

approving it for publication was Yang Liu .

their aptness for arbitrary accuracy. There is an enormous
area of real-world applications [3]–[8], for which artificial
Neural Networks (ANN) have proved very efficient due to
their learning capability. Most of ANNs architecture learn-
ing refers to modifications of the values of neuron weights,
which modulate signal transmission between interconnected
neurons. ANN learning algorithms determine weight mod-
ifications, for example, in order to optimize the cost func-
tion. The most efficient, but rarely used, cost function is
the summed magnitude relative error (MRE) between cur-
rent ANN output and the desired (target) output, which can
lead to the smallest value of cost. Contrary to these new
approaches, which are based on ANN architec- ture and
require a smaller number of iterations, traditional learning
algorithms are based on numerical methods that require a
huge number of iterations. In accordance with that, most

26926
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-9910-5886
https://orcid.org/0000-0001-7300-9215

N. Rankovic et al.: New Approach to Software Effort Estimation Using Different ANN Architectures and Taguchi Orthogonal Arrays

popular learning methods are based on Gradient Descent
(GA) [5]–[10] optimization. This value is important for real-
time applications and security in high-risk systems, which are
expected to quickly learn and adapt to their environments, and
for which fast learning methods are in high demand. Previous
research [1], [2] has shown significant shortcomings in the
design of Neural Network architecture. The main disadvan-
tages indicate the choice of the optimal set of parameters
during training when achieving the convergence rate and the
required accuracy. In this article we propose two different
ANN architectures, based on the Taguchi technique for robust
design, which are using three software development attributes
in COCOMO models as control variables (exponent – scale
factors, cost factors, and software size). Robust design opti-
mization through the Taguchi technique includes orthogonal
arrays. At the same time, it is considered important to develop
a prediction method that is less complex and much more
useful. The Neural Network is associated with an Orthog-
onal Array (OA) with the number of parameters equaling
the number of weights of the ANN. The interval contain-
ing the solution is gradually dwindling as the result of an
iterative algorithm. In this study, the obtained results show
that the method of Taguchi orthogonal arrays is an efficient
approach for directing Neural Networks in learning speed and
accuracy of obtained results in software effort assessment.
Furthermore, we present the minimum value of magnitude
relative error (MRE) for selected ANN architectures through
orthogonal arrays and the new COCOMO2000 version. The
MRE formula measures, for a given project, the difference
between actual and estimated effort relative to the actual
effort. The numerical value of every examination in data
distribution is sensitive to individual predictions. The contri-
bution of this approach lies in the application ANNs, using
Taguchi search/optimization arrays and GA criteria in the
domain of software effort prediction [11]–[15]. The critical
decisions that defined the objective of our research are as
follows:
• comparison of two different architectures of artificial
neural networks and the obtained results concerning
the minimum relative error obtained by the COCOMO
formulas (1, 2),

• division of software projects into clusters, given the
different nature and values of the actual effort of each, as
well as the possibility of application to as many projects
as possible,

• finding one of the most efficient methods of encoding
and decoding input quantities,

• minimum number of iterations performed,
• testing and validation on different data sets.
This article is structured as follows: Section 2 provides

an overview of the previous studies that applied ANNs for
software effort estimation. Section 3 explains the Taguchi
method for the Neural Network design that is used to formu-
late the basic idea through three main parts of the experiment:
training, testing, and validation of two ANN architectures.
Section 4 proposes the evaluation method, and Section 5

discusses the results. The concluding remarks are given in the
last section.

II. LITERATURE REVIEW
The efficiency of software effort and cost estimation is one
of the contributing factors that aim at developing a success-
ful project. In the last decade, the software industry, the
modern world and many researches are examining this key
process inside the software development cycle. The following
section presents the review of the state-of-the-art work done
in this domain. Some of the authors claim that software
project management has taken a new perspective of software
quality assurance methodologies during all tasks in software
development [12], while other authors [13], [14] state that
the project manager has a dominant role in completing and
satisfying all requirements for project scope, time, cost, risk,
and subsequently on quality. Since recently, many researchers
usually work with a new costs assessment process based
on attractive and useful artificial Neural Networks. Some of
the previous effort estimation models, used in various soft-
ware development projects are: SLIM (Software Life Cycle
Management) model [15], SEER-SEM (System Evaluation
and Estimation of Resource Software Evaluation Model)
[16], and the COCOMO81 (Constructive Cost Model) [17]
and COCOMO2000 [18]. The COCOMO model is based
on cost factors, scale factors, and software size for esti-
mating effort requirements, cost, and the scheduling of a
software development project. The most detailed version of
the COCOMO2000 model is the Post Architecture and it
is expressed in formulas (1, 2) [17], [18]. This model uses
a size measurement and a number of cost drivers (scale
factors and effort multipliers) to estimate the amount of the
effort required. The estimated effort for software develop-
ment project is expressed as person-months (PM) and can be
calculated as follows:

PM = A · SizeE ·
∏n

j=1
·EMi. (1)

E = B+ 0.001 ·
∑5

j=1
·SFj. (2)

A and B are the baseline constants for calibration; KSLOC
(thousands of Source Lines of Code) represents the size of
the software project; SFj stands for five scale factors; EMi
stands for seventeen effort multipliers; Cost drivers of the
COCOMO2000 Post Architecture model together comprise
these scale factors and effort multipliers. In [19], [20] the
authors used the Back-Propagation Neural Networks tech-
nique through COCOMO dataset & NASA 2 dataset which
consist of 60 and 93 projects respectively and the sigmoid
function to evaluate software cost. The result showed less
MRE value. The pieces of research [21] studied and merged
the COCOMO & Neural Network technique into a single
structure. It was shown that the COCOMO the evaluated cost
is closer to the actual cost. Goyal S. and experiments by other
authors listed [22] proposed the ML approach to improve
COCOMOModel using ANNs, but the results of MRE were
large. An interesting study that was conducted [23] included

VOLUME 9, 2021 26927

N. Rankovic et al.: New Approach to Software Effort Estimation Using Different ANN Architectures and Taguchi Orthogonal Arrays

the use of a Neural Network algorithm to evaluate the soft-
ware cost with accuracy but neither of the methods mentioned
is confidently better or worse than the other. Authors in
[24] have used a two layer feed forward network to pro-
pose a model to minimize the MRE between actual cost and
evaluated cost. The cost was estimated with 3 experiments:
size estimation, cost estimation and time estimation. Authors
used an intermediate model which gives better accuracy than
the other two models. A study conducted by [25] utilized
a new approach uniting k-means algorithm to estimate the
software cost through MRE results. The study [26] experi-
mented with a Neural Network technique using a perceptron
learning algorithm to evaluate the software cost based on the
COCOMOmodel. Authors in [27] proposed Neural Network
model to evaluate the software effort also using a multilayer
artificial Neural Network with identity activation function
at the input, hidden and the output layer with sustainable
result. Authors in [28] proposed a back propagation Neu-
ral Network algorithm. They compared their result with the
COCOMO model and it improved the result of experimenta-
tion. Nassif et al. [29] experimented with four different neu-
ral network models and investigated the corelation between
them, using the mean absolute residual criterion and other
paramethers. It was supposed that the regression and UCP
models were also used to forecast the software effort from
the used experiment diagram. Authors in [30] enhanced the
accurateness of software effort estimation using numerical
formulas and the calculated result was acceptable with less
Mean Magnitude Relative Error (MMRE). Boetticher [31]
performed over 33,000 different experiments using Neural
Networks on empirical data. Collected data were from sep-
arate corporate domains and assessed the contribution of
different internal product metrics (size, vocabulary, complex-
ity, and object) using Neural Networks. In [32]–[35] authors
applied the artificial Neural Network to cost estimation and
claimed that Neural Network is able to infer from a trained
data set. Over a set of training data, the Neural Network
learning algorithm constructs mappings and fits previously
unseen data in an appropriate way. In [36] the authors states
that the new idea of a Hybrid approach for improving the
accuracy of software cost estimation through estimated result
is very close to the actual result using COCOMO2000, Neural
network and the Principal Component Analysis (PCA) tech-
nique. Sweta Kumari et al. [37] gave the pros and cons of
basically two types of cost estimation models: algorithmic
and non-algorithmic. The shortcomings of previous research
are reflected in the lack of systematicity for the design and
optimization of Neural Networks in complex systems. Our
approach involves the use of ANNs and Taguchi orthogonal
vector plans, through which we obtained significantly better
results. In all the aforementioned studies, the value obtained
for MRE is far greater than the error of estimation in our
approach. The advantage is also in the rapid fulfilment of
criteria for the completion of ANN training i.e. the number
of iterations in our experiment is less than 10.

III. TAGUCHI METHOD FOR NEURAL NETWORK DESIGN
A. TAGUCHI METHOD FOR NEURAL NETWORK DESIGN
There is a huge number of businesses that invest in brand
new software. It is necessary to help those companies to
consider the cost regarding software development and also
the period of time used for improvement. TheNeural Network
is used as the most prominent model for software estimation
and also as an information processing technique. Due to its
ability to learn from any dataset, it is possible to generated
meaningful results from it. The general structure of ANNs
is typically organized in three layers: the input layer, hidden
layer and output layer. So, it includes a number of inputs that
are applied by some weights which are combined together
to give an output. Because of the fact that the number of
hidden layers should be as small as possible, to avoid overfit-
ting, we use only one hidden layer. This article presents the
efficient application of Neural Networks based on Taguchi’s
orthogonal vector plans and the required accuracy for the
convergence rate [1], [2]. The following steps are applied:

• Construction of ANN based on a matrix of orthogonal
arrays and application of weighting factors during the
learning process;

• The minimum number of hidden layers within the ANN;
• Improving the accuracy and reliability of the Neural
Network; and

• Choice of methodology for convergence to theminimum
value of magnitude relative error.

In the design of Neural Networks, the correct selection of
design parameters, number of input sizes, hidden layers and
output sizes is required, in order to obtain appropriate values
for the specified experiment. The main contribution of this
article is the application of Neural Networks using Taguchi
orthogonal arrays, which allows the analysis of a large num-
ber of parameters in the smallest number of experiments. The
originality and innovation of our approach is reflected in the
application of simple architectures of ANN networks, a small
number of observations for the training of ANN networks and
rapid convergence - a small number of iterations.

B. ORTHOGONAL ARRAY TUNING METHOD
In this section, we propose the Orthogonal Array Tuning
Method (OATM) that always gives good results and requires a
much smaller number of experiments to find optimal the solu-
tion. When using the OATM method, the hyper-parameters
are levels. In our proposed model, we use three levels: L1, L2
and L3 according to work [1] and based on these levels we
build the F-L (factor-level) table. The table depends on Wi
(i = 1, 2, . . . , 13) in Figure 1 - Single hidden layer Neural
Network (ANN27), or OA(27, 313) in our first proposed
ANN structure in Table 1. It requires the number of to-be-
tuned factors and the number of levels for each factor Wi
to be defined. The levels should be determined by expe-
rience and literature [2]. We further suppose each factor
has the same number of levels. The OATM is enabled to

26928 VOLUME 9, 2021

N. Rankovic et al.: New Approach to Software Effort Estimation Using Different ANN Architectures and Taguchi Orthogonal Arrays

optimize the hyper-parameters by utilizing a very small set
of highly representative hyper-parameter combinations. The
high efficiency can be demonstrated by a simple sample in
Table 1. The OATM only takes 27 combinations (27 ANN
during training process) which means the hyper-parameters
(Wi to W13) can be optimized by running the experiment
for 27 times instead of 313 = 1 594 323 observations in full
factorial plan i.e. exhausted factor combinations experiments.
Therefore, throughOATM,we can save about 99.99830649%
(0.9999830649 = 1 - (27/1 594 323) work in the tuning
procedure. The proposed methodology is based on two dif-
ferent kinds of ANN architectures that are summarized as
follows: In the presented study, for two proposed Neural
Networks, the stated relationship between performance mea-
sures and scheduling criteria is defined using weighting
factors. This contributes to the accuracy and reliability of
effort and time estimation. It was used a back propagation
Neural Network for the chosen architectures. The first pro-
posed architecture of a single hidden layer Neural Network is
based on Taguchi Orthogonal Array (L27) with 13 parameters
(Wi, i = 1, 2, . . . , 13) and three different levels: L1, L2 and
L3, shown in Figure 1. Input nodes are COCOMO attributes
from equation (1): X1 = E, X2 = EAF (Effort Adjust-
ment Factor) i.e. multiplied EMi, and X3 = Size [KLOC]
according to formula (1). After construction of the ANN

FIGURE 1. Single hidden layer Neural Network (ANN27).

architecture, we have to define the Orthogonal Array Tuning
table i.e. Table 1 in this experiment. The presented table
should heed the basic composition principles. Some com-
monly used tables are presented in references. An alternative
way is to use the software which generates orthogonal array
tables.

The second proposed architecture of single hidden layer
Neural Network is based on Taguchi Orthogonal Array (L18)
with 8 parameters (Wi, i = 1, 2, . . . , 8) and three different
levels: L1, L2 and L3, shown in Figure 2. Contrary to the
previous architecture, this one is combined network, because
the first parameter has only two levels Table 2.

The essential concern is to get an ideal neural organization
structure given a run of conceivable plan parameters and not
to get a point by point understanding of the neural organiza-
tion itself. As such, the Taguchi method will help to precisely
determine every experiment. It makes a difference to decide

TABLE 1. Taguchi Orthogonal Array OA(313) for ANN27

FIGURE 2. Single hidden layer Neural Network (ANN18).

TABLE 2. Taguchi Orthogonal Array (21 + 37)for ANN18

the particular plan data required for the optimization prepare
for a least required number of tests.

As outlined within the primary steps underneath, the
Taguchi method proposes an approach to arrange and plan

VOLUME 9, 2021 26929

N. Rankovic et al.: New Approach to Software Effort Estimation Using Different ANN Architectures and Taguchi Orthogonal Arrays

ideal neural systems efficiently. The architectures of single
hidden layer networks shown in Figure 1 and Figure 2 have
been processed through seven steps within Algorithm1.

Algorithm 1 Robust Model Designing
Step 1. Input layer.
Step 2. Coding method of input layer.
Step 3. Hidden layer functions and output layer.
Step 4. Decoding output values.
Step 5. Gradient Descent (GA) and determining Winner net-
work.
Step 6. Training and Testing via Winner network.
Step 7. Validation using Kemerer dataset and random dataset
composed of projects from different sources.

Step 1: Input layer
Based on the latest version of COCOMO2000 projects

which a is publicly available dataset [Boehm et al. 00], the
estimated effort in person-months (PM) is divided into three
clusters: less than 90PM (small projects), between 90PM
and 500PM (medium projects) and more than 500PM (large
projects). The proposed architectures have 3 input variables,
as we already stated (X1 = E, X2 = PEMi (Effort Multipliers
Product), and X3= Size [KLOC]) and 13weights for ANN27
network, or 8 for ANN18 network, Wi = 1 (i = 1 to 13;
i = 1 to 8), gradient descent (GA = 0.001) and the identity
activation function is a sigmoid function to calculated the
desired output of the network.

Step 2: Coding method of input layer
We are coding input values to increase accuracy as follows:

Xi = (Xi − Xmin)/(Xmax − Xmin). (3)

Step 3: Hidden layer functions and output layer
By using a sigmoid function with formulas (4) – (7) in the

hidden layer, an estimated value is obtained:

Y1 = 1/(1+ e−(X1·W1+X2·W4+X3·W7)). (4)

Y2 = 1/(1+ e−(X1·W2+X2·W5+X3·W8)). (5)

Y3 = 1/(1+ e−(X1·W3+X2·W6+X3·W9)). (6)

EstEffNN = 1/(1+ e−(Y1·W10+Y2·W11+Y3·W12+1·W13)). (7)

Step 4: Decoding output values
Based on proposed method in Step 2. the proportional

equation (denormalization) is given like (8):

Xi = (Xmin + Xi(coded)) · (Xmax − Xmin). (8)

Step 5: Gradient Descent (GA) and determining Winner
network After completing the number of iterations and output
values (MRE) are lower than 0.001 (GA < 0.001) we have
reached the stop criteria and we choose ‘‘Winner’’ NN with
the smallest MRE value.

Step 6: Training and Testing via Winner network Each
ANN re-enacted parametric run is proportionate to a test run
(a ‘‘design of experiments‘‘ in terms of robust design termi-
nology) which constitutes the preparatory stage for certain

ANN. The number of ANN rises to the number of columns
of the OA (which demonstrates the number of tests). The
weights are gotten from the Orthogonal Arrays by supplant-
ing the (ordered) level of each parameter (weight) with its
current esteem within the look interim [1]. Controllable vari-
ables, in our experiment, for every search start are at the
[−1, 1] interval for all weights Wi. The three levels of Wi
(level L1, L2, L3) within the comparing OA can be related
to the extremes and the center of the look interim, −1, 0, 1.
In this way, we are supplanting the level number in Table 1
and Table 2 with the actual value of the weight at that level.
For weight Wi, at the primary cycle, level L1 from Table 1 for
ANN27 (L1 level of weightWi) is supplanted by−1, level L2
is supplanted by 0, and level L3 is supplanted by 1. Thereafter
a cost function is to be evaluated, see for each network in the
test set. In our experiment it is the sum of magnitude relative
error (MRE) between the network output (estimated effort
value) and target output value (actual effort value). The cost
to be minimized is the sum of cost functions for all ANNs
from proposed architectures. For the primary iteration the real
fetched esteem for each ANN recreation run (calculated as
whole of greatness relative mistake for the given preparing
set) is at that point utilized to assess the impact that each
individual level had on the fetched work. This is often done
by summing the fetched capacities for the systems (tests) in
which that level was shown. Consider as an instance ANN
weights W1, Level L1 (of W1) enters the primary nine net-
works (experiments) of L27. The cumulated consequences of
Level L1 of W1 (Eff L1,W1) are given through the sum of
prices for the networks wherein L1 intervenes. Thus Eff L1
W1 = cost1 + cost2 + . . .+ cost9 [1].

FIGURE 3. Cost effect function for W1 to W13 on 3 levels (L1, L2, L3) in 1.
iteration.

For this example, after the first iteration, the effect of each
level value on the cost is synthetized in Figure 3. For next, 2.
Iteration, modify the values of each weight (shrink the search
interval for the weight) in the direction of the weight value
that produced the minimum cost. From Figure 3, comparing
the effects of the 3 levels of W1, one notices that Level L3
of weight W1 produces minimum cost, therefore the weights
will move in its direction. The new levels of W1, in the 2nd

iteration, it is calculated as (9) – (11):

W1L1new = W1L2old . (9)

W1L2new = W1L2old + (W1L3old −W1L2old)/2. (10)

W1L3new = W1L3old . (11)

26930 VOLUME 9, 2021

N. Rankovic et al.: New Approach to Software Effort Estimation Using Different ANN Architectures and Taguchi Orthogonal Arrays

Reducing the search interval at 1/2 its value and choosing
to continue the search within the half that’s highest to the
extent of the load that created minimum cost could be an
easy approach to calculate the new weight levels. By dividing
the interval in two at every iteration, the search converges
extremely quickly (the search interval for a weight shrinks
three orders of magnitude in ten steps). Table 3 illustrates the

TABLE 3. Example of Convergence Rate for ANN27 on Medium Cluster

quick convergence to the target worth of a given cost, there-
fore leading to a fast learning method that satisfies GA crite-
ria. The Winner ANN among twenty-seven trained ANNs is
one that is a calculable meanMRE. In the presented table, the
minimummagnitude relative error for Winner NN5 is 0.4370
(43.70%) and the minimum mean magnitude relative error is
0.6546 (65.46%). Also, the number of Neural Networks that
have a GA that is not less than 0.001 is 27, 23, 21, 8 and 0,
respectively.

Step 7. Validation using Kemerer dataset and random
dataset composed of projects from different sources. The first
experiment is a training process, which is performed on three
clusters. A training data set includes values from different
projects in every cluster based on the two presented Neural
Network architectures. As a result of the first experiment,
it is possible to recognize the ‘‘Winner’’ Neural Network.
The Neural network that is considered as a ‘‘Winner’’ is the
one with the smallest value of MRE. Second experiment is

a testing experiment, obtained on previously, founded ‘‘Win-
ner’’ Neural Network. The third experiment is a process of
validation. This experiment is performed on the Kemerer
validation dataset divided in three clusters like as in step 1. In
his papers [22], [38] he used data collected from 63 completed
software projects to produce results. He also recognized the
three main attributes which affect the results of the software
productivity. For a predictive capability of effort estimation,
it was necessary to test the Winner network for each cluster
on the Kemerer data set. The second dataset that was used for
validation consists of 25 projects divided also in three clusters
based on the criteria in the first step. The random dataset
which was composed of projects from different resources
like: Aerospace, Loc. Calibration, etc. is used because there
were projects that are not cast-off in previous datasets.

IV. EVALUATION METHOD
Software price estimation models ought to be quantitatively
evaluated in terms of estimation accuracy to enhance the
modelling process. Some rules or the measurements should
be provided for the purpose of model assessment. This mea-
surement of accuracy defines the calculabe results, no mather
how shut they are with their actual value. Computer code cost
estimates play important role in delivering software projects.
As a result, researchers have projected the most widely used
criterion of analysis to assess the performance of software
prediction models, that is, the mean magnitude of relative
error (MMRE), to gauge the luxuriousness of prediction sys-
tems. MMRE is typically computed by following common-
place analysis processes cross-validation. Comparisons will
be created across information sets and prediction model sorts
[39]. COCOMOcomputes effort based on the number of lines
of codes. In intermediate COCOMO, Boehm [17], [18] used
fifteen additional predictor variables known as price drivers,
that are needed to calibrate the nominal effort of a project to
a particular project environment. The values are set to every
cost driver in step with the properties of a particular computer
code project. These numerical values of 15 cost drivers in
COCOMO81 and seventeen cost drivers in COCOMO2000
are increased to induce the trouble adjustment factor, that is,
EAF. The performance of estimation [40] strategies is some-
times evaluated by many quantitative relation measurements
of accuracy metrics [41] as well as RE (relative error), MRE
(magnitude of relative error), MAE (mean absolute error)
[42], and MMRE (mean magnitude of relative error) that are
calculated as follows (12) – (16):

Deviation = |ActEffort − EstEffort|. (12)

MAEi =
1
n

∑n

i=1
|ActEffort − EstEffort|. (13)

MRE = Deviation/ActEffort. (14)

MMRE = mean(MRE). (15)

PRED(k) = count(MRE) < 25%. (16)

Decreasing of MMRE and increasing of PRED (Predic-
tion) are the main aims of all estimation techniques.

VOLUME 9, 2021 26931

N. Rankovic et al.: New Approach to Software Effort Estimation Using Different ANN Architectures and Taguchi Orthogonal Arrays

V. DISCUSSION AND RESULTS
The proposed OATM is evaluated over three different tasks
on three benchmark datasets. In order to carry out our experi-
ments to evaluate the efficiency of our proposed model, we
have chosen four datasets: For neural network training we
chose the COCOMO2000 model consisting of 100 projects
found on MATLAB repository (see www.mathworks.com),
testing includes twenty COCOMO2000 projects, for valida-
tion we used NASA60 projects and a random dataset con-
sisting of COCOMO81 [17] and Kemerer 15 projects [38],
shown in Table 4.

TABLE 4. Datasets That are Used for all Three Parts of the Experiment

The first COCOMO2000 dataset is divided into a training
set (80%) and a testing set (20%). All the networks were
trained for maximum 10 iterations and the most accurate
results were considered as a Winner ANN. To evaluate the
proposed OATM, we designed an extensive experiment to
tune the hyper-parameters.

1. The first experiment involves training two different
architectures (ANN18 and ANN27) that were presented in
previous section. For the proposed ANN27 architecture that
is obtained on 100 projects from the COCOMO2000 dataset,
MMRE results for all 27 estimators and the selected Win-
ner network in accordance with a small, medium and large
cluster, show the following: The lower MMRE values is
reached with a medium cluster (43.2%), with Winner net-
work performed by NN5 (43.1%), while the highest MMRE
value was obtained over a small cluster (59.8%) with NN5
estimator (59.7%). The large cluster has the MMRE value
between a small and medium cluster and amounts 46.7% and
Winner network NN9 with 46.5% Table 5. Gradient descent
(GA < 0.001) was achieved in the eighth iteration for the
large cluster and small cluster, while for the medium cluster
this has already been achieved in the sixth iteration, shown in
Figure 4.

TABLE 5. MMRE Values for Each Selected Cluster and Winner Network
(ANN27)

For the proposed ANN18 architecture that is obtained on
100 projects from COCOMO2000 dataset, MMRE results
for all 18 estimators and the selected Winner network in

FIGURE 4. Graphical representation of all performed iterations on ANN27
architecture, for each selected cluster.

accordance with a small, medium and large cluster, show
the following: The lower MMRE values are reached with
medium cluster (44.2%), with Winner network performed by
NN5 (43.8%), while the highest MMRE value was obtained
over a large cluster (138.0%) with NN5 estimator (134.0%).
The small cluster has the MMRE value of 63.7% and Win-
ner network NN5 with 63.3% Table 6. Gradient descent
(GA < 0.001) was achieved in the eighth iteration for the
large cluster, while for the small cluster it was achieved in
the sixth iteration, and this has already been achieved in the
fifth iteration for the medium cluster, shown in Figure 5.

TABLE 6. MMRE Values for Each Selected Cluster and Winner Network
(ANN18)

FIGURE 5. Graphical representation of all performed iterations on ANN18
architecture, for each selected cluster.

After the first experiment, which involved training, it can
be seen that all clusters achieve better results using the
two proposed architectures ANN27 and ANN18 compared

26932 VOLUME 9, 2021

N. Rankovic et al.: New Approach to Software Effort Estimation Using Different ANN Architectures and Taguchi Orthogonal Arrays

to COCOMO2000, with the ANN27 network giving better
results than the ANN18 network, shown in Table 7, Figure 6.

TABLE 7. Values of MMRE of Each Selected Cluster for Both Architectures
in the 1st Experiment [4], [22]

FIGURE 6. Graphical representation of MMRE values for both
architectures in 1st experiment.

2. In the second experiment testing is performed on
projects from the COCOMO2000 dataset (with ID from 101
to 120). For the small and medium cluster of ANN27 Neural
Network, Winner network NN5 was used, while for the large
cluster, Winner network NN9 was used. In each cluster of
ANN18 Neural Network, Winner network NN5 was used.
Obtained results are presented below in Table 8, Figure 7
and after testing the experiment, it can be concluded that the
results of MMRE from ANN27 Neural Networks are better
than the ones in ANN18 Neural Network. For example, in
the case of a large cluster (projects with actual effort greater
than 500PM) the MMRE using ANN18 is 163.5%, but with
ANN27 the MMRE is almost eight times smaller (22.7%).

TABLE 8. Values of MMRE of Each Selected Cluster for Both Architectures
in the 2nd Experiment

3. The third experiment (validation) is obtained on the
Kemerer dataset and random dataset, that include 63 projects

FIGURE 7. Graphical representation of MMRE values for both
architectures in 2nd experiment.

and 25 projects, respectively. Projects in the Kemerer dataset
are divided into three clusters: the small cluster (contains 30
projects), the medium cluster (contains 17 projects), and and
large cluster (contains 17 projects). Projects in the random
dataset are divided into three clusters: the small cluster (con-
tains 11 projects), the medium cluster (contains 10 projects),
and the large cluster (contains 4 projects). The following
validation results were obtained for both architectures, using
the appropriate Winner networks, shown in Table 9, Figure 8,
Table 10, Figure 9.

TABLE 9. Values of MMRE (Kemerer dataset) of Each Selected Cluster for
Both Architectures in the 3rd Experiment

FIGURE 8. Graphical representation of MMRE (Kemerer dataset) values
for both architectures in the 3rd experiment.

In both validation sets, the best results are achieved with
the ANN27 network over the middle cluster and the MMRE
is then at its lowest: for the Kemerer set it is 36.8%, while for
the random set, it is 33.6%.

A. SHORT OVERVIEW OF THE RESULTS FOR ALL THREE
PARTS OF THE EXPERIMENT
The results of all three parts of the experiment for the two
representations of the architecture (ANN27 and ANN18),

VOLUME 9, 2021 26933

N. Rankovic et al.: New Approach to Software Effort Estimation Using Different ANN Architectures and Taguchi Orthogonal Arrays

TABLE 10. Values of MMRE (random dataset) of each selected cluster for
both architectures in the 3ed experiment [4], [22].

FIGURE 9. Graphical representation of MMRE (random dataset) values
for both architectures in the 3rd experiment.

TABLE 11. Values of MAE and MMRE of Each Selected Cluster for Both
Architectures in all Three Parts of the Experiment in Relation to
COCOMO2000 [4], [22]

FIGURE 10. Graphical representation of MMRE (random dataset) values
for both architectures in the 3rd experiment.

by clusters in relation to the COCOMO2000 values are as
follows: It can be observed that the best results were achieved
within the medium clusters for both architectures, even

twice smaller estimated magnitude relative error compared
to COCOMO2000 estimated results. With a small cluster for
both architectures, the results were even seven times better
than with COCOMO2000. For a large cluster, the results for
ANN27 are approximately the same as for COCOMO2000,
while for ANN18 the results obtained for a large cluster are
three times worse than COCOMO2000, shown in Figure 10,
Table 11.

VI. CONCLUSION
This study aimed to improve the accuracy of software eval-
uation methods. This article compares the impact of archi-
tectures of nonparametric models (two presented artificial
Neural Network architectures) in relation to traditional para-
metric models such as COCOMO2000 for the purpose of esti-
mating software effort and costs. Actual, published datasets
(COCOMO81, COCOMO2000 and Kemerer datasets) were
used for comparison [17], [18], [38]. In the decision-making
process, a relationship exists between the performance mea-
sures and also the planning criteria. This relationship may
be in terms of weights. These weights represent the relative
importance of the scheduling criteria. The factors and their
associated weights outline the operational policy. During this
experimental study, a backpropagation Neural Network was
chosen to determine the connection between the worldwide
performance measures with regard to the operational policies
and the work orders to be scheduled. A Neural Network
approach was chosen for the most part as a result of ana-
lytical and simulation approaches that are neither sensible
nor price-effective. The results that we obtain show that
through three parts of the experiment: training, testing, and
validation, the two mentioned Neural Network architectures
give better results in achieving the minimum MMRE when
assessing software effort compared to the use of traditional
methods. Mean magnitude relative error values (MMRE)
for ANN27 architecture compared to ANN18 architecture,
give better results, in essence, lower value of relative error,
so they can be considered the best-proposed technique of
nonparametric models for software effort estimation. Also,
as effort assessment is in practice the most restrictive process,
additional criteria can be defined through these experiments,
such as the introduced search optimization Gradient Descent
(GA). In order for the whole process to be complete, it
was important to validate all the results on different data
sources in our experiment Kemerer and randomly selected
datasets. Themain advantages of this approach are as follows:
a small number of iterations, a simple ANN architecture,
more efficient and precise estimation, less magnitude relative
error value, clustering due to the nature of software projects,
the choice of a reliable coding and encoding method, great
application possibilities, to achieve more reliable results.
A possible disadvantage would be validation on additional
datasets. There are no major limitations in the application of
this approach because it covers a wide range of project values.
In such experiments, large software companies may have
several development teams to deal with the various stages of

26934 VOLUME 9, 2021

N. Rankovic et al.: New Approach to Software Effort Estimation Using Different ANN Architectures and Taguchi Orthogonal Arrays

this process. This approach can benefit managers, software
engineers, and test engineers. The clustering technique made
it possible to set clear boundaries when estimating the appro-
priate actual effort values, which resulted in actual rather
than adjusted results. Future research will be focused on the
application of different ANN architectures and the training,
testing, and validation of such architectures on other datasets,
value of the cost-effect function and other parameters. Error
minimization for multiple input values using orthogonal vec-
tor plans will be considered. The Taguchi technique used in
this analysis provides a scientific improvement to analyze the
accuracy of the backpropagation Neural Network once given
a collection of input data, and to lift the sensitivity of the
network when it encounters different levels. It involves also
the utilization of the orthogonal arrays to formulate thematrix
experiments that provide an additional reliable estimate of the
planning factors. In addition, fewer experiments are required
with different strategies for the design of experiments. This
technique includes a linear graph technique which permits
the designer to check the results of interactions between the
design factors.

REFERENCES
[1] A. Stoica and J. Blosiu, ‘‘Neural Leaming using orthogonal arrays,’’ Adv.

Intell. Syst., vol. 41, p. 418, Jan. 1997.
[2] J. F. C. Khaw, B. S. Lim, and L. E. N. Lim, ‘‘Optimal design of neural

networks using the Taguchi method,’’ Neurocomputing, vol. 7, no. 3,
pp. 225–245, Apr. 1995.

[3] N. Ghatasheh, H. Faris, I. Aljarah, and R. M. H. Al-Sayyed, ‘‘Opti-
mizing software effort estimation models using firefly algorithm,’’ 2019,
arXiv:1903.02079. [Online]. Available: http://arxiv.org/abs/1903.02079

[4] A. A. Fadhil, R. G. H. Alsarraj, andA.M.Altaie, ‘‘Software cost estimation
based on dolphin algorithm,’’ IEEEAccess, vol. 8, pp. 75279–75287, 2020,
doi: 10.1109/ACCESS.2020.2988867.

[5] M. Hammad and A. Alqaddoumi, ‘‘Features-level software effort esti-
mation using machine learning algorithms,’’ in Proc. Int. Conf. Innov.
Intell. Informat., Comput., Technol. (3ICT), Nov. 2018, pp. 1–3, doi: 10.
1109/3ICT.2018.8855752.

[6] S. Shukla and S. Kumar, ‘‘Applicability of neural network based models
for software effort estimation,’’ in Proc. IEEEWorld Congr. Services (SER-
VICES), Jul. 2019, pp. 339–342, doi: 10.1109/SERVICES.2019.00094.

[7] A. J. Albrecht and J. E. Gaffney, ‘‘Software function, source lines of code,
and development effort prediction: A software science validation,’’ IEEE
Trans. Softw. Eng., vols. SE–9, no. 6, pp. 639–648, Nov. 1983.

[8] V. Yurdakurban and N. ErdoGan, ‘‘Comparison of machine learning meth-
ods for software project effort estimation,’’ in Proc. 26th Signal Pro-
cess. Commun. Appl. Conf. (SIU), May 2018, pp. 1–4, doi: 10.1109/SIU.
2018.8404495.

[9] Y. Mahmood, N. Kama, A. Azmi, and M. Ali, ‘‘Improving estimation
accuracy prediction of software development effort: A proposed ensemble
model,’’ in Proc. Int. Conf. Electr., Commun., Comput. Eng. (ICECCE),
Jun. 2020, pp. 1–6, doi: 10.1109/ICECCE49384.2020.9179279.

[10] C. ShekharYadav and R. Singh, ‘‘Tuning of COCOMO II model param-
eters for estimating software development effort using GA for PROMISE
project data set,’’ Int. J. Comput. Appl., vol. 90, no. 1, pp. 37–43,Mar. 2014.

[11] R. Setiono, K. Dejaeger, W. Verbeke, D. Martens, and B. Baesens, ‘‘Soft-
ware effort prediction using regression rule extraction from neural net-
works,’’ in Proc. 22nd IEEE Int. Conf. Tools with Artif. Intell., vol. 2,
Oct. 2010, pp. 45–52.

[12] T. R. G. Nair, V. Sharma, and S. Kumar, ‘‘Impact analysis of allocation
of resources by project manager on success of software projects,’’ 2014,
arXiv:1407.5319. [Online]. Available: http://arxiv.org/abs/1407.5319

[13] L. Lazić and N. Mastorakis, ‘‘Two novel effort estimation models based on
quality metrics in Web projects,’’WSEAS Trans. Inf. Sci. Appl., vol. 7, no.
7, pp. 923–934, Jul. 2010.

[14] L. J. Lazić, I. D̋okić, and S. Milinković, ‘‘Quantitative model for allocation
of resources based on success rate of software projects using design of
experiments,’’ in Proc. 7th Eur. Comput. Conf. (ECC), Dubrovnik, Croatia,
Jun. 2013, pp. 264–269.

[15] L. H. Putnam and W. Myers,Measures For Excellence: Reliable Software
On Time, Within Budget. Upper Saddle River, NJ, USA: Prentice-Hall
Professional Technical Reference, 1991.

[16] D. D. Galorath and M. W. Evans, Software Sizing, Estimation, and Risk
Management: When Performance is Measured Performance. Boca Raton,
FL, USA: CRC Press, 2006.

[17] B. Barry, Software Engineering Economics, 1st ed. New York, NY, USA:
Prentice-Hall, Sep. 1981.

[18] B. W. Boehm, C. Abts, A. W. Brown, S. Chulani, B. K. Clark, E. Horowitz,
R. Madachy, D. J. Reifer, and B. Steece, Software Cost Estimation With
Cocomo II, vol. 1. Upper Saddle River, NJ, USA: Prentice-Hall, 2000.

[19] S. Pundhir, U. Ghose, and U. Bisht, ‘‘Performance evaluation of vari-
ous ANN architectures using proposed cost function,’’ in Proc. 8th Int.
Conf. Rel., Infocom Technol. Optim. (Trends Future Directions) (ICRITO),
Jun. 2020, pp. 732–737, doi: 10.1109/ICRITO48877.2020.9197851.

[20] A. Kaushik, A. Soni, and R. Soni, ‘‘A simple neural network approach to
software cost estimation,’’ Global J. Comput. Sci. Technol., vol. 6, no. 2,
pp. 117–125, Feb. 2010.

[21] G. Kumar and P. K. Bhatia, ‘‘Automation of software cost estimation
using neural network technique,’’ Int. J. Comput. Appl., vol. 98, no. 20,
pp. 11–17, Jul. 2014.

[22] S. Goyal and A. Parashar, ‘‘Machine learning application to improve
COCOMO model using neural networks,’’ Int. J. Inf. Technol. Comput.
Sci., vol. 10, no. 3, pp. 35–51, Mar. 2018.

[23] D. Manikavelan and R. Ponnusamy, ‘‘Software cost estimation by analogy
using feed forward neural network,’’ in Proc. Int. Conf. Inf. Commun.
Embedded Syst. (ICICES), Feb. 2014, pp. 1–5.

[24] S. Mukherjee and R. K. Malu, ‘‘Optimization of project effort estimate
using neural network,’’ in Proc. IEEE Int. Conf. Adv. Commun., Control
Comput. Technol., May 2014, pp. 406–410.

[25] O. F. Sarac and N. Duru, ‘‘A novel method for software effort estimation:
Estimating with boundaries,’’ in Proc. IEEE INISTA, Jun. 2013, pp. 1–5.

[26] A. Kaushik, A. Chauhan, D. Mittal, and S. Gupta, ‘‘COCOMO estimates
using neural networks,’’ Int. J. Intell. Syst. Appl., vol. 4, no. 9, pp. 22–28,
Aug. 2012.

[27] M.Madheswaran andD. Sivakumar, ‘‘Enhancement of prediction accuracy
in COCOMO model for software project using neural network,’’ in Proc.
5th Int. Conf. Comput., Commun. Netw. Technol. (ICCCNT), Jul. 2014,
pp. 1–5.

[28] A. Kaushik, A. K. Soni, and R. Soni, ‘‘An adaptive learning approach to
software cost estimation,’’ in Proc. Nat. Conf. Comput. Commun. Syst.,
Nov. 2012, pp. 1–6.

[29] A. B. Nassif, M. Azzeh, L. F. Capretz, and D. Ho, ‘‘Neural network models
for software development effort estimation: A comparative study,’’ Neural
Comput. Appl., vol. 27, no. 8, pp. 2369–2381, Nov. 2016.

[30] I. Attarzadeh and S. H. Ow, ‘‘A novel algorithmic cost estimation model
based on soft computing technique,’’ J. Comput. Sci., vol. 6, no. 2,
pp. 117–125, Feb. 2010.

[31] G. Boetticher, ‘‘An assessment of metric contribution in the construction
of a neural network-based effort estimator,’’ in Proc. Int. Workshop Soft
Comput. Appl. Softw. Eng., 2001, pp. 59–65.

[32] C. Schofield, Non-Algorithmic Effort Estimation Techniques,
Standard ESERG TR98-01, 1998.

[33] J. Li and G. Ruhe, ‘‘Analysis of attribute weighting heuristics for analogy-
based software effort estimation method Aqua+,’’ Empirical Softw. Eng.,
vol. 13, no. 1, pp. 63–96, Feb. 2008.

[34] H. Liu and L. Yu, ‘‘Toward integrating feature selection algorithms for
classification and clustering,’’ IEEE Trans. Knowl. Data Eng., vol. 17,
no. 4, pp. 491–502, Apr. 2005.

[35] N.-H. Chiu and S.-J. Huang, ‘‘The adjusted analogy-based software effort
estimation based on similarity distances,’’ J. Syst. Softw., vol. 80, no. 4,
pp. 628–640, Apr. 2007.

[36] L. V. Patil, R. M. Waghmode, S. D. Joshi, and V. Khanna, ‘‘Generic
model of software cost estimation: A hybrid approach,’’ in Proc. IEEE Int.
Advance Comput. Conf. (IACC), Feb. 2014, pp. 1379–1384.

[37] S. Kumari and S. Pushkar, ‘‘Performance analysis of the software cost
estimation methods: A review,’’ Int. J. Adv. Res. Comput. Sci. Softw. Eng.,
vol. 3, no. 7, pp. 229–238, 2013.

[38] C. F. Kemerer, ‘‘An empirical validation of software cost estimation mod-
els,’’ Commun. ACM, vol. 30, no. 5, pp. 416–429, May 1987.

VOLUME 9, 2021 26935

http://dx.doi.org/10.1109/ACCESS.2020.2988867
http://dx.doi.org/10.1109/3ICT.2018.8855752
http://dx.doi.org/10.1109/3ICT.2018.8855752
http://dx.doi.org/10.1109/SERVICES.2019.00094
http://dx.doi.org/10.1109/SIU.2018.8404495
http://dx.doi.org/10.1109/SIU.2018.8404495
http://dx.doi.org/10.1109/ICECCE49384.2020.9179279
http://dx.doi.org/10.1109/ICRITO48877.2020.9197851

N. Rankovic et al.: New Approach to Software Effort Estimation Using Different ANN Architectures and Taguchi Orthogonal Arrays

[39] Z. Chen, T. Menzies, D. Port, and B. Boehm, ‘‘Feature subset selection can
improve software cost estimation accuracy,’’ in Proc. Workshop Predictor
Models Softw. Eng. (PROMISE), 2005, pp. 1–6.

[40] M. Jankovic, S. Zitnik, and M. Bajec, ‘‘Reconstructing de facto software
development methods,’’ Comput. Sci. Inf. Syst., vol. 16, no. 1, pp. 75–104,
2019.

[41] T. Beranic and M. Hericko, ‘‘Comparison of systematically derived soft-
ware metrics thresholds for object-oriented programming languages,’’
Comput. Sci. Inf. Syst., vol. 17, no. 1, pp. 181–203, 2020.

[42] A. B. Nassif, M. Azzeh, A. Idri, and A. Abran, ‘‘Software development
effort estimation using regression fuzzy models,’’ Comput. Intell. Neu-
rosci., vol. 2019, pp. 1–17, Feb. 2019.

NEVENA RANKOVIC was born in Valjevo, Ser-
bia, in 1994. She received the B.Sc. and M.Sc.
degrees in software engineering from the Depart-
ment of Mathematics and Informatics, Faculty of
Sciences, University of Novi Sad, in 2015 and
2018, respectively, where she is currently pursuing
the Ph.D. degree with From 2018 to 2019, she
was a Teaching Assistant with the Department of
Mathematics and Informatics, University of Novi
Sad. She is currently a Teaching Assistant with

the School of Computing, Union University, Belgrade on subjects like
software testing, software engineering, and software project management.
Her research interests include software engineering, applied artificial intelli-
gence, business intelligence, agile development, web technologies, software
quality, requirements engineering, software project management, software
testing, and software metrics.

DRAGICA RANKOVIC was born in Valjevo, Ser-
bia, in 1963. She received the Ph.D. degree in
mathematics and informatics from the Technical
Faculty, University of Novi Sad, in 2009. She is
currently with the School of Computing, Union
University, Belgrade as a Teaching Lecturer on
subjects like mathematical analysis, linear alge-
bra, and analytic geometry. Her research interests
include fuzzy theory, mathematical analysis, and
applied artificial intelligence.

MIRJANA IVANOVIC (Member, IEEE) has been
a Full Professor with the Faculty of Sciences,
University of Novi Sad, Serbia, since 2002. She
has also been a member of the University Coun-
cil for informatics for more than 10 years. She
has authored or coauthored 13 textbooks, 13
edited proceedings, 3 monographs, and of more
than 440 research articles on multi-agent systems,
e-learning and web-based learning, applications of
intelligent techniques (CBR, data and web min-

ing), software engineering education, and most of which are published in
international journals and proceedings of high-quality international con-
ferences. She is/was a member of program committees of more than 200
international conferences and general chair and program committee chair of
numerous international conferences. Also, she has been an invited speaker
at several international conferences and a visiting lecturer in Australia,
Thailand, and China. As a leader and researcher, she has participated in
numerous international projects. She is currently an Editor-in-Chief of Com-
puter Science and Information Systems Journal.

LJUBOMIR LAZIC received the B.S., M.S., and
Ph.D. degrees in electrical and computer engineer-
ing from the University of Belgrade, Belgrade,
Serbia. Before he joined the School of Computing,
he was an Associate Professor with Metropolitan
University, Belgrade. He is currently a Professor
with the School of Computing, Union Univer-
sity, Belgrade. He has authored about 140 articles
published in international journals, book chapters,
and conference proceedings, and invited speaker

(keynote speaker at three International Conference on Software QA and
Testing on Embedded Systems). His current research interests, as a project
leader, are in two projects supported in part by the Ministry of Science
and Technological Development of the Republic of Serbia under Grant
TR-1318 (2008–2011) and TR-35026 (2011–2020) involving optimal soft-
ware project management, software metrics, and effort estimation model-
ing. His research interests include software engineering, software project
management, software testing, human computer interaction, and component-
based engineering.

26936 VOLUME 9, 2021

